
Programming
Second Edition

Stroustrup_book.indb iStroustrup_book.indb i 4/22/14 9:41 AM4/22/14 9:41 AM

Stroustrup_book.indb iiStroustrup_book.indb ii 4/22/14 9:41 AM4/22/14 9:41 AM

Programming
Principles and Practice

Using C++
Second Edition

Bjarne Stroustrup

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Stroustrup_book.indb iiiStroustrup_book.indb iii 4/22/14 9:41 AM4/22/14 9:41 AM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

A complete list of photo sources and credits appears on pages 1273–1274.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Stroustrup, Bjarne, author.
 Programming : principles and practice using C++ / Bjarne Stroustrup. — Second edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-99278-9 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.
 QA76.73.C153S82 2014
 005.13'3—dc23
 2014004197

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use ma-
terial from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-99278-9
ISBN-10: 0-321-99278-4
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2014

Stroustrup_book.indb ivStroustrup_book.indb iv 4/22/14 9:41 AM4/22/14 9:41 AM

v

Contents

Preface xxv

Chapter 0 Notes to the Reader 1

0.1 The structure of this book 2
0.1.1 General approach 3
0.1.2 Drills, exercises, etc. 4
0.1.3 What comes after this book? 5

0.2 A philosophy of teaching and learning 6
0.2.1 The order of topics 9
0.2.2 Programming and programming language 10
0.2.3 Portability 11

0.3 Programming and computer science 12
0.4 Creativity and problem solving 12
0.5 Request for feedback 12
0.6 References 13
0.7 Biographies 13

Bjarne Stroustrup 14
Lawrence “Pete” Petersen 15

Chapter 1 Computers, People, and Programming 17

1.1 Introduction 18
1.2 Software 19
1.3 People 21
1.4 Computer science 24
1.5 Computers are everywhere 25

1.5.1 Screens and no screens 26
1.5.2 Shipping 26
1.5.3 Telecommunications 28
1.5.4 Medicine 30

Stroustrup_book.indb vStroustrup_book.indb v 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSvi

1.5.5 Information 31
1.5.6 A vertical view 33
1.5.7 So what? 34

1.6 Ideals for programmers 34

Part I The Basics 41

Chapter 2 Hello, World! 43

2.1 Programs 44
2.2 The classic first program 45
2.3 Compilation 47
2.4 Linking 51
2.5 Programming environments 52

Chapter 3 Objects, Types, and Values 59

3.1 Input 60
3.2 Variables 62
3.3 Input and type 64
3.4 Operations and operators 66
3.5 Assignment and initialization 69

3.5.1 An example: detect repeated words 71
3.6 Composite assignment operators 73

3.6.1 An example: find repeated words 73
3.7 Names 74
3.8 Types and objects 77
3.9 Type safety 78

3.9.1 Safe conversions 79
3.9.2 Unsafe conversions 80

Chapter 4 Computation 89

4.1 Computation 90
4.2 Objectives and tools 92
4.3 Expressions 94

4.3.1 Constant expressions 95
4.3.2 Operators 97
4.3.3 Conversions 99

4.4 Statements 100
4.4.1 Selection 102
4.4.2 Iteration 109

4.5 Functions 113
4.5.1 Why bother with functions? 115
4.5.2 Function declarations 117

Stroustrup_book.indb viStroustrup_book.indb vi 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS vii

4.6 vector 117
4.6.1 Traversing a vector 119
4.6.2 Growing a vector 119
4.6.3 A numeric example 120
4.6.4 A text example 123

4.7 Language features 125

Chapter 5 Errors 133

5.1 Introduction 134
5.2 Sources of errors 136
5.3 Compile-time errors 136

5.3.1 Syntax errors 137
5.3.2 Type errors 138
5.3.3 Non-errors 139

5.4 Link-time errors 139
5.5 Run-time errors 140

5.5.1 The caller deals with errors 142
5.5.2 The callee deals with errors 143
5.5.3 Error reporting 145

5.6 Exceptions 146
5.6.1 Bad arguments 147
5.6.2 Range errors 148
5.6.3 Bad input 150
5.6.4 Narrowing errors 153

5.7 Logic errors 154
5.8 Estimation 157
5.9 Debugging 158

5.9.1 Practical debug advice 159
5.10 Pre- and post-conditions 163

5.10.1 Post-conditions 165
5.11 Testing 166

Chapter 6 Writing a Program 173

6.1 A problem 174
6.2 Thinking about the problem 175

6.2.1 Stages of development 176
6.2.2 Strategy 176

6.3 Back to the calculator! 178
6.3.1 First attempt 179
6.3.2 Tokens 181
6.3.3 Implementing tokens 183
6.3.4 Using tokens 185
6.3.5 Back to the drawing board 186

Stroustrup_book.indb viiStroustrup_book.indb vii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSviii

6.4 Grammars 188
6.4.1 A detour: English grammar 193
6.4.2 Writing a grammar 194

6.5 Turning a grammar into code 195
6.5.1 Implementing grammar rules 196
6.5.2 Expressions 197
6.5.3 Terms 200
6.5.4 Primary expressions 202

6.6 Trying the first version 203
6.7 Trying the second version 208
6.8 Token streams 209

6.8.1 Implementing Token_stream 211
6.8.2 Reading tokens 212
6.8.3 Reading numbers 214

6.9 Program structure 215

Chapter 7 Completing a Program 221

7.1 Introduction 222
7.2 Input and output 222
7.3 Error handling 224
7.4 Negative numbers 229
7.5 Remainder: % 230
7.6 Cleaning up the code 232

7.6.1 Symbolic constants 232
7.6.2 Use of functions 234
7.6.3 Code layout 235
7.6.4 Commenting 237

7.7 Recovering from errors 239
7.8 Variables 242

7.8.1 Variables and definitions 242
7.8.2 Introducing names 247
7.8.3 Predefined names 250
7.8.4 Are we there yet? 250

Chapter 8 Technicalities: Functions, etc. 255

8.1 Technicalities 256
8.2 Declarations and definitions 257

8.2.1 Kinds of declarations 261
8.2.2 Variable and constant declarations 262
8.2.3 Default initialization 263

Stroustrup_book.indb viiiStroustrup_book.indb viii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS ix

8.3 Header files 264
8.4 Scope 266
8.5 Function call and return 272

8.5.1 Declaring arguments and return type 272
8.5.2 Returning a value 274
8.5.3 Pass-by-value 275
8.5.4 Pass-by-const-reference 276
8.5.5 Pass-by-reference 279
8.5.6 Pass-by-value vs. pass-by-reference 281
8.5.7 Argument checking and conversion 284
8.5.8 Function call implementation 285
8.5.9 constexpr functions 290

8.6 Order of evaluation 291
8.6.1 Expression evaluation 292
8.6.2 Global initialization 293

8.7 Namespaces 294
8.7.1 using declarations and using directives 296

Chapter 9 Technicalities: Classes, etc. 303

9.1 User-defined types 304
9.2 Classes and members 305
9.3 Interface and implementation 306
9.4 Evolving a class 308

9.4.1 struct and functions 308
9.4.2 Member functions and constructors 310
9.4.3 Keep details private 312
9.4.4 Defining member functions 314
9.4.5 Referring to the current object 317
9.4.6 Reporting errors 317

9.5 Enumerations 318
9.5.1 “Plain” enumerations 320

9.6 Operator overloading 321
9.7 Class interfaces 323

9.7.1 Argument types 324
9.7.2 Copying 326
9.7.3 Default constructors 327
9.7.4 const member functions 330
9.7.5 Members and “helper functions” 332

9.8 The Date class 334

Stroustrup_book.indb ixStroustrup_book.indb ix 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSx

Part II Input and Output 343

Chapter 10 Input and Output Streams 345

10.1 Input and output 346
10.2 The I/O stream model 347
10.3 Files 349
10.4 Opening a file 350
10.5 Reading and writing a file 352
10.6 I/O error handling 354
10.7 Reading a single value 358

10.7.1 Breaking the problem into manageable parts 359
10.7.2 Separating dialog from function 362

10.8 User-defined output operators 363
10.9 User-defined input operators 365
10.10 A standard input loop 365
10.11 Reading a structured file 367

10.11.1 In-memory representation 368
10.11.2 Reading structured values 370
10.11.3 Changing representations 374

Chapter 11 Customizing Input and Output 379

11.1 Regularity and irregularity 380
11.2 Output formatting 380

11.2.1 Integer output 381
11.2.2 Integer input 383
11.2.3 Floating-point output 384
11.2.4 Precision 385
11.2.5 Fields 387

11.3 File opening and positioning 388
11.3.1 File open modes 388
11.3.2 Binary files 390
11.3.3 Positioning in files 393

11.4 String streams 394
11.5 Line-oriented input 395
11.6 Character classification 396
11.7 Using nonstandard separators 398
11.8 And there is so much more 406

Chapter 12 A Display Model 411

12.1 Why graphics? 412
12.2 A display model 413
12.3 A first example 414

Stroustrup_book.indb xStroustrup_book.indb x 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xi

12.4 Using a GUI library 418
12.5 Coordinates 419
12.6 Shapes 420
12.7 Using Shape primitives 421

12.7.1 Graphics headers and main 421
12.7.2 An almost blank window 422
12.7.3 Axis 424
12.7.4 Graphing a function 426
12.7.5 Polygons 427
12.7.6 Rectangles 428
12.7.7 Fill 431
12.7.8 Text 431
12.7.9 Images 433
12.7.10 And much more 434

12.8 Getting this to run 435
12.8.1 Source files 437

Chapter 13 Graphics Classes 441

13.1 Overview of graphics classes 442
13.2 Point and Line 444
13.3 Lines 447
13.4 Color 450
13.5 Line_style 452
13.6 Open_polyline 455
13.7 Closed_polyline 456
13.8 Polygon 458
13.9 Rectangle 460
13.10 Managing unnamed objects 465
13.11 Text 467
13.12 Circle 470
13.13 Ellipse 472
13.14 Marked_polyline 474
13.15 Marks 476
13.16 Mark 478
13.17 Images 479

Chapter 14 Graphics Class Design 487

14.1 Design principles 488
14.1.1 Types 488
14.1.2 Operations 490
14.1.3 Naming 491
14.1.4 Mutability 492

Stroustrup_book.indb xiStroustrup_book.indb xi 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxii

14.2 Shape 493
14.2.1 An abstract class 495
14.2.2 Access control 496
14.2.3 Drawing shapes 500
14.2.4 Copying and mutability 503

14.3 Base and derived classes 504
14.3.1 Object layout 506
14.3.2 Deriving classes and defining virtual functions 507
14.3.3 Overriding 508
14.3.4 Access 511
14.3.5 Pure virtual functions 512

14.4 Benefits of object-oriented programming 513

Chapter 15 Graphing Functions and Data 519

15.1 Introduction 520
15.2 Graphing simple functions 520
15.3 Function 524

15.3.1 Default Arguments 525
15.3.2 More examples 527
15.3.3 Lambda expressions 528

15.4 Axis 529
15.5 Approximation 532
15.6 Graphing data 537

15.6.1 Reading a file 539
15.6.2 General layout 541
15.6.3 Scaling data 542
15.6.4 Building the graph 543

Chapter 16 Graphical User Interfaces 551

16.1 User interface alternatives 552
16.2 The “Next” button 553
16.3 A simple window 554

16.3.1 A callback function 556
16.3.2 A wait loop 559
16.3.3 A lambda expression as a callback 560

16.4 Button and other Widgets 561
16.4.1 Widgets 561
16.4.2 Buttons 563
16.4.3 In_box and Out_box 563
16.4.4 Menus 564

16.5 An example 565

Stroustrup_book.indb xiiStroustrup_book.indb xii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xiii

16.6 Control inversion 569
16.7 Adding a menu 570
16.8 Debugging GUI code 575

Part III Data and Algorithms 581

Chapter 17 Vector and Free Store 583

17.1 Introduction 584
17.2 vector basics 586
17.3 Memory, addresses, and pointers 588

17.3.1 The sizeof operator 590
17.4 Free store and pointers 591

17.4.1 Free-store allocation 593
17.4.2 Access through pointers 594
17.4.3 Ranges 595
17.4.4 Initialization 596
17.4.5 The null pointer 598
17.4.6 Free-store deallocation 598

17.5 Destructors 601
17.5.1 Generated destructors 603
17.5.2 Destructors and free store 604

17.6 Access to elements 605
17.7 Pointers to class objects 606
17.8 Messing with types: void* and casts 608
17.9 Pointers and references 610

17.9.1 Pointer and reference parameters 611
17.9.2 Pointers, references, and inheritance 612
17.9.3 An example: lists 613
17.9.4 List operations 615
17.9.5 List use 616

17.10 The this pointer 618
17.10.1 More link use 620

Chapter 18 Vectors and Arrays 627

18.1 Introduction 628
18.2 Initialization 629
18.3 Copying 631

18.3.1 Copy constructors 633
18.3.2 Copy assignments 634
18.3.3 Copy terminology 636
18.3.4 Moving 637

Stroustrup_book.indb xiiiStroustrup_book.indb xiii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxiv

18.4 Essential operations 640
18.4.1 Explicit constructors 642
18.4.2 Debugging constructors and destructors 643

18.5 Access to vector elements 646
18.5.1 Overloading on const 647

18.6 Arrays 648
18.6.1 Pointers to array elements 650
18.6.2 Pointers and arrays 652
18.6.3 Array initialization 654
18.6.4 Pointer problems 656

18.7 Examples: palindrome 659
18.7.1 Palindromes using string 659
18.7.2 Palindromes using arrays 660
18.7.3 Palindromes using pointers 661

Chapter 19 Vector, Templates, and Exceptions 667

19.1 The problems 668
19.2 Changing size 671

19.2.1 Representation 671
19.2.2 reserve and capacity 673
19.2.3 resize 674
19.2.4 push_back 674
19.2.5 Assignment 675
19.2.6 Our vector so far 677

19.3 Templates 678
19.3.1 Types as template parameters 679
19.3.2 Generic programming 681
19.3.3 Concepts 683
19.3.4 Containers and inheritance 686
19.3.5 Integers as template parameters 687
19.3.6 Template argument deduction 689
19.3.7 Generalizing vector 690

19.4 Range checking and exceptions 693
19.4.1 An aside: design considerations 694
19.4.2 A confession: macros 696

19.5 Resources and exceptions 697
19.5.1 Potential resource management problems 698
19.5.2 Resource acquisition is initialization 700
19.5.3 Guarantees 701
19.5.4 unique_ptr 703
19.5.5 Return by moving 704
19.5.6 RAII for vector 705

Stroustrup_book.indb xivStroustrup_book.indb xiv 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xv

Chapter 20 Containers and Iterators 711

20.1 Storing and processing data 712
20.1.1 Working with data 713
20.1.2 Generalizing code 714

20.2 STL ideals 717
20.3 Sequences and iterators 720

20.3.1 Back to the example 723
20.4 Linked lists 724

20.4.1 List operations 726
20.4.2 Iteration 727

20.5 Generalizing vector yet again 729
20.5.1 Container traversal 732
20.5.2 auto 732

20.6 An example: a simple text editor 734
20.6.1 Lines 736
20.6.2 Iteration 737

20.7 vector, list, and string 741
20.7.1 insert and erase 742

20.8 Adapting our vector to the STL 745
20.9 Adapting built-in arrays to the STL 747
20.10 Container overview 749

20.10.1 Iterator categories 751

Chapter 21 Algorithms and Maps 757

21.1 Standard library algorithms 758
21.2 The simplest algorithm: find() 759

21.2.1 Some generic uses 761
21.3 The general search: find_if() 763
21.4 Function objects 765

21.4.1 An abstract view of function objects 766
21.4.2 Predicates on class members 767
21.4.3 Lambda expressions 769

21.5 Numerical algorithms 770
21.5.1 Accumulate 770
21.5.2 Generalizing accumulate() 772
21.5.3 Inner product 774
21.5.4 Generalizing inner_product() 775

21.6 Associative containers 776
21.6.1 map 776
21.6.2 map overview 779
21.6.3 Another map example 782
21.6.4 unordered_map 785
21.6.5 set 787

Stroustrup_book.indb xvStroustrup_book.indb xv 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxvi

21.7 Copying 789
21.7.1 Copy 789
21.7.2 Stream iterators 790
21.7.3 Using a set to keep order 793
21.7.4 copy_if 794

21.8 Sorting and searching 794
21.9 Container algorithms 797

Part IV Broadening the View 803

Chapter 22 Ideals and History 805

22.1 History, ideals, and professionalism 806
22.1.1 Programming language aims and philosophies 807
22.1.2 Programming ideals 808
22.1.3 Styles/paradigms 815

22.2 Programming language history overview 818
22.2.1 The earliest languages 819
22.2.2 The roots of modern languages 821
22.2.3 The Algol family 826
22.2.4 Simula 833
22.2.5 C 836
22.2.6 C++ 839
22.2.7 Today 842
22.2.8 Information sources 844

Chapter 23 Text Manipulation 849

23.1 Text 850
23.2 Strings 850
23.3 I/O streams 855
23.4 Maps 855

23.4.1 Implementation details 861
23.5 A problem 864
23.6 The idea of regular expressions 866

23.6.1 Raw string literals 868
23.7 Searching with regular expressions 869
23.8 Regular expression syntax 872

23.8.1 Characters and special characters 872
23.8.2 Character classes 873
23.8.3 Repeats 874
23.8.4 Grouping 876
23.8.5 Alternation 876
23.8.6 Character sets and ranges 877
23.8.7 Regular expression errors 878

Stroustrup_book.indb xviStroustrup_book.indb xvi 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xvii

23.9 Matching with regular expressions 880
23.10 References 885

Chapter 24 Numerics 889

24.1 Introduction 890
24.2 Size, precision, and overflow 890

24.2.1 Numeric limits 894
24.3 Arrays 895
24.4 C-style multidimensional arrays 896
24.5 The Matrix library 897

24.5.1 Dimensions and access 898
24.5.2 1D Matrix 901
24.5.3 2D Matrix 904
24.5.4 Matrix I/O 907
24.5.5 3D Matrix 907

24.6 An example: solving linear equations 908
24.6.1 Classical Gaussian elimination 910
24.6.2 Pivoting 911
24.6.3 Testing 912

24.7 Random numbers 914
24.8 The standard mathematical functions 917
24.9 Complex numbers 919
24.10 References 920

Chapter 25 Embedded Systems Programming 925

25.1 Embedded systems 926
25.2 Basic concepts 929

25.2.1 Predictability 932
25.2.2 Ideals 932
25.2.3 Living with failure 933

25.3 Memory management 935
25.3.1 Free-store problems 936
25.3.2 Alternatives to the general free store 939
25.3.3 Pool example 940
25.3.4 Stack example 942

25.4 Addresses, pointers, and arrays 943
25.4.1 Unchecked conversions 943
25.4.2 A problem: dysfunctional interfaces 944
25.4.3 A solution: an interface class 947
25.4.4 Inheritance and containers 951

25.5 Bits, bytes, and words 954
25.5.1 Bits and bit operations 955
25.5.2 bitset 959

Stroustrup_book.indb xviiStroustrup_book.indb xvii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxviii

25.5.3 Signed and unsigned 961
25.5.4 Bit manipulation 965
25.5.5 Bitfields 967
25.5.6 An example: simple encryption 969

25.6 Coding standards 974
25.6.1 What should a coding standard be? 975
25.6.2 Sample rules 977
25.6.3 Real coding standards 983

Chapter 26 Testing 989

26.1 What we want 990
26.1.1 Caveat 991

26.2 Proofs 992
26.3 Testing 992

26.3.1 Regression tests 993
26.3.2 Unit tests 994
26.3.3 Algorithms and non-algorithms 1001
26.3.4 System tests 1009
26.3.5 Finding assumptions that do not hold 1009

26.4 Design for testing 1011
26.5 Debugging 1012
26.6 Performance 1012

26.6.1 Timing 1015
26.7 References 1016

Chapter 27 The C Programming Language 1021

27.1 C and C++: siblings 1022
27.1.1 C/C++ compatibility 1024
27.1.2 C++ features missing from C 1025
27.1.3 The C standard library 1027

27.2 Functions 1028
27.2.1 No function name overloading 1028
27.2.2 Function argument type checking 1029
27.2.3 Function definitions 1031
27.2.4 Calling C from C++ and C++ from C 1032
27.2.5 Pointers to functions 1034

27.3 Minor language differences 1036
27.3.1 struct tag namespace 1036
27.3.2 Keywords 1037
27.3.3 Definitions 1038
27.3.4 C-style casts 1040

Stroustrup_book.indb xviiiStroustrup_book.indb xviii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xix

27.3.5 Conversion of void* 1041
27.3.6 enum 1042
27.3.7 Namespaces 1042

27.4 Free store 1043
27.5 C-style strings 1045

27.5.1 C-style strings and const 1047
27.5.2 Byte operations 1048
27.5.3 An example: strcpy() 1049
27.5.4 A style issue 1049

27.6 Input/output: stdio 1050
27.6.1 Output 1050
27.6.2 Input 1052
27.6.3 Files 1053

27.7 Constants and macros 1054
27.8 Macros 1055

27.8.1 Function-like macros 1056
27.8.2 Syntax macros 1058
27.8.3 Conditional compilation 1058

27.9 An example: intrusive containers 1059

Part V Appendices 1071

Appendix A Language Summary 1073

A.1 General 1074
A.1.1 Terminology 1075
A.1.2 Program start and termination 1075
A.1.3 Comments 1076

A.2 Literals 1077
A.2.1 Integer literals 1077
A.2.2 Floating-point-literals 1079
A.2.3 Boolean literals 1079
A.2.4 Character literals 1079
A.2.5 String literals 1080
A.2.6 The pointer literal 1081

A.3 Identifiers 1081
A.3.1 Keywords 1081

A.4 Scope, storage class, and lifetime 1082
A.4.1 Scope 1082
A.4.2 Storage class 1083
A.4.3 Lifetime 1085

Stroustrup_book.indb xixStroustrup_book.indb xix 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxx

A.5 Expressions 1086
A.5.1 User-defined operators 1091
A.5.2 Implicit type conversion 1091
A.5.3 Constant expressions 1093
A.5.4 sizeof 1093
A.5.5 Logical expressions 1094
A.5.6 new and delete 1094
A.5.7 Casts 1095

A.6 Statements 1096
A.7 Declarations 1098

A.7.1 Definitions 1098
A.8 Built-in types 1099

A.8.1 Pointers 1100
A.8.2 Arrays 1101
A.8.3 References 1102

A.9 Functions 1103
A.9.1 Overload resolution 1104
A.9.2 Default arguments 1105
A.9.3 Unspecified arguments 1105
A.9.4 Linkage specifications 1106

A.10 User-defined types 1106
A.10.1 Operator overloading 1107

A.11 Enumerations 1107
A.12 Classes 1108

A.12.1 Member access 1108
A.12.2 Class member definitions 1112
A.12.3 Construction, destruction, and copy 1112
A.12.4 Derived classes 1116
A.12.5 Bitfields 1120
A.12.6 Unions 1121

A.13 Templates 1121
A.13.1 Template arguments 1122
A.13.2 Template instantiation 1123
A.13.3 Template member types 1124

A.14 Exceptions 1125
A.15 Namespaces 1127
A.16 Aliases 1128
A.17 Preprocessor directives 1128

A.17.1 #include 1128
A.17.2 #define 1129

Stroustrup_book.indb xxStroustrup_book.indb xx 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xxi

Appendix B Standard Library Summary 1131

B.1 Overview 1132
B.1.1 Header files 1133
B.1.2 Namespace std 1136
B.1.3 Description style 1136

B.2 Error handling 1137
B.2.1 Exceptions 1138

B.3 Iterators 1139
B.3.1 Iterator model 1140
B.3.2 Iterator categories 1142

B.4 Containers 1144
B.4.1 Overview 1146
B.4.2 Member types 1147
B.4.3 Constructors, destructors, and assignments 1148
B.4.4 Iterators 1148
B.4.5 Element access 1149
B.4.6 Stack and queue operations 1149
B.4.7 List operations 1150
B.4.8 Size and capacity 1150
B.4.9 Other operations 1151
B.4.10 Associative container operations 1151

B.5 Algorithms 1152
B.5.1 Nonmodifying sequence algorithms 1153
B.5.2 Modifying sequence algorithms 1154
B.5.3 Utility algorithms 1156
B.5.4 Sorting and searching 1157
B.5.5 Set algorithms 1159
B.5.6 Heaps 1160
B.5.7 Permutations 1160
B.5.8 min and max 1161

B.6 STL utilities 1162
B.6.1 Inserters 1162
B.6.2 Function objects 1163
B.6.3 pair and tuple 1165
B.6.4 initializer_list 1166
B.6.5 Resource management pointers 1167

B.7 I/O streams 1168
B.7.1 I/O streams hierarchy 1170
B.7.2 Error handling 1171
B.7.3 Input operations 1172

Stroustrup_book.indb xxiStroustrup_book.indb xxi 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTSxxii

B.7.4 Output operations 1173
B.7.5 Formatting 1173
B.7.6 Standard manipulators 1173

B.8 String manipulation 1175
B.8.1 Character classification 1175
B.8.2 String 1176
B.8.3 Regular expression matching 1177

B.9 Numerics 1180
B.9.1 Numerical limits 1180
B.9.2 Standard mathematical functions 1181
B.9.3 Complex 1182
B.9.4 valarray 1183
B.9.5 Generalized numerical algorithms 1183
B.9.6 Random numbers 1184

B.10 Time 1185
B.11 C standard library functions 1185

B.11.1 Files 1186
B.11.2 The printf() family 1186
B.11.3 C-style strings 1191
B.11.4 Memory 1192
B.11.5 Date and time 1193
B.10.6 Etc. 1194

B.12 Other libraries 1195

Appendix C Getting Started with Visual Studio 1197

C.1 Getting a program to run 1198
C.2 Installing Visual Studio 1198
C.3 Creating and running a program 1199

C.3.1 Create a new project 1199
C.3.2 Use the std_lib_facilities.h header file 1199
C.3.3 Add a C++ source file to the project 1200
C.3.4 Enter your source code 1200
C.3.5 Build an executable program 1200
C.3.6 Execute the program 1201
C.3.7 Save the program 1201

C.4 Later 1201

Appendix D Installing FLTK 1203

D.1 Introduction 1204
D.2 Downloading FLTK 1204
D.3 Installing FLTK 1205
D.4 Using FLTK in Visual Studio 1205
D.5 Testing if it all worked 1206

Stroustrup_book.indb xxiiStroustrup_book.indb xxii 4/22/14 9:41 AM4/22/14 9:41 AM

CONTENTS xxiii

Appendix E GUI Implementation 1207

E.1 Callback implementation 1208
E.2 Widget implementation 1209
E.3 Window implementation 1210
E.4 Vector_ref 1212
E.5 An example: manipulating Widgets 1213

Glossary 1217
Bibliography 1223
Index 1227

Stroustrup_book.indb xxiiiStroustrup_book.indb xxiii 4/22/14 9:41 AM4/22/14 9:41 AM

Stroustrup_book.indb xxivStroustrup_book.indb xxiv 4/22/14 9:41 AM4/22/14 9:41 AM

xxv

Preface

“Damn the torpedoes!
Full speed ahead.”

—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer
can execute those solutions. Much of the effort in programming is spent finding
and refining solutions. Often, a problem is only fully understood through the
process of programming a solution for it.

This book is for someone who has never programmed before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programming using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks using the best up-to-date techniques. How long will that take?
As part of a first-year university course, you can work through this book in a se-
mester (assuming that you have a workload of four courses of average difficulty).
If you work by yourself, don’t expect to spend less time than that (maybe 15
hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you’ll
be writing your first simple programs after about an hour. Also, all learning is
gradual: each chapter introduces new useful concepts and illustrates them with
examples inspired by real-world uses. Your ability to express ideas in code — get-
ting a computer to do what you want it to do — gradually and steadily increases
as you go along. I never say, “Learn a month’s worth of theory and then see if
you can use it.”

Stroustrup_book.indb xxvStroustrup_book.indb xxv 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACExxvi

Why would you want to program? Our civilization runs on software. With-
out understanding software you are reduced to believing in “magic” and will be
locked out of many of the most interesting, profitable, and socially useful technical
fields of work. When I talk about programming, I think of the whole spectrum of
computer programs from personal computer applications with GUIs (graphical
user interfaces), through engineering calculations and embedded systems control
applications (such as digital cameras, cars, and cell phones), to text manipulation
applications as found in many humanities and business applications. Like math-
ematics, programming — when done well — is a valuable intellectual exercise that
sharpens our ability to think. However, thanks to feedback from the computer,
programming is more concrete than most forms of math, and therefore accessible
to more people. It is a way to reach out and change the world — ideally for the
better. Finally, programming can be great fun.

Why C++? You can’t learn to program without a programming language, and
C++ directly supports the key concepts and techniques used in real-world soft-
ware. C++ is one of the most widely used programming languages, found in an
unsurpassed range of application areas. You find C++ applications everywhere
from the bottom of the oceans to the surface of Mars. C++ is precisely and com-
prehensively defined by a nonproprietary international standard. Quality and/
or free implementations are available on every kind of computer. Most of the
programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the easiest book from which you can learn the basics of
real-world programming. That’s quite an ambitious goal because much modern
software relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use of
others, and to do so responsibly, providing a decent level of system quality; that is,
I assume that you want to achieve a level of professionalism. Consequently, I chose
the topics for this book to cover what is needed to get started with real-world pro-
gramming, not just what is easy to teach and learn. If you need a technique to get
basic work done right, I describe it, demonstrate concepts and language facilities
needed to support the technique, provide exercises for it, and expect you to work
on those exercises. If you just want to understand toy programs, you can get along
with far less than I present. On the other hand, I won’t waste your time with ma-
terial of marginal practical importance. If an idea is explained here, it’s because
you’ll almost certainly need it.

If your desire is to use the work of others without understanding how things
are done and without adding significantly to the code yourself, this book is not for
you. If so, please consider whether you would be better served by another book
and another language. If that is approximately your view of programming, please

Stroustrup_book.indb xxviStroustrup_book.indb xxvi 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACE xxvii

also consider from where you got that view and whether it in fact is adequate for
your needs. People often underestimate the complexity of programming as well as
its value. I would hate for you to acquire a dislike for programming because of a
mismatch between what you need and the part of the software reality I describe.
There are many parts of the “information technology” world that do not require
knowledge of programming. This book is aimed to serve those who do want to
write or understand nontrivial programs.

Because of its structure and practical aims, this book can also be used as a
second book on programming for someone who already knows a bit of C++ or
for someone who programs in another language and wants to learn C++. If you
fit into one of those categories, I refrain from guessing how long it will take you to
read this book, but I do encourage you to do many of the exercises. This will help
you to counteract the common problem of writing programs in older, familiar
styles rather than adopting newer techniques where these are more appropriate. If
you have learned C++ in one of the more traditional ways, you’ll find something
surprising and useful before you reach Chapter 7. Unless your name is Strous-
trup, what I discuss here is not “your father’s C++.”

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical instrument, or to drive a car just from reading a book — you must prac-
tice. Nor can you learn to program without reading and writing lots of code. This
book focuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, and principles of programming and
to master the language constructs used to express them. That’s essential, but by
itself, it will not give you the practical skills of programming. For that, you need
to do the exercises and get used to the tools for writing, compiling, and running
programs. You need to make your own mistakes and learn to correct them. There
is no substitute for writing code. Besides, that’s where the fun is!

On the other hand, there is more to programming — much more — than fol-
lowing a few rules and reading the manual. This book is emphatically not focused
on “the syntax of C++.” Understanding the fundamental ideals, principles, and
techniques is the essence of a good programmer. Only well-designed code has a
chance of becoming part of a correct, reliable, and maintainable system. Also, “the
fundamentals” are what last: they will still be essential after today’s languages and
tools have evolved or been replaced.

What about computer science, software engineering, information technology,
etc.? Is that all programming? Of course not! Programming is one of the funda-
mental topics that underlie everything in computer-related fields, and it has a nat-
ural place in a balanced course of computer science. I provide brief introductions
to key concepts and techniques of algorithms, data structures, user interfaces, data
processing, and software engineering. However, this book is not a substitute for a
thorough and balanced study of those topics.

Stroustrup_book.indb xxviiStroustrup_book.indb xxvii 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACExxviii

Code can be beautiful as well as useful. This book is written to help you see
that, to understand what it means for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programming!

A note to students
Of the many thousands of first-year students we have taught so far using this book
at Texas A&M University, about 60% had programmed before and about 40%
had never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. The book is widely
used for self-study. However, whether you work your way through as part of a
course or independently, try to work with others. Programming has an — unfair —
reputation as a lonely activity. Most people work better and learn faster when
they are part of a group with a common aim. Learning together and discussing
problems with friends is not cheating! It is the most efficient — as well as most
pleasant — way of making progress. If nothing else, working with friends forces
you to articulate your ideas, which is just about the most efficient way of testing
your understanding and making sure you remember. You don’t actually have to
personally discover the answer to every obscure language and programming en-
vironment problem. However, please don’t cheat yourself by not doing the drills
and a fair number of exercises (even if no teacher forces you to do them). Re-
member: programming is (among other things) a practical skill that you need to
practice to master. If you don’t write code (do several exercises for each chapter),
reading this book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face times when they
wonder whether their hard work is worthwhile. When (not if) this happens to
you, take a break, reread this Preface, and look at Chapter 1 (“Computers, Peo-
ple, and Programming”) and Chapter 22 (“Ideals and History”). There, I try to
articulate what I find exciting about programming and why I consider it a crucial
tool for making a positive contribution to the world. If you wonder about my
teaching philosophy and general approach, have a look at Chapter 0 (“Notes to
the Reader”).

You might find the weight of this book worrying, but it should reassure you
that part of the reason for the heft is that I prefer to repeat an explanation or add
an example rather than have you search for the one and only explanation. The
other major reason is that the second half of the book is reference material and
“additional material” presented for you to explore only if you are interested in
more information about a specific area of programming, such as embedded sys-
tems programming, text analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable skill
takes time and is worth it.

Stroustrup_book.indb xxviiiStroustrup_book.indb xxviii 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACE xxix

A note to teachers
No. This is not a traditional Computer Science 101 course. It is a book about how
to construct working software. As such, it leaves out much of what a computer
science student is traditionally exposed to (Turing completeness, state machines,
discrete math, Chomsky grammars, etc.). Even hardware is ignored on the as-
sumption that students have used computers in various ways since kindergarten.
This book does not even try to mention most important CS topics. It is about
programming (or more generally about how to develop software), and as such it
goes into more detail about fewer topics than many traditional courses. It tries
to do just one thing well, and computer science is not a one-course topic. If this
book/course is used as part of a computer science, computer engineering, electri-
cal engineering (many of our first students were EE majors), information science,
or whatever program, I expect it to be taught alongside other courses as part of a
well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my teach-
ing philosophy, general approach, etc. Please try to convey those ideas to your
students along the way.

ISO standard C++
C++ is defined by an ISO standard. The first ISO C++ standard was ratified
in 1998, so that version of C++ is known as C++98. I wrote the first edition of
this book while working on the design of C++11. It was most frustrating not to
be able to use the novel features (such as uniform initialization, range-for-loops,
move semantics, lambdas, and concepts) to simplify the presentation of principles
and techniques. However, the book was designed with C++11 in mind, so it was
relatively easy to “drop in” the features in the contexts where they belonged. As of
this writing, the current standard is C++11 from 2011, and facilities from the up-
coming 2014 ISO standard, C++14, are finding their way into mainstream C++
implementations. The language used in this book is C++11 with a few C++14
features. For example, if your compiler complains about

vector<int> v1;
vector<int> v2 {v1}; // C++14-style copy construction

use

vector<int> v1;
vector<int> v2 = v1; // C++98-style copy construction

instead.

Stroustrup_book.indb xxixStroustrup_book.indb xxix 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACExxx

If your compiler does not support C++11, get a new compiler. Good,
 modern C++ compilers can be downloaded from a variety of suppliers; see
www.stroustrup.com/compilers.html. Learning to program using an earlier and
less supportive version of the language can be unnecessarily hard.

Support
The book’s support website, www.stroustrup.com/Programming, contains a va-
riety of material supporting the teaching and learning of programming using this
book. The material is likely to be improved with time, but for starters, you can find

• Slides for lectures based on the book
• An instructor’s guide
• Header fi les and implementations of libraries used in the book
• Code for examples in the book
• Solutions to selected exercises
• Potentially useful links
• Errata

Suggestions for improvements are always welcome.

Acknowledgments
I’d especially like to thank my late colleague and co-teacher Lawrence “Pete”
Petersen for encouraging me to tackle the task of teaching beginners long before
I’d otherwise have felt comfortable doing that, and for supplying the practical
teaching experience to make the course succeed. Without him, the first version
of the course would have been a failure. We worked together on the first versions
of the course for which this book was designed and together taught it repeatedly,
learning from our experiences, improving the course and the book. My use of
“we” in this book initially meant “Pete and me.”

Thanks to the students, teaching assistants, and peer teachers of ENGR 112,
ENGR 113, and CSCE 121 at Texas A&M University who directly and indirectly
helped us construct this book, and to Walter Daugherity, Hyunyoung Lee, Teresa
Leyk, Ronnie Ward, and Jennifer Welch, who have also taught the course. Also
thanks to Damian Dechev, Tracy Hammond, Arne Tolstrup Madsen, Gabriel
Dos Reis, Nicholas Stroustrup, J. C. van Winkel, Greg Versoonder, Ronnie Ward,
and Leor Zolman for constructive comments on drafts of this book. Thanks to
Mogens Hansen for explaining about engine control software. Thanks to Al Aho,
Stephen Edwards, Brian Kernighan, and Daisy Nguyen for helping me hide away
from distractions to get writing done during the summers.

Stroustrup_book.indb xxxStroustrup_book.indb xxx 4/22/14 9:41 AM4/22/14 9:41 AM

PREFACE xxxi

Thanks to Art Werschulz for many constructive comments based on his use
of the first edition of this book in courses at Fordham University in New York
City and to Nick Maclaren for many detailed comments on the exercises based
on his use of the first edition of this book at Cambridge University. His students
had dramatically different backgrounds and professional needs from the TAMU
first-year students.

Thanks to the reviewers that Addison-Wesley found for me. Their comments,
mostly based on teaching either C++ or Computer Science 101 at the college
level, have been invaluable: Richard Enbody, David Gustafson, Ron McCarty,
and K. Narayanaswamy. Also thanks to my editor, Peter Gordon, for many useful
comments and (not least) for his patience. I’m very grateful to the production
team assembled by Addison-Wesley; they added much to the quality of the book:
Linda Begley (proofreader), Kim Arney (compositor), Rob Mauhar (illustrator),
Julie Nahil (production editor), and Barbara Wood (copy editor).

Thanks to the translators of the first edition, who found many problems and
helped clarify many points. In particular, Loïc Joly and Michel Michaud did a thor-
ough technical review of the French translation that led to many improvements.

I would also like to thank Brian Kernighan and Doug McIlroy for setting a
very high standard for writing about programming, and Dennis Ritchie and Kris-
ten Nygaard for providing valuable lessons in practical language design.

Stroustrup_book.indb xxxiStroustrup_book.indb xxxi 4/22/14 9:41 AM4/22/14 9:41 AM

Stroustrup_book.indb xxxiiStroustrup_book.indb xxxii 4/22/14 9:41 AM4/22/14 9:41 AM

1

0

Notes to the Reader

“When the terrain disagrees with
the map, trust the terrain.”

—Swiss army proverb

This chapter is a grab bag of information; it aims to give you

an idea of what to expect from the rest of the book. Please

skim through it and read what you find interesting. A teacher

will find most parts immediately useful. If you are reading this

book without the benefit of a good teacher, please don’t try to

read and understand everything in this chapter; just look at “The

structure of this book” and the first part of the “A philosophy of

teaching and learning” sections. You may want to return and

reread this chapter once you feel comfortable writing and execut-

ing small programs.

Stroustrup_book.indb 1Stroustrup_book.indb 1 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER2

0.1 The structure of this book
This book consists of four parts and a collection of appendices:

• Part I, “The Basics,” presents the fundamental concepts and techniques
of programming together with the C++ language and library facilities
needed to get started writing code. This includes the type system, arith-
metic operations, control structures, error handling, and the design, im-
plementation, and use of functions and user-defi ned types.

• Part II, “Input and Output,” describes how to get numeric and text data from
the keyboard and from fi les, and how to produce corresponding output
to the screen and to fi les. Then, it shows how to present numeric data,
text, and geometric shapes as graphical output, and how to get input into
a program from a graphical user interface (GUI).

• Part III, “Data and Algorithms,” focuses on the C++ standard library’s con-
tainers and algorithms framework (the STL, standard template library).
It shows how containers (such as vector, list, and map) are implemented
(using pointers, arrays, dynamic memory, exceptions, and templates) and
used. It also demonstrates the design and use of standard library algo-
rithms (such as sort, fi nd, and inner_product).

• Part IV, “Broadening the View,” offers a perspective on programming through
a discussion of ideals and history, through examples (such as matrix com-
putation, text manipulation, testing, and embedded systems program-
ming), and through a brief description of the C language.

• Appendices provide useful information that doesn’t fi t into a tutorial presen-
tation, such as surveys of C++ language and standard library facilities,
and descriptions of how to get started with an integrated development
environment (IDE) and a graphical user interface (GUI) library.

0.1 The structure of this book
0.1.1 General approach
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book?

0.2 A philosophy of teaching
and learning
0.2.1 The order of topics
0.2.2 Programming and programming

language
0.2.3 Portability

0.3 Programming and computer science

0.4 Creativity and problem solving

0.5 Request for feedback

0.6 References

0.7 Biographies

Stroustrup_book.indb 2Stroustrup_book.indb 2 4/22/14 9:41 AM4/22/14 9:41 AM

0.1 THE STRUCTURE OF THIS BOOK 3

Unfortunately, the world of programming doesn’t really fall into four cleanly
separated parts. Therefore, the “parts” of this book provide only a coarse classifi-
cation of topics. We consider it a useful classification (obviously, or we wouldn’t
have used it), but reality has a way of escaping neat classifications. For example,
we need to use input operations far sooner than we can give a thorough explana-
tion of C++ standard I/O streams (input/output streams). Where the set of topics
needed to present an idea conflicts with the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com-
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming techniques, rather than
programming language features; see §0.2. For a presentation organized around
language features, see Appendix A.

To ease review and to help you if you miss a key point during a first reading
where you have yet to discover which kind of information is crucial, we place
three kinds of “alert markers” in the margin:

• Blue: concepts and techniques (this paragraph is an example of that)
• Green: advice
• Red: warning

0.1.1 General approach
In this book, we address you directly. That is simpler and clearer than the conven-
tional “professional” indirect form of address, as found in most scientific papers.
By “you” we mean “you, the reader,” and by “we” we refer either to “ourselves,
the author and teachers,” or to you and us working together through a problem,
as we might have done had we been in the same room.

This book is designed to be read chapter by chapter from the beginning to
the end. Often, you’ll want to go back to look at something a second or a third
time. In fact, that’s the only sensible approach, as you’ll always dash past some
details that you don’t yet see the point in. In such cases, you’ll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open to any page and start reading with any expectation of success. Each
section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one
sitting” (logically, if not always feasible on a student’s tight schedule). That’s one
major criterion for separating the text into chapters. Other criteria include that
a chapter is a suitable unit for drills and exercises and that each chapter presents
some specific concept, idea, or technique. This plurality of criteria has left a few
chapters uncomfortably long, so please don’t take “in one sitting” too literally. In
particular, once you have thought about the review questions, done the drill, and

Stroustrup_book.indb 3Stroustrup_book.indb 3 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER4

worked on a few exercises, you’ll often find that you have to go back to reread a
few sections and that several days have gone by. We have clustered the chapters
into “parts” focused on a major topic, such as input/output. These parts make
good units of review.

Common praise for a textbook is “It answered all my questions just as I
thought of them!” That’s an ideal for minor technical questions, and early read-
ers have observed the phenomenon with this book. However, that cannot be the
whole ideal. We raise questions that a novice would probably not think of. We
aim to ask and answer questions that you need to consider when writing quality
software for the use of others. Learning to ask the right (often hard) questions
is an essential part of learning to think as a programmer. Asking only the easy
and obvious questions would make you feel good, but it wouldn’t help make
you a programmer.

We try to respect your intelligence and to be considerate about your time.
In our presentation, we aim for professionalism rather than cuteness, and we’d
rather understate a point than hype it. We try not to exaggerate the importance of
a programming technique or a language feature, but please don’t underestimate
a simple statement like “This is often useful.” If we quietly emphasize that some-
thing is important, we mean that you’ll sooner or later waste days if you don’t
master it. Our use of humor is more limited than we would have preferred, but
experience shows that people’s ideas of what is funny differ dramatically and that
a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool,
library, language, or technique is “the solution” to all of the many challenges
facing a programmer. At best, it can help you to develop and express your solu-
tion. We try hard to avoid “white lies”; that is, we refrain from oversimplified
explanations that are clear and easy to understand, but not true in the context
of real languages and real problems. On the other hand, this book is not a refer-
ence; for more precise and complete descriptions of C++, see Bjarne Stroustrup,
The C++ Programming Language, Fourth Edition (Addison-Wesley, 2013), and the
ISO C++ standard.

0.1.2 Drills, exercises, etc.
Programming is not just an intellectual activity, so writing programs is necessary
to master programming skills. We provide two levels of programming practice:

• Drills: A drill is a very simple exercise devised to develop practical, almost
mechanical skills. A drill usually consists of a sequence of modifi cations
of a single program. You should do every drill. A drill is not asking for
deep understanding, cleverness, or initiative. We consider the drills part
of the basic fabric of the book. If you haven’t done the drills, you have
not “done” the book.

Stroustrup_book.indb 4Stroustrup_book.indb 4 4/22/14 9:41 AM4/22/14 9:41 AM

0.1 THE STRUCTURE OF THIS BOOK 5

• Exercises: Some exercises are trivial and others are very hard, but most are
intended to leave some scope for initiative and imagination. If you are
serious, you’ll do quite a few exercises. At least do enough to know which
are diffi cult for you. Then do a few more of those. That’s how you’ll learn
the most. The exercises are meant to be manageable without exceptional
cleverness, rather than to be tricky puzzles. However, we hope that we
have provided exercises that are hard enough to challenge anybody and
enough exercises to exhaust even the best student’s available time. We do
not expect you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete
useful program. Ideally, a project is done by a small group of people (e.g., three
people) working together for about a month while working through the chap-
ters in Part III. Most people find the projects the most fun and what ties every-
thing together.

Some people like to put the book aside and try some examples before reading
to the end of a chapter; others prefer to read ahead to the end before trying to get
code to run. To support readers with the former preference, we provide simple
suggestions for practical work labeled “Try this” at natural breaks in the text. A
Try this is generally in the nature of a drill focused narrowly on the topic that pre-
cedes it. If you pass a Try this without trying — maybe because you are not near a
computer or you find the text riveting — do return to it when you do the chapter
drill; a Try this either complements the chapter drill or is a part of it.

At the end of each chapter you’ll find a set of review questions. They are
intended to point you to the key ideas explained in the chapter. One way to look
at the review questions is as a complement to the exercises: the exercises focus on
the practical aspects of programming, whereas the review questions try to help you
articulate the ideas and concepts. In that, they resemble good interview questions.

The “Terms” section at the end of each chapter presents the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what
each means.

Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?
At the end of this book, will you be an expert at programming and at C++? Of
course not! When done well, programming is a subtle, deep, and highly skilled
art building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or

Stroustrup_book.indb 5Stroustrup_book.indb 5 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER6

at playing the violin in four months — or in half a year, or a year. What you should
hope for, and what you can expect if you approach this book seriously, is to have
a really good start that allows you to write relatively simple useful programs, to be
able to read more complex programs, and to have a good conceptual and practical
background for further work.

The best follow-up to this initial course is to work on a real project developing
code to be used by someone else. After that, or (even better) in parallel with a real
project, read either a professional-level general textbook (such as Stroustrup, The
C++ Programming Language), a more specialized book relating to the needs of your
project (such as Qt for GUI, or ACE for distributed programming), or a textbook
focusing on a particular aspect of C++ (such as Koenig and Moo, Accelerated C++;
Sutter’s Exceptional C++; or Gamma et al., Design Patterns). For more references, see
§0.6 or the Bibliography section at the back of the book.

Eventually, you should learn another programming language. We don’t con-
sider it possible to be a professional in the realm of software — even if you are not
primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning
What are we trying to help you learn? And how are we approaching the process
of teaching? We try to present the minimal concepts, techniques, and tools for you
to do effective practical programs, including

• Program organization
• Debugging and testing
• Class design
• Computation
• Function and algorithm design
• Graphics (two-dimensional only)
• Graphical user interfaces (GUIs)
• Text manipulation
• Regular expression matching
• Files and stream input and output (I/O)
• Memory management
• Scientifi c/numerical/engineering calculations
• Design and programming ideals
• The C++ standard library
• Software development strategies
• C-language programming techniques

Stroustrup_book.indb 6Stroustrup_book.indb 6 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 7

Working our way through these topics, we cover the programming techniques
called procedural programming (as with the C programming language), data
abstraction, object-oriented programming, and generic programming. The main
topic of this book is programming, that is, the ideals, techniques, and tools of ex-
pressing ideas in code. The C++ programming language is our main tool, so we
describe many of C++’s facilities in some detail. But please remember that C++
is just a tool, rather than the main topic of this book. This is “programming using
C++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For example,
we use the interface to a two-dimensional graphics system to illustrate the use of
classes and inheritance. This allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. The C++ standard library is a major
source of such “double duty” examples — many even do triple duty. For example,
we introduce the standard library vector, use it to illustrate widely useful design
techniques, and show many of the programming techniques used to implement it.
One of our aims is to show you how major library facilities are implemented and
how they map to hardware. We insist that craftsmen must understand their tools,
not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others.
However, we encourage you not to prejudge your needs (how would you know
what you’ll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and
“concept-based.” First, we quickly (well, relatively quickly, Chapters 1–11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we pre-
sent a lot of tools and techniques in minimal detail. We focus on simple concrete
code examples because people grasp the concrete faster than the abstract. That’s
simply the way most humans learn. At this initial stage, you should not expect
to understand every little detail. In particular, you’ll find that trying something
slightly different from what just worked can have “mysterious” effects. Do try,
though! And please do the drills and exercises we provide. Just remember that
early on you just don’t have the concepts and skills to accurately estimate what’s
simple and what’s complicated; expect surprises and learn from them.

We move fast in this initial phase — we want to get you to the point where you
can write interesting programs as fast as possible. Someone will argue, “We must
move slowly and carefully; we must walk before we can run!” But have you ever
watched a baby learning to walk? Babies really do run by themselves before they
learn the finer skills of slow, controlled walking. Similarly, you will dash ahead,
occasionally stumbling, to get a feel of programming before slowing down to gain
the necessary finer control and understanding. You must run before you can walk!

Stroustrup_book.indb 7Stroustrup_book.indb 7 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER8

It is essential that you don’t get stuck in an attempt to learn “everything”
about some language detail or technique. For example, you could memorize all
of C++’s built-in types and all the rules for their use. Of course you could, and
doing so might make you feel knowledgeable. However, it would not make you
a programmer. Skipping details will get you “burned” occasionally for lack of
knowledge, but it is the fastest way to gain the perspective needed to write good
programs. Note that our approach is essentially the one used by children learning
their native language and also the most effective approach used to teach foreign
languages. We encourage you to seek help from teachers, friends, colleagues, in-
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as-
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and
skills. We use examples and exercises to solidify your understanding, and to pro-
vide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide
you when you look for practical solutions — to know when a solution is good and
principled. You need to understand the reasons behind those ideals to understand
why they should be your ideals, why aiming for them will help you and the users
of your code. Nobody should be satisfied with “because that’s the way it is” as
an explanation. More importantly, an understanding of ideals and reasons allows
you to generalize from what you know to new situations and to combine ideas
and tools in novel ways to address new problems. Knowing “why” is an essential
part of acquiring programming skills. Conversely, just memorizing lots of poorly
understood rules and language facilities is limiting, a source of errors, and a mas-
sive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and man-
uals, where you can look them up when needed. We assume that you have the
initiative to search out information when needed. Use the index and the table of
contents. Don’t forget the online help facilities of your compiler, and the web.
Remember, though, to consider every web resource highly suspect until you have
reason to believe better of it. Many an authoritative-looking website is put up by
a programming novice or someone with something to sell. Others are simply out-
dated. We provide a collection of links and information on our support website:
www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is
the shortest and simplest code that directly illustrates a language facility, a con-
cept, or a technique. Most real-world examples are far messier than ours, yet
do not consist of more than a combination of what we demonstrate. Successful
commercial programs with hundreds of thousands of lines of code are based on
techniques that we illustrate in a dozen 50-line programs. The fastest way to un-
derstand real-world code is through a good understanding of the fundamentals.

Stroustrup_book.indb 8Stroustrup_book.indb 8 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 9

On the other hand, we do not use “cute examples involving cuddly animals”
to illustrate our points. We assume that you aim to write real programs to be used
by real people, so every example that is not presented as language-technical is
taken from a real-world use. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics
There are many ways to teach people how to program. Clearly, we don’t sub-
scribe to the popular “the way I learned to program is the best way to learn” theo-
ries. To ease learning, we early on present topics that would have been considered
advanced only a few years ago. Our ideal is for the topics we present to be driven
by problems you meet as you learn to program, to flow smoothly from topic to
topic as you increase your understanding and practical skills. The major flow of
this book is more like a story than a dictionary or a hierarchical order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our respon-
sibility to select topics and to provide emphasis. We can’t just present everything,
so we must choose; what we leave out is at least as important as what we leave
in — at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated)
characterizations of approaches that we decided not to take:

• “C fi rst”: This approach to learning C++ is wasteful of students’ time
and leads to poor programming practices by forcing students to approach
problems with fewer facilities, techniques, and libraries than necessary.
C++ provides stronger type checking than C, a standard library with
better support for novices, and exceptions for error handling.

• Bottom-up: This approach distracts from learning good and effective pro-
gramming practices. By forcing students to solve problems with insuf-
fi cient support from the language and libraries, it promotes poor and
wasteful programming practices.

• “If you present something, you must present it fully”: This approach implies a bot-
tom-up approach (by drilling deeper and deeper into every topic touched).
It bores novices with technical details they have no interest in and quite
likely will not need for years to come. Once you can program, you can
look up technical details in a manual. Manuals are good at that, whereas
they are awful for initial learning of concepts.

• Top-down: This approach, working from fi rst principles toward details,
tends to distract readers from the practical aspects of programming and

Stroustrup_book.indb 9Stroustrup_book.indb 9 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER10

force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, you simply can’t
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

• “Abstract fi rst”: Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world prob-
lems, languages, tools, and hardware constraints. Often, this approach is
supported by “teaching languages” that cannot be used later and (deliber-
ately) insulate students from hardware and system concerns.

• “Software engineering principles fi rst”: This approach and the abstract-fi rst ap-
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreciate
the value of abstraction and proper software development practices.

• “Object-oriented from day one”: Object-oriented programming is one of the
best ways of organizing code and programming efforts, but it is not the
only effective way. In particular, we feel that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the de-
sign of classes and class hierarchies. We do use user-defi ned types (what
some people would call “objects”) from day one, but we don’t show how
to design a class until Chapter 6 and don’t show a class hierarchy until
Chapter 12.

• “Just believe in magic”: This approach relies on demonstrations of powerful
tools and techniques without introducing the novice to the underlying
techniques and facilities. This leaves the student guessing — and usually
guessing wrong — about why things are the way they are, what it costs
to use them, and where they can be reasonably applied. This can lead to
overrigid following of familiar patterns of work and become a barrier to
further learning.

Naturally, we do not claim that these other approaches are never useful. In fact,
we use several of these for specific subtopics where their strengths can be ap-
preciated. However, as general approaches to learning programming aimed
at real-world use, we reject them and apply our alternative: concrete-first and
depth-first with an emphasis on concepts and techniques.

0.2.2 Programming and programming language
We teach programming first and treat our chosen programming language as sec-
ondary, as a tool. Our general approach can be used with any general-purpose pro-
gramming language. Our primary aim is to help you learn general concepts,

Stroustrup_book.indb 10Stroustrup_book.indb 10 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 11

principles, and techniques. However, those cannot be appreciated in isolation. For
example, details of syntax, the kinds of ideas that can be directly expressed, and
tool support differ from programming language to programming language. How-
ever, many of the fundamental techniques for producing bug-free code, such as
writing logically simple code (Chapters 5 and 6), establishing invariants (§9.4.3),
and separating interfaces from implementation details (§9.7 and §14.1–2), vary
little from programming language to programming language.

Programming and design techniques must be learned using a programming
language. Design, code organization, and debugging are not skills you can acquire
in the abstract. You need to write code in some programming language and gain
practical experience with that. This implies that you must learn the basics of a
programming language. We say “the basics” because the days when you could
learn all of a major industrial language in a few weeks are gone for good. The
parts of C++ we present were chosen as the subset that most directly supports
the production of good code. Also, we present C++ features that you can’t avoid
encountering either because they are necessary for logical completeness or are
common in the C++ community.

0.2.3 Portability
It is common to write C++ to run on a variety of machines. Major C++ applica-
tions run on machines we haven’t ever heard of! We consider portability and the
use of a variety of machine architectures and operating systems most important.
Essentially every example in this book is not only ISO Standard C++, but also
portable. Unless specifically stated, the code we present should work on every C++
implementation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from sys-
tem to system. It would be tedious to mention the details of every system and ev-
ery compiler each time we need to refer to an implementation issue. In Appendix
C, we give the most basic information about getting started using Visual Studio
and Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (in-
tegrated development environments), we suggest you try working from the com-
mand line; it’s surprisingly simple. For example, here is the full set of commands
needed to compile, link, and execute a simple program consisting of two source
files, my_file1.cpp and my_file2.cpp, using the GNU C++ compiler on a Unix
or Linux system:

c++ –o my_program my_file1.cpp my_file2.cpp
./my_program

Yes, that really is all it takes.

Stroustrup_book.indb 11Stroustrup_book.indb 11 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER12

0.3 Programming and computer science
Is programming all that there is to computer science? Of course not! The only
reason we raise this question is that people have been known to be confused about
this. We touch upon major topics from computer science, such as algorithms and
data structures, but our aim is to teach programming: the design and implemen-
tation of programs. That is both more and less than most accepted notions of
computer science:

• More, because programming involves many technical skills that are not
usually considered part of any science

• Less, because we do not systematically present the foundation for the parts
of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a
computer scientist is your aim), to be the foundation for the first of many courses
in software construction and maintenance (if your aim is to become a program-
mer or a software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving
The primary aim of this book is to help you to express your ideas in code, not
to teach you how to get those ideas. Along the way, we give many examples of
how we can address a problem, usually through analysis of a problem followed
by gradual refinement of a solution. We consider programming itself a form of
problem solving: only through complete understanding of a problem and its solu-
tion can you express a correct program for it, and only through constructing and
testing a program can you be certain that your understanding is complete. Thus,
programming is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through “preaching” or
presentation of detailed prescriptions for problem solving.

0.5 Request for feedback
We don’t think that the perfect textbook can exist; the needs of individuals differ
too much for that. However, we’d like to make this book and its supporting mate-
rials as good as we can make them. For that, we need feedback; a good textbook
cannot be written in isolation from its readers. Please send us reports on errors,
typos, unclear text, missing explanations, etc. We’d also appreciate suggestions

Stroustrup_book.indb 12Stroustrup_book.indb 12 4/22/14 9:41 AM4/22/14 9:41 AM

0.7 BIOGRAPHIES 13

for better exercises, better examples, and topics to add, topics to delete, etc. Con-
structive comments will help future readers and we’ll post errata on our support
website: www.stroustrup.com/Programming.

0.6 References
Along with listing the publications mentioned in this chapter, this section also
includes publications you might find helpful.

Becker, Pete, ed. The C++ Standard. ISO/IEC 14882:2011.
Blanchette, Jasmin, and Mark Summerfield. C++ GUI Programming with Qt 4, Sec-

ond Edition. Prentice Hall, 2008. ISBN 0132354160.
Koenig, Andrew, and Barbara E. Moo. Accelerated C++: Practical Programming by

Example. Addison-Wesley, 2000. ISBN 020170353X.
Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs,

Third Edition. Addison-Wesley, 2005. ISBN 0321334876.
Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-

ume 1: Mastering Complexity with ACE and Patterns. Addison-Wesley, 2001. ISBN
0201604647.

Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-
ume 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, 2002. ISBN
0201795256.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users
Journal, May 1999.

Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition. Addison-Wesley,
2013. ISBN 0321563840.

Stroustrup, Bjarne. A Tour of C++. Addison-Wesley, 2013. ISBN 0321958314.
Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solu-

tions. Addison-Wesley, 1999. ISBN 0201615622.

A more comprehensive list of references can be found in the Bibliography section
at the back of the book.

0.7 Biographies
You might reasonably ask, “Who are these guys who want to teach me how to
program?” So here is some biographical information. I, Bjarne Stroustrup, wrote
this book, and together with Lawrence “Pete” Petersen, I designed and taught
the university-level beginner’s (first-year) course that was developed concurrently
with the book, using drafts of the book.

Stroustrup_book.indb 13Stroustrup_book.indb 13 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER14

Bjarne Stroustrup
I’m the designer and original implementer of the
C++ programming language. I have used the lan-
guage, and many other programming languages,
for a wide variety of programming tasks over the
last 40 years or so. I just love elegant and efficient
code used in challenging applications, such as ro-
bot control, graphics, games, text analysis, and
networking. I have taught design, programming,
and C++ to people of essentially all abilities and
interests. I’m a founding member of the ISO stan-
dards committee for C++ where I serve as the
chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Pro-
gramming Language and The Design and Evolution of C++, were written for experi-
enced programmers.

I was born into a blue-collar (working-class) family in Århus, Denmark, and
got my master’s degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, En-
gland. I worked for AT&T for about 25 years, first in the famous Computer
Science Research Center of Bell Labs — where Unix, C, C++, and so much more
was invented — and later in AT&T Labs–Research.

I’m a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, and an IEEE Fellow. As the first computer scientist ever, I received the
2005 William Procter Prize for Scientific Achievement from Sigma Xi (the scien-
tific research society). In 2010, I received the University of Åarhus’s oldest and
most prestigious honor for contributions to science by a person associated with
the university, the Rigmor og Carl Holst-Knudsens Videnskapspris. In 2013, I was made
Honorary Doctor of Computer Science from the National Research University,
ITMO, St. Petersburg, Russia.

I do have a life outside work. I’m married and have two children, one a medi-
cal doctor and one a Post-doctoral Research Fellow. I read a lot (including history,
science fiction, crime, and current affairs) and like most kinds of music (including
classical, rock, blues, and country). Good food with friends is an essential part of
life, and I enjoy visiting interesting places and people, all over the world. To be
able to enjoy the good food, I run.

For more information, see my home pages: www.stroustrup.com. In particu-
lar, there you can find out how to pronounce my name.

Stroustrup_book.indb 14Stroustrup_book.indb 14 4/22/14 9:41 AM4/22/14 9:41 AM

0.7 BIOGRAPHIES 15

Lawrence “Pete” Petersen
In late 2006, Pete introduced himself as follows: “I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&M. I have
been selected by students for Teaching Excellence
Awards five times and in 1996 received the Dis-
tinguished Teaching Award from the Alumni As-
sociation for the College of Engineering. I am a
Fellow of the Wakonse Program for Teaching Ex-
cellence and a Fellow of the Academy for Educator
Development.

“As the son of an army officer, I was raised on
the move. After completing a degree in philosophy

at the University of Washington, I served in the army for 22 years as a Field Ar-
tillery Officer and as a Research Analyst for Operational Testing. I taught at the
Field Artillery Officers’ Advanced Course at Fort Sill, Oklahoma, from 1971 to
1973. In 1979 I helped organize a Test Officers’ Training Course and taught it as
lead instructor at nine different locations across the United States from 1978 to
1981 and from 1985 to 1989.

“In 1991 I formed a small software company that produced management
software for university departments until 1999. My interests are in teaching, de-
signing, and programming software that real people can use. I completed master’s
degrees in industrial engineering at Georgia Tech and in education curriculum
and instruction at Texas A&M. I also completed a master’s program in microcom-
puters from NTS. My Ph.D. is in information and operations management from
Texas A&M.

“My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.

Stroustrup_book.indb 15Stroustrup_book.indb 15 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER16

Postscript
Most chapters p rovide a short “postscript” that attempts to give some perspective
on the information presented in the chapter. We do that with the realization that
the information can be — and often is — daunting and will only be fully compre-
hended after doing exercises, reading further chapters (which apply the ideas of
the chapter), and a later review. Don’t panic! Relax; this is natural and expected.
You won’t become an expert in a day, but you can become a reasonably compe-
tent programmer as you work your way through the book. On the way, you’ll
encounter much information, many examples, and many techniques that lots of
programmers have found stimulating and fun.

Stroustrup_book.indb 16Stroustrup_book.indb 16 4/22/14 9:41 AM4/22/14 9:41 AM

17

1

Computers, People,
and Programming

“Specialization is for insects.”

—R. A. Heinlein

In this chapter, we present some of the things that we think

make programming important, interesting, and fun. We also

present a few fundamental ideas and ideals. We hope to debunk a

couple of popular myths about programming and programmers.

This is a chapter to skim for now and to return to later when you

are struggling with some programming problem and wondering

if it’s all worth it.

Stroustrup_book.indb 17Stroustrup_book.indb 17 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING18

1.1 Introduction
Like most learning, learning how to program is a chicken and egg problem: We
want to get started, but we also want to know why what we are about to learn
matters. We want to learn a practical skill, but also make sure it is not just a pass-
ing fad. We want to know that we are not going to waste our time, but don’t want
to be bored by still more hype and moralizing. For now, just read as much of this
chapter as seems interesting and come back later when you feel the need to refresh
your memory of why the technical details matter outside the classroom.

This chapter is a personal statement of what we find interesting and important
about programming. It explains what motivates us to keep going in this field after
decades. This is a chapter to read to get an idea of possible ultimate goals and an
idea of what kind of person a programmer might be. A beginner’s technical book
inevitably contains much pretty basic stuff. In this chapter, we lift our eyes from
the technical details and consider the big picture: Why is programming a worth-
while activity? What is the role of programming in our civilization? Where can
a programmer make contributions to be proud of? Where does programming fit
into the greater world of software development, deployment, and maintenance?
When people talk about “computer science,” “software engineering,” “informa-
tion technology,” etc., where does programming fit into the picture? What does a
programmer do? What skills does a good programmer have?

To a student, the most urgent reason for understanding an idea, a technique,
or a chapter may be to pass a test with a good grade — but there has to be more to
learning than that! To someone working in the software industry, the most urgent

1.1 Introduction

1.2 Software

1.3 People

1.4 Computer science

1.5 Computers are everywhere
1.5.1 Screens and no screens
1.5.2 Shipping
1.5.3 Telecommunications
1.5.4 Medicine
1.5.5 Information
1.5.6 A vertical view
1.5.7 So what?

1.6 Ideals for programmers

Stroustrup_book.indb 18Stroustrup_book.indb 18 4/22/14 9:41 AM4/22/14 9:41 AM

1.2 SOFTWARE 19

reason for understanding an idea, a technique, or a chapter may be to find some-
thing that can help with the current project and that will not annoy the boss who
controls the next paycheck, promotions, and firings — but there has to be more to
learning than that! We work best when we feel that our work in some small way
makes the world a better place for people to live in. For tasks that we perform over
a period of years (the “things” that professions and careers are made of), ideals
and more abstract ideas are crucial.

Our civilization runs on software. Improving software and finding new uses
for software are two of the ways an individual can help improve the lives of many.
Programming plays an essential role in that.

1.2 Software
Good software is invisible. You can’t see it, feel it, weigh it, or knock on it. Software
is a collection of programs running on some computer. Sometimes, we can see the
computer. Often, we can see only something that contains the computer, such as a
telephone, a camera, a bread maker, a car, or a wind turbine. We can see what that
software does. We can be annoyed or hurt if it doesn’t do what it is supposed to
do. We can be annoyed or hurt if what it is supposed to do doesn’t suit our needs.

How many computers are there in the world? We don’t know; billions at
least. There may be more computers in the world than people. We need to count
servers, desktop computers, laptops, tablets, smartphones, and computers embed-
ded in “gadgets.”

How many computers do you (more or less directly) use every day? There
are more than 30 computers in my car, two in my cell phone, one in my MP3
player, and one in my camera. Then there is my laptop (on which the page you
are reading is being written) and my desktop machine. The air-conditioning con-
troller that keeps the summer heat and humidity at bay is a simple computer.
There is one controlling the computer science department’s elevator. If you use a
modern television, there will be at least one computer in there somewhere. A bit
of web surfing gets you into direct contact with dozens — possibly hundreds — of
servers through a telecommunications system consisting of many thousands of
computers — telephone switches, routers, and so on.

No, I do not drive around with 30 laptops on the backseat of my car! The
point is that most computers do not look like the popular image of a computer
(with a screen, a keyboard, a mouse, etc.); they are small “parts” embedded
in the equipment we use. So, that car has nothing that looks like a computer,
not even a screen to display maps and driving directions (though such gadgets
are popular in other cars). However, its engine contains quite a few comput-
ers, doing things like fuel injection control and temperature monitoring. The
power-assisted steering involves at least one computer, the radio and the security

Stroustrup_book.indb 19Stroustrup_book.indb 19 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING20

system contain some, and we suspect that even the open/close controls of the
windows are computer controlled. Newer models even have computers that con-
tinuously monitor tire pressure.

How many computers do you depend on for what you do during a day?
You eat; if you live in a modern city, getting the food to you is a major effort re-
quiring minor miracles of planning, transport, and storage. The management of
the distribution networks is of course computerized, as are the communication
systems that stitch them all together. Modern farming is highly computerized;
next to the cow barn you find computers used to monitor the herd (ages, health,
milk production, etc.), farm equipment is increasingly computerized, and the
number of forms required by the various branches of government can make any
honest farmer cry. If something goes wrong, you can read all about it in your
newspaper; of course, the articles in that paper were written on computers, set
on the page by computers, and (if you still read the “dead tree edition”) printed
by computerized equipment — often after having been electronically transmitted
to the printing plant. Books are produced in the same way. If you have to com-
mute, the traffic flows are monitored by computers in a (usually vain) attempt
to avoid traffic jams. You prefer to take the train? That train will also be com-
puterized; some even operate without a driver, and the train’s subsystems, such
as announcements, braking, and ticketing, involve lots of computers. Today’s
entertainment industry (music, movies, television, stage shows) is among the
largest users of computers. Even non-cartoon movies use (computer) animation
heavily; music and photography are also digital (i.e., using computers) for both
recording and delivery. Should you become ill, the tests your doctor orders will
involve computers, the medical records are often computerized, and most of
the medical equipment you’ll encounter if you are sent to a hospital to be cured
contains computers. Unless you happen to be staying in a cottage in the woods
without access to any electrically powered gadgets (including light bulbs), you
use energy. Oil is found, extracted, processed, and distributed through a system
using computers every step along the way, from the drill bit deep in the ground
to your local gas (petrol) pump. If you pay for that gas with a credit card, you
again exercise a whole host of computers. It is the same story for coal, gas, solar,
and wind power.

The examples so far are all “operational”; they are directly involved in what
you are doing. Once removed from that is the important and interesting area of
design. The clothes you wear, the telephone you talk into, and the coffee machine
that dispenses your favorite brew were designed and manufactured using comput-
ers. The superior quality of modern photographic lenses and the exquisite shapes
in the design of modern everyday gadgets and utensils owe almost everything to
computer-based design and production methods. The craftsmen/designers/ artists/
engineers who design our environment have been freed from many physical con-

Stroustrup_book.indb 20Stroustrup_book.indb 20 4/22/14 9:41 AM4/22/14 9:41 AM

1.3 PEOPLE 21

straints previously considered fundamental. If you get ill, the medicines given to
cure you will have been designed using computers.

Finally, research — science itself — relies heavily on computers. The telescopes
that probe the secrets of distant stars could not be designed, built, or operated
without computers, and the masses of data they produce couldn’t be analyzed
and understood without computers. An individual biology field researcher may
not be heavily computerized (unless, of course, a camera, a digital tape recorder, a
telephone, etc. are used), but back in the lab, the data has to be stored, analyzed,
checked against computer models, and communicated to fellow scientists. Mod-
ern chemistry and biology — including medical research — use computers to an
extent undreamed of a few years ago and still unimagined by most people. The
human genome was sequenced by computers. Or — let’s be precise — the human
genome was sequenced by humans using computers. In all of these examples, we
see computers as something that enables us to do something we would have had
a harder time doing without computers.

Every one of those computers runs software. Without software, they would
just be expensive lumps of silicon, metal, and plastic: doorstops, boat anchors,
and space heaters. Every line of that software was written by some individual.
Every one of those lines that was actually executed was minimally reasonable, if
not correct. It’s amazing that it all works! We are talking about billions of lines of
code (program text) in hundreds of programming languages. Getting all that to
work took a staggering amount of effort and involved an unimaginable number of
skills. We want further improvements to essentially every service and gadget we
depend on. Just think of any one service and gadget you rely on; what would you
like to see improved? If nothing else, we want our services and gadgets smaller
(or bigger), faster, more reliable, with more features, easier to use, with higher
capacity, better looking, and cheaper. The likelihood is that the improvement you
thought of requires some programming.

1.3 People
Computers are built by people for the use of people. A computer is a very generic
tool; it can be used for an unimaginable range of tasks. It takes a program to make
it useful to someone. In other words, a computer is just a piece of hardware until
someone — some programmer — writes code for it to do something useful. We of-
ten forget about the software. Even more often, we forget about the programmer.

Hollywood and similar “popular culture” sources of disinformation have as-
signed largely negative images to programmers. For example, we have all seen the
solitary, fat, ugly nerd with no social skills who is obsessed with video games and
breaking into other people’s computers. He (almost always a male) is as likely to

Stroustrup_book.indb 21Stroustrup_book.indb 21 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING22

want to destroy the world as he is to want to save it. Obviously, milder versions of
such caricatures exist in real life, but in our experience they are no more frequent
among software developers than they are among lawyers, police officers, car sales-
men, journalists, artists, or politicians.

Think about the applications of computers you know from your own life.
Were they done by a loner in a dark room? Of course not; the creation of a
successful piece of software, computerized gadget, or system involves dozens,
hundreds, or thousands of people performing a bewildering set of roles: for
example, programmers, (program) designers, testers, animators, focus group
managers, experimental psychologists, user interface designers, analysts, system
administrators, customer relations people, sound engineers, project managers,
quality engineers, statisticians, hardware interface engineers, requirements engi-
neers, safety officers, mathematicians, sales support personnel, troubleshooters,
network designers, methodologists, software tools managers, software librarians,
etc. The range of roles is huge and made even more bewildering by the titles
varying from organization to organization: one organization’s “engineer” may
be another organization’s “programmer” and yet another organization’s “devel-
oper,” “member of technical staff,” or “architect.” There are even organizations
that let their employees pick their own titles. Not all of these roles directly involve
programming. However, we have personally seen examples of people perform-
ing each of the roles mentioned while reading or writing code as an essential
part of their job. Additionally, a programmer (performing any of these roles,
and more) may over a short period of time interact with a wide range of people
from application areas, such as biologists, engine designers, lawyers, car sales-
men, medical researchers, historians, geologists, astronauts, airplane engineers,
lumberyard managers, rocket scientists, bowling alley builders, journalists, and
animators (yes, this is a list drawn from personal experience). Someone may also
be a programmer at times and fill non-programming roles at other stages of a
professional career.

The myth of a programmer being isolated is just that: a myth. People who
like to work on their own choose areas of work where that is most feasible and
usually complain bitterly about the number of “interruptions” and meetings.
People who prefer to interact with other people have an easier time because
modern software development is a team activity. The implication is that social
and communication skills are essential and valued far more than the stereotypes
indicate. On a short list of highly desirable skills for a programmer (however you
realistically define programmer), you find the ability to communicate well — with
people from a wide variety of backgrounds — informally, in meetings, in writing,
and in formal presentations. We are convinced that until you have completed a
team project or two, you have no idea of what programming is and whether you
really like it. Among the things we like about programming are all the nice and

Stroustrup_book.indb 22Stroustrup_book.indb 22 4/22/14 9:41 AM4/22/14 9:41 AM

1.3 PEOPLE 23

interesting people we meet and the variety of places we get to visit as part of our
professional lives.

One implication of all this is that people with a wide variety of skills, interests,
and work habits are essential for producing good software. Our quality of life
depends on those people — sometimes even our life itself. No one person could
fill all the roles we mention here; no sensible person would want every role. The
point is that you have a wider choice than you could possibly imagine; not that
you have to make any particular choice. As an individual you will “drift” toward
areas of work that match your skills, talents, and interests.

We talk about “programmers” and “programming,” but obviously program-
ming is only part of the overall picture. The people who design a ship or a cell
phone don’t think of themselves as programmers. Programming is an important
part of software development, but not all there is to software development. Sim-
ilarly, for most products, software development is an important part of product
development, but not all there is to product development.

We do not assume that you — our reader — want to become a professional pro-
grammer and spend the rest of your working life writing code. Even the best pro-
grammers — especially the best programmers — spend most of their time not writing
code. Understanding problems takes serious time and often requires significant
intellectual effort. That intellectual challenge is what many programmers refer to
when they say that programming is interesting. Many of the best programmers
also have degrees in subjects not usually considered part of computer science. For
example, if you work on software for genomic research, you will be much more
effective if you understand some molecular biology. If you work on programs for
analyzing medieval literature, you could be much better off reading a bit of that
literature and maybe even knowing one or more of the relevant languages. In par-
ticular, a person with an “all I care about is computers and programming” attitude
will be incapable of interacting with his or her non-programmer colleagues. Such
a person will not only miss out on the best parts of human interactions (i.e., life)
but also be a bad software developer.

So, what do we assume? Programming is an intellectually challenging set of
skills that are part of many important and interesting technical disciplines. In ad-
dition, programming is an essential part of our world, so not knowing the basics
of programming is like not knowing the basics of physics, history, biology, or
literature. Someone totally ignorant of programming is reduced to believing in
magic and is dangerous in many technical roles. If you read Dilbert, think of the
pointy-haired boss as the kind of manager you don’t want to meet or (far worse)
become. In addition, programming can be fun.

But what do we assume you might use programming for? Maybe you will
use programming as a key tool in your further studies and work without be-
coming a professional programmer. Maybe you will interact with other people

Stroustrup_book.indb 23Stroustrup_book.indb 23 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING24

professionally and personally in ways where a basic knowledge of programming
will be an advantage, maybe as a designer, writer, manager, or scientist. Maybe
you will do programming at a professional level as part of your studies or work.
Even if you do become a professional programmer it is unlikely that you will do
nothing but programming.

You might become an engineer focusing on computers or a computer scien-
tist, but even then you will not “program all the time.” Programming is a way of
presenting ideas in code — a way of aiding problem solving. It is nothing — ab-
solutely a waste of time — unless you have ideas that are worth presenting and
problems worth solving.

This is a book about programming and we have promised to help you learn
how to program, so why do we emphasize non-programming subjects and the
limited role of programming? A good programmer understands the role of code
and programming technique in a project. A good programmer is (at most times)
a good team player and tries hard to understand how the code and its production
best support the overall project. For example, imagine that I worked on a new MP3
player (maybe to be part of a smartphone or a tablet) and all that I cared about was
the beauty of my code and the number of neat features I could provide. I would
probably insist on the largest, most powerful computer to run my code. I might dis-
dain the theory of sound encoding because it is “not programming.” I would stay in
my lab, rather than go out to meet potential users, who undoubtedly would have
bad tastes in music anyway and would not appreciate the latest advances in GUI
(graphical user interface) programming. The likely result would be disaster for
the project. A bigger computer would mean a costlier MP3 player and most likely
a shorter battery life. Encoding is an essential part of handling music digitally, so
failing to pay attention to advances in encoding techniques could lead to increased
memory requirements for each song (encodings differ by as much as 100% for
the same-quality output). A disregard for users’ preferences — however odd and
archaic they may seem to you — typically leads to the users choosing some other
product. An essential part of writing a good program is to understand the needs
of the users and the constraints that those needs place on the implementation (i.e.,
the code). To complete this caricature of a bad programmer, we just have to add
a tendency to deliver late because of an obsession with details and an excessive
confidence in the correctness of lightly tested code. We encourage you to become
a good programmer, with a broad view of what it takes to produce good software.
That’s where both the value to society and the keys to personal satisfaction lie.

1.4 Computer science
Even by the broadest definition, programming is best seen as a part of something
greater. We can see it as a subdiscipline of computer science, computer engineering,
software engineering, information technology, or any other software-related disci-

Stroustrup_book.indb 24Stroustrup_book.indb 24 4/22/14 9:41 AM4/22/14 9:41 AM

1.5 COMPUTERS ARE EVERYWHERE 25

pline. We see programming as an enabling technology for those computer and
information fields of science and engineering, as well as for physics, biology, med-
icine, history, literature, and any other academic or research field.

Consider computer science. A 1995 U.S. government “blue book” defines
it like this: “The systematic study of computing systems and computation. The
body of knowledge resulting from this discipline contains theories for under-
standing computing systems and methods; design methodology, algorithms,
and tools; methods for the testing of concepts; methods of analysis and ver-
ification; and knowledge representation and implementation.” As we would
expect, the Wikipedia entry is less formal: “Computer science, or computing
science, is the study of the theoretical foundations of information and computa-
tion and their implementation and application in computer systems. Computer
science has many sub-fields; some emphasize the computation of specific results
(such as computer graphics), while others (such as computational complexity
theory) relate to properties of computational problems. Still others focus on
the challenges in implementing computations. For example, programming lan-
guage theory studies approaches to describing computations, while computer
programming applies specific programming languages to solve specific compu-
tational problems.”

Programming is a tool; it is a fundamental tool for expressing solutions to
fundamental and practical problems so that they can be tested, improved through
experiment, and used. Programming is where ideas and theories meet reality.
This is where computer science can become an experimental discipline, rather
than pure theory, and impact the world. In this context, as in many others, it is
essential that programming is an expression of well-tried practices as well as the
theories. It must not degenerate into mere hacking: just get some code written,
any old way that meets an immediate need.

1.5 Computers are everywhere
Nobody knows everything there is to know about computers or software. This
section just gives you a few examples. Maybe you’ll see something you like. At
least you might be convinced that the scope of computer use — and through that,
programming — is far larger than any individual can fully grasp.

Most people think of a computer as a small gray box attached to a screen and
a keyboard. Such computers tend to be good at games, messaging and email, and
playing music. Other computers, called laptops, are used on planes by bored busi-
nessmen to look at spreadsheets, play games, and watch videos. This caricature is
just the tip of the iceberg. Most computers work out of our sight and are part of
the systems that keep our civilization going. Some fill rooms; others are smaller
than a small coin. Many of the most interesting computers don’t directly interact
with a human through a keyboard, mouse, or similar gadget.

Stroustrup_book.indb 25Stroustrup_book.indb 25 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING26

1.5.1 Screens and no screens
The idea of a computer as a fairly large rectangular box with a screen and a keyboard
is common and often hard to shake off. However, consider these two computers:

Both of these “gadgets” (which happen to be watches) are primarily computers.
In fact, we conjecture that they are essentially the same model computer with
different I/O (input/output) systems. The left one drives a small screen (similar
to the screens on conventional computers, but smaller) and the second drives
little electric motors controlling traditional clock hands and a disk of numbers
for day-of-month readout. Their input systems are the four buttons (more easily
seen on the right-hand watch) and a radio receiver, used for synchronization with
very high-precision “atomic” clocks. Most of the programs controlling these two
computers are shared between them.

1.5.2 Shipping
These two photos show a large marine diesel engine and the kind of huge ship
that it may power:

Stroustrup_book.indb 26Stroustrup_book.indb 26 4/22/14 9:41 AM4/22/14 9:41 AM

1.5 COMPUTERS ARE EVERYWHERE 27

Consider where computers and software play key roles here:

• Design: Of course, the ship and the engine were both designed using com-
puters. The list of uses is almost endless and includes architectural and
engineering drawings, general calculations, visualization of spaces and
parts, and simulations of the performance of parts.

• Construction: A modern shipyard is heavily computerized. The assembly
of a ship is carefully planned using computers, and the work is guided
by computers. Welding is done by robots. In particular, a modern dou-
ble-hulled tanker couldn’t be built without little welding robots to do the
welding from within the space between the hulls. There just isn’t room
for a human in there. Cutting steel plates for a ship was one of the world’s
fi rst CAD/CAM (computer-aided design and computer-aided manufac-
ture) applications.

• The engine: The engine has electronic fuel injection and is controlled by a
few dozen computers. For a 100,000-horsepower engine (like the one in the
photo), that’s a nontrivial task. For example, the engine management com-
puters continuously adjust fuel mix to minimize the pollution that would
result from a badly tuned engine. Many of the pumps associated with the
engine (and other parts of the ship) are themselves computerized.

• Management: Ships sail where there is cargo to pick up and to deliver.
The scheduling of fl eets of ships is a continuing process (computerized,
of course) so that routings change with the weather, with supply and de-
mand, and with space and loading capacity of harbors. There are even
websites where you can watch the position of major merchant vessels at
any time. The ship in the photo happens to be a container vessel (one of
the largest such in the world; 397m long and 56m wide), but other kinds
of large modern ships are managed in similar ways.

• Monitoring: An oceangoing ship is largely autonomous; that is, its crew can
handle most contingencies likely to arise before the next port. However,
they are also part of a globe-spanning network. The crew has access to
reasonably accurate weather information (from and through — comput-
erized — satellites). They have a GPS (global positioning system) and
computer-controlled and computer-enhanced radar. If the crew needs a
rest, most systems (including the engine, radar, etc.) can be monitored
(via satellite) from a shipping-line control room. If anything unusual is
spotted, or if the connection “back home” is broken, the crew is notifi ed.

Consider the implication of a failure of one of the hundreds of computers ex-
plicitly mentioned or implied in this brief description. Chapter 25 (“Embedded
Systems Programming”) examines this in slightly more detail. Writing code for
a modern ship is a skilled and interesting activity. It is also useful. The cost of

Stroustrup_book.indb 27Stroustrup_book.indb 27 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING28

sea transport is really amazingly low. You appreciate that when you buy some-
thing that wasn’t manufactured locally. Sea transport has always been cheaper
than land transport; these days one of the reasons is serious use of computers
and information.

1.5.3 Telecommunications
These two photos show a telephone switch and a telephone (that also happens
to be a camera, an MP3 player, an FM radio, a web browser, and much more):

Consider where computers and software play key roles here. You pick up a tele-
phone and “dial,” the person you dialed answers, and you talk. Or maybe you
get to leave a voicemail, or maybe you send a photo from your phone camera,
or maybe you send a text message (hit Send and let the phone do the dialing).
Obviously the phone is a computer. This is especially obvious if the phone (like
most mobile phones) has a screen and allows more than traditional “plain old
telephone services,” such as web browsing. Actually, such phones tend to contain
several computers: one to manage the screen, one to talk to the phone system,
and maybe more.

The part of the phone that manages the screen, does web browsing, etc. is
probably the most familiar to computer users: it just runs a graphical user in-
terface to “all the usual stuff.” What is unknown to and largely unsuspected by
most users is the huge system that the little phone talks to while doing its job. I
dial a number in Texas, but you are on vacation in New York City, yet within
seconds your phone rings and I hear your “Hello!” over the roar of city traffic.
Many phones can perform that trick for essentially any two locations on earth
and we just take it for granted. How did my phone find yours? How is the sound
transmitted? How is the sound encoded into data packets? The answer could fill

Stroustrup_book.indb 28Stroustrup_book.indb 28 4/22/14 9:41 AM4/22/14 9:41 AM

1.5 COMPUTERS ARE EVERYWHERE 29

many books much thicker than this one, but it involves a combination of hard-
ware and software on hundreds of computers scattered over the geographical
area in question. If you are unlucky, a few telecommunications satellites (them-
selves computerized systems) are also involved — “unlucky” because we cannot
perfectly compensate for the 20,000-mile detour out into space; the speed of light
(and therefore the speed of your voice) is finite (light fiber cables are much better:
shorter, faster, and carrying much more data). Most of this works remarkably
well; the backbone telecommunications systems are 99.9999% reliable (for exam-
ple, 20 minutes of downtime in 20 years — that’s 20/20*365*24*60). The trouble
we have tends to be in the communications between our mobile phone and the
nearest main telephone switch.

There is software for connecting the phones, for chopping our spoken words
into data packets to be sent over wires and radio links, for routing those messages,
for recovering from all kinds of failures, for continuously monitoring the quality
and reliability of the services, and of course for billing. Even keeping track of all
the physical pieces of the system requires serious amounts of clever software:
What talks to what? What parts go into a new system? When do you need to do
some preventive maintenance?

Arguably the backbone telecommunications system of the world, consisting
of semi-independent but interconnected systems, is the largest and most compli-
cated man-made artifact. To make things a bit more real: remember, this is not
just boring old telephony with a few new bells and whistles. The various infra-
structures have merged. They are also what the internet (the web) runs on, what
our banking and trading systems run on, and what carry our television programs
to the broadcasting stations. So, we can add another couple of photos to illustrate
telecommunications:

The room is the “trading floor” of the American stock exchange on New York’s
Wall Street and the map is a representation of parts of the internet backbones (a
complete map would be too messy to be useful).

As it happens, we also like digital photography and the use of computers to
draw specialized maps to visualize knowledge.

Stroustrup_book.indb 29Stroustrup_book.indb 29 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING30

1.5.4 Medicine
These two photos show a CAT (computed axial tomography) scanner and an
operating theater for computer-aided surgery (also called “robot-assisted surgery”
or “robotic surgery”):

Consider where computers and software play key roles here. The scanners basi-
cally are computers; the pulses they send out are controlled by a computer, and the
readings are nothing but gibberish until quite sophisticated algorithms are applied
to convert them to something we recognize as a (three-dimensional) image of the
relevant part of a human body. To do computerized surgery, we must go several
steps further. A wide variety of imaging techniques are used to let the surgeon see
the inside of the patient, to see the point of surgery with significant enlargement
or in better light than would otherwise be possible. With the aid of a computer
a surgeon can use tools that are too fine for a human hand to hold or in a place
where a human hand could not reach without unnecessary cutting. The use of
minimally invasive surgery (laparoscopic surgery) is a simple example of this that
has minimized the pain and recovery time for millions of people. The computer
can also help steady the surgeon’s “hand” to allow for more delicate work than
would otherwise be possible. Finally, a “robotic” system can be operated remotely,
thus making it possible for a doctor to help someone remotely (over the internet).
The computers and programming involved are mind-boggling, complex, and in-
teresting. The user interface, equipment control, and imaging challenges alone will
keep thousands of researchers, engineers, and programmers busy for decades.

We heard of a discussion among a large group of medical doctors about
which new tool had provided the most help to them in their work: The CAT
scanner? The MRI scanner? The automated blood analysis machines? The
high-resolution ultrasound machines? PDAs? After some discussion, a surpris-
ing “winner” of this “competition” emerged: instant access to patient records.
Knowing the medical history of a patient (earlier illnesses, medicines tried earlier,
allergies, hereditary problems, general health, current medication, etc.) simplifies
the problem of diagnosis and minimizes the chance of mistakes.

Stroustrup_book.indb 30Stroustrup_book.indb 30 4/22/14 9:41 AM4/22/14 9:41 AM

1.5 COMPUTERS ARE EVERYWHERE 31

1.5.5 Information
These two photos show an ordinary PC (well, two) and part of a server farm:

We have focused on “gadgets” for the usual reason: you cannot see, feel, or hear
software. We cannot present you with a photograph of a neat program, so we
show you a “gadget” that runs one. However, much software deals directly with
“information.” So let’s consider “ordinary uses” of “ordinary computers” running
“ordinary software.”

A “server farm” is a collection of computers providing web services. Organi-
zations running state-of-the-art server farms (such as Google, Amazon, and Mi-
crosoft) are somewhat close-mouthed about the details of their servers, and the
specifications of server farms change constantly (so most of the information you
find on the web is outdated). However, the specifications are amazing and should
convince anyone that there is more to programming than simply computing a few
numbers on a laptop:

• Google uses about a million servers (each more powerful than your lap-
top) in 25 to 50 “data centers.”

• Such a data center is housed in a warehouse that might measure 60m*
100m (that’s about 200ft*330ft) or more.

• In 2011, the New York Times reported that Google’s data centers draw
about 260 million watts continuously (about the same amount of energy
as Las Vegas).

• Assume a server machine to be a 3GHz quad-core with 24GB of main
memory. That would imply about 12*1015Hz of compute power (about
12,000,000,000,000,000 instructions per second) with 24*1015 bytes of
main memory (about 24,000,000,000,000,000 8-bit bytes), and maybe
4TB of disk per server, giving 4*1018 bytes of storage.

Stroustrup_book.indb 31Stroustrup_book.indb 31 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING32

We may be underestimating the amounts, and by the time you read this, we
almost certainly are. In particular, efforts to minimize energy usage seem to be
driving machine architectures toward more processors per server and more cores
per processor. A GB is a gigabyte, that is, about 109 characters. A TB, a terabyte,
is about 1000GB, that is, about 1012 characters. A PB, a petabyte (that is, 1015
bytes), is becoming a more common measure. This is a pretty extreme example,
but every major company runs programs on the web to interact with its users/
customers. Examples are Amazon (book and other sales), Amadeus (airline tick-
eting and automobile rental), and eBay (online auctions). Millions of companies,
organizations, and individuals also have a presence on the web. Most don’t run
their own software, but many do and much of that is not trivial.

The other, and more traditional, massive computing effort involves ac-
counting, order processing, payroll, record keeping, billing, inventory manage-
ment, personnel records, student records, patient records, etc. — the records that
essentially every organization (commercial and noncommercial, governmental
and private) keeps. These records are the backbone of their respective organi-
zations. As a computing effort, processing such records seems simple: mostly
some information (records) is just stored and retrieved and very little is done to
it. Examples include

• Is my 12:30 fl ight to Chicago still on time?
• Has Gilbert Sullivan had the measles?
• Has the coffeemaker that Juan Valdez ordered been shipped?
• What kind of kitchen chair did Jack Sprat buy in 1996 (or so)?
• How many phone calls originated from the 212 area code in August of

2012?
• What was the number of coffeepots sold in January and for what total

price?

The sheer scale of the databases involved makes these systems highly complex.
To that add the need to respond quickly (often in less than two seconds for indi-
vidual queries) and to be correct (at least most of the time). These days, it is not
uncommon for people to talk about terabytes of data (a byte is the amount of
memory needed to hold an ordinary character). That’s traditional “data process-
ing” and it is merging with “the web” because most access to the databases is now
through web interfaces.

This kind of computer use is often referred to as information processing. It fo-
cuses on data — often lots of data. This leads to challenges in the organization and
transmission of data and lots of interesting work on how to present vast amounts
of data in a comprehensible form: “user interface” is a very important aspect of
handling data. For example, think of analyzing a work of older literature (say,
Chaucer’s Canterbury Tales or Cervantes’ Don Quixote) to figure out what the author

Stroustrup_book.indb 32Stroustrup_book.indb 32 4/22/14 9:41 AM4/22/14 9:41 AM

1.5 COMPUTERS ARE EVERYWHERE 33

actually wrote by comparing dozens of versions. We need to search through the
texts with a variety of criteria supplied by the person doing the analysis and to
display the results in a way that aids the discovery of salient points. Thinking of
text analysis, publishing comes to mind: today, just about every article, book, bro-
chure, newspaper, etc. is produced on a computer. Designing software to support
that well is for most people still a problem that lacks a really good solution.

1.5.6 A vertical view
It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur
and describe its lifestyle and natural environment from studying a single small
bone. That may be an exaggeration, but there is something to the idea of looking
at a simple artifact and thinking about what it implies. Consider this photo show-
ing the landscape of Mars taken by a camera on one of NASA’s Mars Rovers:

If you want to do “rocket science,” becoming a good programmer is one way. The
various space programs employ lots of software designers, especially ones who
can also understand some of the physics, math, electrical engineering, mechanical
engineering, medical engineering, etc. that underlie the manned and unmanned
space programs. Getting those two Rovers to drive around on Mars for years is
one of the greatest technological triumphs of our civilization. One (Spirit) sent data
back for six years and the other (Opportunity) is still working at the time of writing
and will have its tenth anniversary on Mars in January 2014. Their estimated
design life was three months.

The photo was transmitted to earth through a communication channel with
a 25-minute transmission delay each way; there is a lot of clever programming
and advanced math to make sure that the picture is transmitted using the minimal
number of bits without losing any of them. On earth, the photo is then rendered
using algorithms to restore color and minimize distortion due to the optics and
electronic sensors.

The control programs for the Mars Rovers are of course programs — the Rov-
ers drive autonomously for 24 hours at a time and follow instructions sent from
earth the day before. The transmission is managed by programs.

Stroustrup_book.indb 33Stroustrup_book.indb 33 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING34

The operating systems used for the various computers involved in the Rov-
ers, the transmission, and the photo reconstruction are programs, as are the ap-
plications used to write this chapter. The computers on which these programs
run are designed and produced using CAD/CAM (computer-aided design and
computer-aided manufacture) programs. The chips that go into those computers
are produced on computerized assembly lines constructed using precision tools,
and those tools also use computers (and software) in their design and manufac-
ture. The quality control for those long construction processes involves serious
computation. All that code was written by humans in a high-level programming
language and translated into machine code by a compiler, which is itself such a
program. Many of these programs interact with users using GUIs and exchange
da ta using input/output streams.

Finally, a lot of programming goes into image processing (including the pro-
cessing of the photos from the Mars Rovers), animation, and photo editing (there
are versions of the Rover photos floating around on the web featuring “Martians”).

1.5.7 So what?
What do all these “fancy and complicated” applications and software systems
have to do with learning programming and using C++? The connection is simply
that many programmers do get to work on projects like these. These are the kinds
of things that good programming can help achieve. Also, every example used in
this chapter involved C++ and at least some of the techniques we describe in this
book. Yes, there are C++ programs in MP3 players, in ships, in wind turbines, on
Mars, and in the human genome project. For more applications using C++, see
www.stroustrup.com/applications.html.

1.6 Ideals for programmers
What do we want from our programs? What do we want in general, as opposed
to a particular feature of a particular program? We want correctness and as part of
that, reliability. If the program doesn’t do what it is supposed to do, and do so in
a way so that we can rely on it, it is at best a serious nuisance, at worst a danger.
We want it to be well designed so that it addresses a real need well; it doesn’t really
matter that a program is correct if what it does is irrelevant to us or if it correctly
does something in a way that annoys us. We also want it to be affordable; I might
prefer a Rolls-Royce or an executive jet to my usual forms of transport, but unless
I’m a zillionaire, cost will enter into my choices.

These are aspects of software (gadgets, systems) that can be appreciated from
the outside, by non-programmers. They must be ideals for programmers and we
must keep them in mind at all times, especially in the early phases of development,

Stroustrup_book.indb 34Stroustrup_book.indb 34 4/22/14 9:41 AM4/22/14 9:41 AM

1.6 IDEALS FOR PROGRAMMERS 35

if we want to produce successful software. In addition, we must concern ourselves
with ideals related to the code itself: our code must be maintainable; that is, its struc-
ture must be such that someone who didn’t write it can understand it and make
changes. A successful program “lives” for a long time (often for decades) and will
be changed again and again. For example, it will be moved to new hardware, it
will have new features added, it will be modified to use new I/O facilities (screens,
video, sound), to interact using new natural languages, etc. Only a failed program
will never be modified. To be maintainable, a program must be simple relative
to its requirements, and the code must directly represent the ideas expressed.
Complexity — the enemy of simplicity and maintainability — can be intrinsic to
a problem (in that case we just have to deal with it), but it can also arise from
poor expression of ideas in code. We must try to avoid that through good coding
style — style matters!

This doesn’t sound too difficult, but it is. Why? Programming is fundamen-
tally simple: just tell the machine what it is supposed to do. So why can program-
ming be most challenging? Computers are fundamentally simple; they can just do
a few operations, such as adding two numbers and choosing the next instruction
to execute based on a comparison of two numbers. The problem is that we don’t
want computers to do simple things. We want “the machine” to do things that
are difficult enough for us to want help with them, but computers are nitpicking,
unforgiving, dumb beasts. Furthermore, the world is more complex than we’d
like to believe, so we don’t really know the implications of what we request. We
just want a program to “do something like this” and don’t want to be bothered
with technical details. We also tend to assume “common sense.” Unfortunately,
common sense isn’t all that common among humans and is totally absent in
computers (though some really well-designed programs can imitate it in specific,
well-understood cases).

This line of thinking leads to the idea that “programming is understanding”:
when you can program a task, you understand it. Conversely, when you under-
stand a task thoroughly, you can write a program to do it. In other words, we
can see programming as part of an effort to thoroughly understand a topic. A
program is a precise representation of our understanding of a topic.

When you program, you spend significant time trying to understand the task
you are trying to automate.

We can describe the process of developing a program as having four stages:

• Analysis: What’s the problem? What does the user want? What does the
user need? What can the user afford? What kind of reliability do we need?

• Design: How do we solve the problem? What should be the overall struc-
ture of the system? Which parts does it consist of? How do those parts
communicate with each other? How does the system communicate with
its users?

Stroustrup_book.indb 35Stroustrup_book.indb 35 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING36

• Programming: Express the solution to the problem (the design) in code.
Write the code in a way that meets all constraints (time, space, money, re-
liability, and so on). Make sure that the code is correct and maintainable.

• Testing: Make sure the system works correctly under all circumstances
required by systematically trying it out.

Programming plus testing is often called implementation. Obviously, this simple split
of software development into four parts is a simplification. Thick books have
been written on each of these four topics and more books still about how they re-
late to each other. One important thing to note is that these stages of development
are not independent and do not occur strictly in sequence. We typically start with
analysis, but feedback from testing can help improve the programming; prob-
lems with getting the program working may indicate a problem with the design;
and working with the design may suggest aspects of the problem that hitherto
had been overlooked in the analysis. Actually using the system typically exposes
weaknesses of the analysis.

The crucial concept here is feedback. We learn from experience and modify
our behavior based on what we learn. That’s essential for effective software de-
velopment. For any large project, we don’t know everything there is to know
about the problem and its solution before we start. We can try out ideas and get
feedback by programming, but in the earlier stages of development it is easier
(and faster) to get feedback by writing down design ideas, trying out those design
ideas, and using scenarios on friends. The best design tool we know of is a black-
board (use a whiteboard instead if you prefer chemical smells over chalk dust).
Never design alone if you can avoid it! Don’t start coding before you have tried
out your ideas by explaining them to someone. Discuss designs and programming
techniques with friends, colleagues, potential users, and so on before you head
for the keyboard. It is amazing how much you can learn from simply trying to
articulate an idea. After all, a program is nothing more than an expression (in
code) of some ideas.

Similarly, when you get stuck implementing a program, look up from the
keyboard. Think about the problem itself, rather than your incomplete solution.
Talk with someone: explain what you want to do and why it doesn’t work. It’s
amazing how often you find the solution just by carefully explaining the problem
to someone. Don’t debug (find program errors) alone if you don’t have to!

The focus of this book is implementation, and especially programming. We
do not teach “problem solving” beyond giving you plenty of examples of prob-
lems and their solutions. Much of problem solving is recognizing a known prob-
lem and applying a known solution technique. Only when most subproblems
are handled this way will you find the time to indulge in exciting and creative
“out-of-the-box thinking.” So, we focus on showing how to express ideas clearly
in code.

Stroustrup_book.indb 36Stroustrup_book.indb 36 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 REVIEW 37

Direct expression of ideas in code is a fundamental ideal of programming.
That’s really pretty obvious, but so far we are a bit short of good examples. We’ll
come back to this, repeatedly. When we want an integer in our code, we store it
in an int, which provides the basic integer operations. When we want a string of
characters, we store it in a string, which provides the most basic text manipulation
operations. At the most fundamental level, the ideal is that when we have an idea,
a concept, an entity, something we think of as a “thing,” something we can draw
on our whiteboard, something we can refer to in our discussions, something our
(non–computer science) textbook talks about, then we want that something to
exist in our program as a named entity (a type) providing the operations we think
appropriate for it. If we want to do math, we want a complex type for complex
numbers and a Matrix type for linear algebra. If we want to do graphics, we want
a Shape type, a Circle type, a Color type, and a Dialog_box. When we want to
deal with streams of data, say from a temperature sensor, we want an istream type
(i for input). Obviously, every such type should provide the appropriate opera-
tions and only the appropriate operations. These are just a few examples from this
book. Beyond that, we offer tools and techniques for you to build your own types
to directly represent whatever concepts you want in your program.

Programming is part practical, part theoretical. If you are just practical, you
will produce non-scalable, unmaintainable hacks. If you are just theoretical,
you will produce unusable (or unaffordable) toys.

For a different kind of view of the ideals of programming and a few people
who have contributed in major ways to software through work with program-
ming languages, see Chapter 22, “Ideals and History.”

Review
Review questions are intended to point you to the key ideas explained in a chap-
ter. One way to look at them is as a complement to the exercises: the exercises
focus on the practical aspects of programming, whereas the review questions try
to help you articulate the ideas and concepts. In that, they resemble good inter-
view questions.

 1. What is software?
 2. Why is software important?
 3. Where is software important?
 4. What could go wrong if some software fails? List some examples.
 5. Where does software play an important role? List some examples.
 6. What are some jobs related to software development? List some.
 7. What’s the difference between computer science and programming?
 8. Where in the design, construction, and use of a ship is software used?
 9. What is a server farm?

Stroustrup_book.indb 37Stroustrup_book.indb 37 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING38

 10. What kinds of queries do you ask online? List some.
 11. What are some uses of software in science? List some.
 12. What are some uses of software in medicine? List some.
 13. What are some uses of software in entertainment? List some.
 14. What general properties do we expect from good software?
 15. What does a software developer look like?
 16. What are the stages of software development?
 17. Why can software development be difficult? List some reasons.
 18. What are some uses of software that make your life easier?
 19. What are some uses of software that make your life more difficult?

Terms
These terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

affordability customer programmer
analysis design programming
blackboard feedback software
CAD/CAM GUI stereotype
communication ideals testing
correctness implementation user

Exercises
 1. Pick an activity you do most days (such as going to class, eating dinner,

or watching television). Make a list of ways computers are directly or
indirectly involved.

 2. Pick a profession, preferably one that you have some interest in or some
knowledge of. Make a list of activities done by people in that profession
that involve computers.

 3. Swap your list from exercise 2 with a friend who picked a different profes-
sion and improve his or her list. When you have both done that, compare
your results. Remember: There is no perfect solution to an open-ended ex-
ercise; improvements are always possible.

 4. From your own experience, describe an activity that would not have been
possible without computers.

 5. Make a list of programs (software applications) that you have directly
used. List only examples where you obviously interact with a program
(such as when selecting a new song on an MP3 player) and not cases

Stroustrup_book.indb 38Stroustrup_book.indb 38 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 POSTSCRIPT 39

where there just might happen to be a computer involved (such as turning
the steering wheel of your car).

 6. Make a list of ten activities that people do that do not involve computers
in any way, even indirectly. This may be harder than you think!

 7. Identify five tasks for which computers are not used today, but for which
you think they will be used at some time in the future. Write a few sen-
tences to elaborate on each one that you choose.

 8. Write an explanation (at least 100 words, but fewer than 500) of why you
would like to be a computer programmer. If, on the other hand, you are
convinced that you would not like to be a programmer, explain that. In
either case, present well-thought-out, logical arguments.

 9. Write an explanation (at least 100 words, but fewer than 500) of what
role other than programmer you’d like to play in the computer industry
(independently of whether “programmer” is your first choice).

 10. Do you think computers will ever develop to be conscious, thinking be-
ings, capable of competing with humans? Write a short paragraph (at
least 100 words) supporting your position.

 11. List some characteristics that most successful programmers share. Then
list some characteristics that programmers are popularly assumed to have.

 12. Identify at least five kinds of applications for computer programs men-
tioned in this chapter and pick the one that you find the most interesting
and that you would most likely want to participate in someday. Write a
short paragraph (at least 100 words) explaining why you chose the one
you did.

 13. How much memory would it take to store (a) this page of text, (b) this
chapter, (c) all of Shakespeare’s work? Assume one byte of memory holds
one character and just try to be precise to about 20%.

 14. How much memory does your computer have? Main memory? Disk?

Postscript
Our civilization runs on software. Software is an area of unsurpassed diversity
and opportunities for interesting, socially useful, and profi table work. When you
approach software, do it in a principled and serious manner: you want to be part
of the solution, not add to the problems.

We are obviously in awe of the range of software that permeates our techno-
logical civilization. Not all applications of software do good, of course, but that is
another story. Here we wanted to emphasize how pervasive software is and how
much of what we rely on in our daily lives depends on software. It was all written
by people like us. All the scientists, mathematicians, engineers, programmers, etc.
who built the software briefly mentioned here started like you are starting.

Stroustrup_book.indb 39Stroustrup_book.indb 39 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING40

Now, let’s get back to the down-to-earth business of learning the technical
skills needed to program. If you start wondering if it is worth all your hard work
(most thoughtful people wonder about that sometime), come back and reread this
chapter, the Preface, and bits of Chapter 0 (“Notes to the Reader”). If you start
wondering if you can handle it all, remember that millions have succeeded in be-
coming competent programmers, designers, software engineers, etc. You can, too.

Stroustrup_book.indb 40Stroustrup_book.indb 40 4/22/14 9:41 AM4/22/14 9:41 AM

Part I
The Basics

Stroustrup_book.indb 41Stroustrup_book.indb 41 4/22/14 9:41 AM4/22/14 9:41 AM

Stroustrup_book.indb 42Stroustrup_book.indb 42 4/22/14 9:41 AM4/22/14 9:41 AM

43

2

Hello, World!

 “Programming is learned
by writing programs.”

—Brian Kernighan

Here, we present the simplest C++ program that actually

does anything. The purpose of writing this program is to

• Let you try your programming environment

• Give you a first feel of how you can get a computer to do

things for you

Thus, we present the notion of a program, the idea of trans-

lating a program from human-readable form to machine in-

structions using a compiler, and finally executing those machine

instructions.

Stroustrup_book.indb 43Stroustrup_book.indb 43 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 2 • HELLO, WORLD!44

2.1 Programs

2.2 The classic fi rst program

2.3 Compilation

2.4 Linking

2.5 Programming environments

2.1 Programs
To get a computer to do something, you (or someone else) have to tell it exactly —
in excruciating detail — what to do. Such a description of “what to do” is called a
program, and programming is the activity of writing and testing such programs.

In a sense, we have all programmed before. After all, we have given descrip-
tions of tasks to be done, such as “how to drive to the nearest cinema,” “how to
find the upstairs bathroom,” and “how to heat a meal in the microwave.” The
difference between such descriptions and programs is one of degree of precision:
humans tend to compensate for poor instructions by using common sense, but
computers don’t. For example, “turn right in the corridor, up the stairs, it’ll be on
your left” is probably a fine description of how to get to the upstairs bathroom.
However, when you look at those simple instructions, you’ll find the grammar
sloppy and the instructions incomplete. A human easily compensates. For ex-
ample, assume that you are sitting at the table and ask for directions to the bath-
room. You don’t need to be told to get up from your chair to get to the corridor,
somehow walk around (and not across or under) the table, not to step on the cat,
etc. You’ll not have to be told not to bring your knife and fork or to remember to
switch on the light so that you can see the stairs. Opening the door to the bath-
room before entering is probably also something you don’t have to be told.

In contrast, computers are really dumb. They have to have everything de-
scribed precisely and in detail. Consider again “turn right in the corridor, up
the stairs, it’ll be on your left.” Where is the corridor? What’s a corridor? What
is “turn right”? What stairs? How do I go up stairs? (One step at a time? Two
steps? Slide up the banister?) What is on my left? When will it be on my left? To
be able to describe “things” precisely for a computer, we need a precisely defined
language with a specific grammar (English is far too loosely structured for that)
and a well-defined vocabulary for the kinds of actions we want performed. Such
a language is called a programming language, and C++ is a programming language
designed for a wide selection of programming tasks.

If you want greater philosophical detail about computers, programs, and pro-
gramming, (re)read Chapter 1. Here, let’s have a look at some code, starting with
a very simple program and the tools and techniques you need to get it to run.

Stroustrup_book.indb 44Stroustrup_book.indb 44 4/22/14 9:41 AM4/22/14 9:41 AM

2.2 THE CLASSIC FIRST PROGRAM 45

2.2 The classic fi rst program
Here is a version of the classic first program. It writes “Hello, World!” to your screen:

// This program outputs the message “Hello, World!” to the monitor

#include "std_lib_facilities.h"

int main() // C++ programs start by executing the function main
{
 cout << "Hello, World!\n"; // output “Hello, World!”
 return 0;
}

Think of this text as a set of instructions that we give to the computer to execute,
much as we would give a recipe to a cook to follow, or as a list of assembly in-
structions for us to follow to get a new toy working. Let’s discuss what each line
of this program does, starting with the line

cout << "Hello, World!\n"; // output “Hello, World!”

That’s the line that actually produces the output. It prints the characters Hello,
World! followed by a newline; that is, after writing Hello, World!, the cursor will
be placed at the start of the next line. A cursor is a little blinking character or line
showing where you can type the next character.

In C++, string literals are delimited by double quotes ("); that is, "Hello,
World!\n" is a string of characters. The \n is a “special character” indicating a
newline. The name cout refers to a standard output stream. Characters “put into
cout” using the output operator << will appear on the screen. The name cout is
pronounced “see-out” and is an abbreviation of “character output stream.” You’ll
find abbreviations rather common in programming. Naturally, an abbreviation
can be a bit of a nuisance the first time you see it and have to remember it, but
once you start using abbreviations repeatedly, they become second nature, and
they are essential for keeping program text short and manageable.

The end of that line

// output “Hello, World!”

is a comment. Anything written after the token // (that’s the character /, called
“slash,” twice) on a line is a comment. Comments are ignored by the compiler
and written for the benefit of programmers who read the code. Here, we used the
comment to tell you what the beginning of that line actually did.

Stroustrup_book.indb 45Stroustrup_book.indb 45 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 2 • HELLO, WORLD!46

Comments are written to describe what the program is intended to do and
in general to provide information useful for humans that can’t be directly ex-
pressed in code. The person most likely to benefit from the comments in your
code is you — when you come back to that code next week, or next year, and have
forgotten exactly why you wrote the code the way you did. So, document your
programs well. In §7.6.4, we’ll discuss what makes good comments.

A program is written for two audiences. Naturally, we write code for comput-
ers to execute. However, we spend long hours reading and modifying the code.
Thus, programmers are another audience for programs. So, writing code is also
a form of human-to-human communication. In fact, it makes sense to consider
the human readers of our code our primary audience: if they (we) don’t find the
code reasonably easy to understand, the code is unlikely to ever become correct.
So, please don’t forget: code is for reading — do all you can to make it readable.
Anyway, the comments are for the benefit of human readers only; the computer
doesn’t look at the text in comments.

The first line of the program is a typical comment; it simply tells the human
reader what the program is supposed to do:

// This program outputs the message “Hello, World!” to the monitor

Such comments are useful because the code itself says what the program does, not
what we meant it to do. Also, we can usually explain (roughly) what a program
should do to a human much more concisely than we can express it (in detail) in
code to a computer. Often such a comment is the first part of the program we
write. If nothing else, it reminds us what we are trying to do.

The next line

#include "std_lib_facilities.h"

is an “#include directive.” It instructs the computer to make available (“to in-
clude”) facilities from a file called std_lib_facilities.h. We wrote that file to simplify
use of the facilities available in all implementations of C++ (“the C++ standard
library”). We will explain its contents as we go along. It is perfectly ordinary stan-
dard C++, but it contains details that we’d rather not bother you with for another
dozen chapters. For this program, the importance of std_lib_facilities.h is that
we make the standard C++ stream I/O facilities available. Here, we just use the
standard output stream, cout, and its output operator, <<. A file included using
#include usually has the suffix .h and is called a header or a header file. A header
contains definitions of terms, such as cout, that we use in our program.

How does a computer know where to start executing a program? It looks for
a function called main and starts executing the instructions it finds there. Here is
the function main of our “Hello, World!” program:

Stroustrup_book.indb 46Stroustrup_book.indb 46 4/22/14 9:42 AM4/22/14 9:42 AM

2.3 COMPILATION 47

int main() // C++ programs start by executing the function main
{
 cout << "Hello, World!\n"; // output “Hello, World!”
 return 0;
}

Every C++ program must have a function called main to tell it where to start ex-
ecuting. A function is basically a named sequence of instructions for the computer
to execute in the order in which they are written. A function has four parts:

• A return type, here int (meaning “integer”), which specifi es what kind of
result, if any, the function will return to whoever asked for it to be exe-
cuted. The word int is a reserved word in C++ (a keyword), so int cannot
be used as the name of anything else (see §A.3.1).

• A name, here main.
• A parameter list enclosed in parentheses (see §8.2 and §8.6), here (); in this

case, the parameter list is empty.
• A function body enclosed in a set of “curly braces,” { }, which lists the ac-

tions (called statements) that the function is to perform.

It follows that the minimal C++ program is simply

int main() { }

That’s not of much use, though, because it doesn’t do anything. The main() (“the
main function”) of our “Hello, World!” program has two statements in its body:

cout << "Hello, World!\n"; // output “Hello, World!”
return 0;

First it’ll write Hello, World! to the screen, and then it will return a value 0 (zero)
to whoever called it. Since main() is called by “the system,” we won’t use that
return value. However, on some systems (notably Unix/Linux) it can be used to
check whether the program succeeded. A zero (0) returned by main() indicates
that the program terminated successfully.

A part of a C++ program that specifies an action and isn’t an #include direc-
tive (or some other preprocessor directive; see §4.4 and §A.17) is called a statement.

2.3 Compilation
C++ is a compiled language. That means that to get a program to run, you
must first translate it from the human-readable form to something a machine can

Stroustrup_book.indb 47Stroustrup_book.indb 47 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 • HELLO, WORLD!48

“understand.” That translation is done by a program called a compiler. What you
read and write is called source code or program text, and what the computer executes
is called executable, object code, or machine code. Typically C++ source code files are
given the suffix .cpp (e.g., hello_world.cpp) or .h (as in std_lib_facilities.h), and
object code files are given the suffix .obj (on Windows) or .o (Unix). The plain
word code is therefore ambiguous and can cause confusion; use it with care only
when it is obvious what’s meant by it. Unless otherwise specified, we use code to
mean “source code” or even “the source code except the comments,” because
comments really are there just for us humans and are not seen by the compiler
generating object code.

C++ source code Object codeC++ compiler

The compiler reads your source code and tries to make sense of what you wrote.
It looks to see if your program is grammatically correct, if every word has a de-
fined meaning, and if there is anything obviously wrong that can be detected with-
out trying to actually execute the program. You’ll find that compilers are rather
picky about syntax. Leaving out any detail of our program, such as an #include
file, a semicolon, or a curly brace, will cause errors. Similarly, the compiler has
absolutely zero tolerance for spelling mistakes. Let us illustrate this with a series
of examples, each of which has a single small error. Each error is an example of a
kind of mistake we often make:

// no #include here
int main()
{
 cout << "Hello, World!\n";
 return 0;
}

We didn’t include something to tell the compiler what cout was, so the compiler
complains. To correct that, let’s add a header file:

#include "std_facilities.h"
int main()
{
 cout << "Hello, World!\n";
 return 0;
}

Stroustrup_book.indb 48Stroustrup_book.indb 48 4/22/14 9:42 AM4/22/14 9:42 AM

2.3 COMPILATION 49

Unfortunately, the compiler again complains: we misspelled std_lib_facilities.h.
The compiler also objects to this:

#include "std_lib_facilities.h"
int main()
{
 cout << "Hello, World!\n;
 return 0;
}

We didn’t terminate the string with a ". The compiler also objects to this:

#include "std_lib_facilities.h"
integer main()
{
 cout << "Hello, World!\n";
 return 0;
}

The abbreviation int is used in C++ rather than the word integer. The compiler
doesn’t like this either:

#include "std_lib_facilities.h"
int main()
{
 cout < "Hello, World!\n";
 return 0;
}

We used < (the less-than operator) rather than << (the output operator). The
compiler also objects to this:

#include "std_lib_facilities.h"
int main()
{
 cout << 'Hello, World!\n';
 return 0;
}

Stroustrup_book.indb 49Stroustrup_book.indb 49 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 • HELLO, WORLD!50

We used single quotes rather than double quotes to delimit the string. Finally, the
compiler gives an error for this:

#include "std_lib_facilities.h"
int main()
{
 cout << "Hello, World!\n"
 return 0;
}

We forgot to terminate the output statement with a semicolon. Note that many
C++ statements are terminated by a semicolon (;). The compiler needs those
semicolons to know where one statement ends and the next begins. There is no
really short, fully correct, and nontechnical way of summarizing where semico-
lons are needed. For now, just copy our pattern of use, which can be summarized
as: “Put a semicolon after every expression that doesn’t end with a right curly
brace (}).”

Why do we spend two pages of good space and minutes of your precious
time showing you examples of trivial errors in a trivial program? To make the
point that you — like all programmers — will spend a lot of time looking for errors
in program source text. Most of the time, we look at text with errors in it. After
all, if we were convinced that some code was correct, we’d typically be looking
at some other code or taking the time off. It came as a major surprise to the early
computer pioneers that they were making mistakes and had to devote a major
portion of their time to finding them. It is still a surprise to most newcomers to
programming.

When you program, you’ll get quite annoyed with the compiler at times.
Sometimes it appears to complain about unimportant details (such as a missing
semicolon) or about things you consider “obviously right.” However, the compiler
is usually right: when it gives an error message and refuses to produce object code
from your source code, there is something not quite right with your program; that
is, the meaning of what you wrote isn’t precisely defined by the C++ standard.

The compiler has no common sense (it isn’t human) and is very picky about
details. Since it has no common sense, you wouldn’t like it to try to guess what
you meant by something that “looked OK” but didn’t conform to the definition of
C++. If it did and its guess was different from yours, you could end up spending a
lot of time trying to figure out why the program didn’t do what you thought you
had told it to do. When all is said and done, the compiler saves us from a lot of
self-inflicted problems. It saves us from many more problems than it causes. So,
please remember: the compiler is your friend; possibly, the compiler is the best
friend you have when you program.

Stroustrup_book.indb 50Stroustrup_book.indb 50 4/22/14 9:42 AM4/22/14 9:42 AM

2.4 LINKING 51

2.4 Linking
A program usually consists of several separate parts, often developed by different
people. For example, the “Hello, World!” program consists of the part we wrote
plus parts of the C++ standard library. These separate parts (sometimes called
translation units) must be compiled and the resulting object code files must be linked
together to form an executable program. The program that links such parts to-
gether is (unsurprisingly) called a linker:

C++ source code:

Object code from the
C++ standard library:

C++ compiler

Linker

hello_world.cpp

Object code:
hello_world.obj

Executable program:
hello_world.exe

ostream.obj

Please note that object code and executables are not portable among systems. For
example, when you compile for a Windows machine, you get object code for
Windows that will not run on a Linux machine.

A library is simply some code — usually written by others — that we access
using declarations found in an #included file. A declaration is a program statement
specifying how a piece of code can be used; we’ll examine declarations in detail
later (e.g., §4.5.2).

Errors found by the compiler are called compile-time errors, errors found by the
linker are called link-time errors, and errors not found until the program is run are
called run-time errors or logic errors. Generally, compile-time errors are easier to un-
derstand and fix than link-time errors, and link-time errors are often easier to find
and fix than run-time errors and logic errors. In Chapter 5 we discuss errors and
the ways of handling them in greater detail.

Stroustrup_book.indb 51Stroustrup_book.indb 51 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 • HELLO, WORLD!52

2.5 Programming environments
To program, we use a programming language. We also use a compiler to translate
our source code into object code and a linker to link our object code into an exe-
cutable program. In addition, we use some program to enter our source code text
into the computer and to edit it. These are just the first and most crucial tools that
constitute our programmer’s tool set or “program development environment.”

If you work from a command-line window, as many professional program-
mers do, you will have to issue the compile and link commands yourself. If in-
stead you use an IDE (“interactive development environment” or “integrated
development environment”), as many professional programmers also do, a simple
click on the correct button will do the job. See Appendix C for a description of
how to compile and link on your C++ implementation.

IDEs usually include an editor with helpful features like color coding to
help distinguish between comments, keywords, and other parts of your program
source code, plus other facilities to help you debug your code, compile it, and run
it. Debugging is the activity of finding errors in a program and removing them;
you’ll hear a lot about that along the way.

Working with this book, you can use any system that provides an up-to-date,
standards-conforming implementation of C++. Most of what we say will, with
very minor modifications, be true for all implementations of C++, and the code
will run everywhere. In our work, we use several different implementations.

Drill
So far we have talked about programming, code, and tools (such as compilers).
Now you have to get a program to run. This is a crucial point in this book and
in learning to program. This is where you start to develop practical skills and
good programming habits. The exercises for this chapter are focused on getting
you acquainted with your software development environment. Once you get the
“Hello, World!” program to run, you will have passed the first major milestone
as a programmer.

The purpose of a drill is to establish or reinforce your practical programming
skills and give you experience with programming environment tools. Typically, a
drill is a sequence of modifications to a single program, “growing” it from some-
thing completely trivial to something that might be a useful part of a real pro-
gram. A traditional set of exercises is designed to test your initiative, cleverness,
or inventiveness. In contrast, a drill requires little invention from you. Typically,
sequencing is crucial, and each individual step should be easy (or even trivial).

Stroustrup_book.indb 52Stroustrup_book.indb 52 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 DRILL 53

Please don’t try to be clever and skip steps; on average that will slow you down
or even confuse you.

You might think you understand everything you read and everything your
Mentor or instructor told you, but repetition and practice are necessary to de-
velop programming skills. In this regard, programming is like athletics, music,
dance, or any skill-based craft. Imagine people trying to compete in any of those
fields without regular practice. You know how well they would perform. Constant
practice — for professionals that means lifelong constant practice — is the only way
to develop and maintain a high-level practical skill.

So, never skip the drills, no matter how tempted you are; they are essential to
the learning process. Just start with the first step and proceed, testing each step as
you go to make sure you are doing it right.

Don’t be alarmed if you don’t understand every detail of the syntax you are
using, and don’t be afraid to ask for help from instructors or friends. Keep going,
do all of the drills and many of the exercises, and all will become clear in due time.

So, here is your first drill:

 1. Go to Appendix C and follow the steps required to set up a project. Set
up an empty console C++ project called hello_world.

 2. Type in hello_world.cpp, exactly as specified below, save it in your prac-
tice directory (folder), and include it in your hello_world project.

#include "std_lib_facilities.h"
int main() // C++ programs start by executing the function main
{

cout << "Hello, World!\n"; // output “Hello, World!”
keep_window_open(); // wait for a character to be entered
return 0;

}

The call to keep_window_open() is needed on some Windows ma-
chines to prevent them from closing the window before you have a chance
to read the output. This is a peculiarity/feature of Windows, not of C++.
We defined keep_window_open() in std_lib_facilities.h to simplify writ-
ing simple text programs.

How do you find std_lib_facilities.h? If you are in a course, ask your
instructor. If not, download it from our support site www.stroustrup.com/
Programming. But what if you don’t have an instructor and no access to
the web? In that case (only), replace the #include directive with

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>

Stroustrup_book.indb 53Stroustrup_book.indb 53 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 • HELLO, WORLD!54

#include<cmath>
using namespace std;
inline void keep_window_open() { char ch; cin>>ch; }

This uses the standard library directly, will keep you going until Chap-
ter 5, and will be explained in detail later (§8.7).

 3. Compile and run the “Hello, World!” program. Quite likely, something
didn’t work quite right. It very rarely does in a first attempt to use a new
programming language or a new programming environment. Find the
problem and fix it! This is a point where asking for help from a more
experienced person is sensible, but be sure to understand what you are
shown so that you can do it all by yourself before proceeding further.

 4. By now, you have probably encountered some errors and had to correct
them. Now is the time to get a bit better acquainted with your compiler’s
error-detection and error-reporting facilities! Try the six errors from §2.3
to see how your programming environment reacts. Think of at least five
more errors you might have made typing in your program (e.g., forget
keep_window_open(), leave the Caps Lock key on while typing a word,
or type a comma instead of a semicolon) and try each to see what hap-
pens when you try to compile and run those versions.

Review
The basic idea of these review questions is to give you a chance to see if you
have noticed and understood the key points of the chapter. You may have to refer
back to the text to answer a question; that’s normal and expected. You may have
to reread whole sections; that too is normal and expected. However, if you have
to reread the whole chapter or have problems with every review question, you
should consider whether your style of learning is effective. Are you reading too
fast? Should you stop and do some of the Try this suggestions? Should you study
with a friend so that you can discuss problems with the explanations in the text?

 1. What is the purpose of the “Hello, World!” program?
 2. Name the four parts of a function.
 3. Name a function that must appear in every C++ program.
 4. In the “Hello, World!” program, what is the purpose of the line return 0;?
 5. What is the purpose of the compiler?
 6. What is the purpose of the #include directive?
 7. What does a .h suffix at the end of a file name signify in C++?
 8. What does the linker do for your program?
 9. What is the difference between a source file and an object file?
 10. What is an IDE and what does it do for you?
 11. If you understand everything in the textbook, why is it necessary to

practice?

Stroustrup_book.indb 54Stroustrup_book.indb 54 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 EXERCISES 55

Most review questions have a clear answer in the chapter in which they appear.
However, we do occasionally include questions to remind you of relevant infor-
mation from other chapters and sometimes even relating to the world outside this
book. We consider that fair; there is more to writing good software and thinking
about the implications of doing so than fits into an individual chapter or book.

Terms
These terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

// executable main()
<< function object code
C++ header output
comment IDE program
compiler #include source code
compile-time error library statement
cout linker

You might like to gradually develop a glossary written in your own words. You
can do that by repeating exercise 5 below for each chapter.

Exercises
We list drills separately from exercises; always complete the chapter drill before
attempting an exercise. Doing so will save you time.

 1. Change the program to output the two lines

Hello, programming!
Here we go!

 2. Expanding on what you have learned, write a program that lists the in-
structions for a computer to find the upstairs bathroom, discussed in §2.1.
Can you think of any more steps that a person would assume, but that a
computer would not? Add them to your list. This is a good start in “think-
ing like a computer.” Warning: For most people, “go to the bathroom” is
a perfectly adequate instruction. For someone with no experience with
houses or bathrooms (imagine a stone-age person, somehow transported
into your dining room) the list of necessary instructions could be very
long. Please don’t use more than a page. For the benefit of the reader, you
may add a short description of the layout of the house you are imagining.

 3. Write a description of how to get from the front door of your dorm room,
apartment, house, whatever, to the door of your classroom (assuming you

Stroustrup_book.indb 55Stroustrup_book.indb 55 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 • HELLO, WORLD!56

are attending some school; if you are not, pick another target). Have a
friend try to follow the instructions and annotate them with improve-
ments as he or she goes along. To keep friends, it may be a good idea to
“field test” those instructions before giving them to a friend.

 4. Find a good cookbook. Read the instructions for baking blueberry muf-
fins (if you are in a country where “blueberry muffins” is a strange, exotic
dish, use a more familiar dish instead). Please note that with a bit of
help and instruction, most of the people in the world can bake delicious
blueberry muffins. It is not considered advanced or difficult fine cooking.
However, for the author, few exercises in this book are as difficult as this
one. It is amazing what you can do with a bit of practice.

• Rewrite those instructions so that each individual action is in its own
numbered paragraph. Be careful to list all ingredients and all kitchen
utensils used at each step. Be careful about crucial details, such as the
desired oven temperature, preheating the oven, the preparation of the
muffi n pan, the way to time the cooking, and the need to protect your
hands when removing the muffi ns from the oven.

• Consider those instructions from the point of view of a cooking nov-
ice (if you are not one, get help from a friend who does not know how
to cook). Fill in the steps that the book’s author (almost certainly an
experienced cook) left out for being obvious.

• Build a glossary of terms used. (What’s a muffi n pan? What does
preheating do? What do you mean by “oven”?)

• Now bake some muffi ns and enjoy your results.

 5. Write a definition for each of the terms from “Terms.” First try to see if you
can do it without looking at the chapter (not likely), then look through the
chapter to find definitions. You might find the difference between your
first attempt and the book’s version interesting. You might consult some
suitable online glossary, such as www.stroustrup.com/glossary.html. By
writing your own definition before looking it up, you reinforce the learn-
ing you achieved through your reading. If you have to reread a section to
form a definition, that just helps you to understand. Feel free to use your
own words for the definitions, and make the definitions as detailed as
you think reasonable. Often, an example after the main definition will be
helpful. You may like to store the definitions in a file so that you can add
to them from the “Terms” sections of later chapters.

Stroustrup_book.indb 56Stroustrup_book.indb 56 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 2 POSTSCRIPT 57

Postscript
What’s so important about the “Hello, World!” program? Its purpose is to get
us acquainted with the basic tools of programming. We tend to do an extremely
simple example, such as “Hello, World!,” whenever we approach a new tool.
That way, we separate our learning into two parts: fi rst we learn the basics of our
tools with a trivial program, and later we learn about more complicated programs
without being distracted by our tools. Learning the tools and the language simul-
taneously is far harder than doing fi rst one and then the other. This approach to
simplifying learning a complex task by breaking it into a series of small (and more
manageable) steps is not limited to programming and computers. It is common
and useful in most areas of life, especially in those that involve some practical skill.

Stroustrup_book.indb 57Stroustrup_book.indb 57 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 58Stroustrup_book.indb 58 4/22/14 9:42 AM4/22/14 9:42 AM

59

3

Objects, Types, and Values

“Fortune favors the prepared mind.”

—Louis Pasteur

This chapter introduces the basics of storing and using data

in a program. To do so, we first concentrate on reading in

data from the keyboard. After establishing the fundamental no-

tions of objects, types, values, and variables, we introduce several

operators and give many examples of use of variables of types

char, int, double, and string.

Stroustrup_book.indb 59Stroustrup_book.indb 59 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES60

3.1 Input 3.6 Composite assignment operators

3.2 Variables 3.6.1 An example: fi nd repeated words

3.3 Input and type 3.7 Names
3.4 Operations and operators 3.8 Types and objects
3.5 Assignment and initialization 3.9 Type safety

3.5.1 An example: detect repeated
words

3.9.1 Safe conversions
3.9.2 Unsafe conversions

3.1 Input
The “Hello, World!” program just writes to the screen. It produces output. It does
not read anything; it does not get input from its user. That’s rather a bore. Real
programs tend to produce results based on some input we give them, rather than
just doing exactly the same thing each time we execute them.

To read something, we need somewhere to read into; that is, we need some-
where in the computer’s memory to place what we read. We call such a “place”
an object. An object is a region of memory with a type that specifies what kind of
information can be placed in it. A named object is called a variable. For example,
character strings are put into string variables and integers are put into int vari-
ables. You can think of an object as a “box” into which you can put a value of the
object’s type:

42age:
int:

This would represent an object of type int named age containing the integer
value 42. Using a string variable, we can read a string from input and write it out
again like this:

// read and write a first name
#include "std_lib_facilities.h"

int main()
{
 cout << "Please enter your first name (followed by 'enter'):\n";
 string first_name; // first_name is a variable of type string
 cin >> first_name; // read characters into first_name
 cout << "Hello, " << first_name << "!\n";
}

Stroustrup_book.indb 60Stroustrup_book.indb 60 4/22/14 9:42 AM4/22/14 9:42 AM

3.1 INPUT 61

The #include and the main() are familiar from Chapter 2. Since the #include is
needed for all our programs (up to Chapter 12), we’ll leave it out of our presen-
tation to avoid distraction. Similarly, we’ll sometimes present code that will work
only if it is placed in main() or some other function, like this:

cout << "Please enter your first name (followed by 'enter'):\n";

We assume that you can figure out how to put such code into a complete program
for testing.

The first line of main() simply writes out a message encouraging the user to
enter a first name. Such a message is typically called a prompt because it prompts
the user to take an action. The next lines define a variable of type string called
first_name, read input from the keyboard into that variable, and write out a greet-
ing. Let’s look at those three lines in turn:

string first_name; // first_name is a variable of type string

This sets aside an area of memory for holding a string of characters and gives it
the name first_name:

first_name:
string:

A statement that introduces a new name into a program and sets aside memory
for a variable is called a definition.

The next line reads characters from input (the keyboard) into that variable:

cin >> first_name; // read characters into first_name

The name cin refers to the standard input stream (pronounced “see-in,” for “char-
acter input”) defined in the standard library. The second operand of the >> oper-
ator (“get from”) specifies where that input goes. So, if we type some first name,
say Nicholas, followed by a newline, the string "Nicholas" becomes the value of
first_name:

first_name: Nicholas
string:

The newline is necessary to get the machine’s attention. Until a newline is entered
(the Enter key is hit), the computer simply collects characters. That “delay” gives
you the chance to change your mind, erase some characters, and replace them

Stroustrup_book.indb 61Stroustrup_book.indb 61 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES62

with others before hitting Enter. The newline will not be part of the string stored
in memory.

Having gotten the input string into first_name, we can use it:

cout << "Hello, " << first_name << "!\n";

This prints Hello, followed by Nicholas (the value of first_name) followed by !
and a newline ('\n') on the screen:

Hello, Nicholas!

If we had liked repetition and extra typing, we could have written three separate
output statements instead:

cout << "Hello, ";
cout << first_name;
cout << "!\n";

However, we are indifferent typists, and — more importantly — strongly dislike
needless repetition (because repetition provides opportunity for errors), so we
combined those three output operations into a single statement.

Note the way we use quotes around the characters in "Hello, " but not in
first_name. We use quotes when we want a literal string. When we don’t quote,
we refer to the value of something with a name. Consider:

cout << "first_name" << " is " << first_name;

Here, "first_name" gives us the ten characters first_name and plain first_name
gives us the value of the variable first_name, in this case, Nicholas. So, we get

first_name is Nicholas

3.2 Variables
Basically, we can do nothing of interest with a computer without storing data
in memory, the way we did it with the input string in the example above. The
“places” in which we store data are called objects. To access an object we need a
name. A named object is called a variable and has a specific type (such as int or
string) that determines what can be put into the object (e.g., 123 can go into an int
and "Hello, World!\n" can go into a string) and which operations can be applied
(e.g., we can multiply ints using the * operator and compare strings using the <=
operator). The data items we put into variables are called values. A statement that

Stroustrup_book.indb 62Stroustrup_book.indb 62 4/22/14 9:42 AM4/22/14 9:42 AM

3.2 VARIABLES 63

defines a variable is (unsurprisingly) called a definition, and a definition can (and
usually should) provide an initial value. Consider:

string name = "Annemarie";
int number_of_steps = 39;

You can visualize these variables like this:

number_of_steps:
int:

name: Annemarie
string:

39

You cannot put values of the wrong type into a variable:

string name2 = 39; // error: 39 isn’t a string
int number_of_steps = "Annemarie"; // error: “Annemarie” is not an int

The compiler remembers the type of each variable and makes sure that you use it
according to its type, as specified in its definition.

C++ provides a rather large number of types (see §A.8). However, you can
write perfectly good programs using only five of those:

int number_of_steps = 39; // int for integers
double flying_time = 3.5; // double for floating-point numbers
char decimal_point = '.'; // char for individual characters
string name = "Annemarie"; // string for character strings
bool tap_on = true; // bool for logical variables

The reason for the name double is historical: double is short for “double-
precision floating point.” Floating point is the computer’s approximation to the
mathematical concept of a real number.

Note that each of these types has its own characteristic style of literals:

39 // int: an integer
3.5 // double: a floating-point number
'.' // char: an individual character enclosed in single quotes
"Annemarie" // string: a sequence of characters delimited by double quotes
true // bool: either true or false

That is, a sequence of digits (such as 1234, 2, or 976) denotes an integer, a sin-
gle character in single quotes (such as '1', '@', or 'x') denotes a character, a
sequence of digits with a decimal point (such as 1.234, 0.12, or .98) denotes a
floating-point value, and a sequence of characters enclosed in double quotes (such
as "1234", "Howdy!", or "Annemarie") denotes a string. For a detailed descrip-
tion of literals see §A.2.

Stroustrup_book.indb 63Stroustrup_book.indb 63 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES64

3.3 Input and type
The input operation >> (“get from”) is sensitive to type; that is, it reads according
to the type of variable you read into. For example:

// read name and age
int main()
{
 cout << "Please enter your first name and age\n";
 string first_name; // string variable
 int age; // integer variable
 cin >> first_name; // read a string
 cin >> age; // read an integer
 cout << "Hello, " << first_name << " (age " << age << ")\n";
}

So, if you type in Carlos 22 the >> operator will read Carlos into first_name, 22
into age, and produce this output:

Hello, Carlos (age 22)

Why won’t it read (all of) Carlos 22 into first_name? Because, by convention,
reading of strings is terminated by what is called whitespace, that is, space, newline,
and tab characters. Otherwise, whitespace by default is ignored by >>. For exam-
ple, you can add as many spaces as you like before a number to be read; >> will
just skip past them and read the number.

If you type in 22 Carlos, you’ll see something that might be surprising until
you think about it. The 22 will be read into first_name because, after all, 22 is a
sequence of characters. On the other hand, Carlos isn’t an integer, so it will not be
read. The output will be 22 followed by (age followed by some random number,
such as –96739 or 0. Why? You didn’t give age an initial value and you didn’t
succeed in reading a value into it. Therefore, you get some “garbage value” that
happened to be in that part of memory when you started executing. In §10.6, we
look at ways to handle “input format errors.” For now, let’s just initialize age so
that we get a predictable value if the input fails:

// read name and age (2nd version)
int main()
{
 cout << "Please enter your first name and age\n";

Stroustrup_book.indb 64Stroustrup_book.indb 64 4/22/14 9:42 AM4/22/14 9:42 AM

3.3 INPUT AND TYPE 65

 string first_name = "???"; // string variable
 // ("???” means “don’t know the name”)
 int age = –1; // integer variable (–1 means “don’t know the age”)
 cin >> first_name >> age; // read a string followed by an integer
 cout << "Hello, " << first_name << " (age " << age << ")\n";
}

Now the input 22 Carlos will output

Hello, 22 (age –1)

Note that we can read several values in a single input statement, just as we can
write several values in a single output statement. Note also that << is sensitive to
type, just as >> is, so we can output the int variable age as well as the string vari-
able first_name and the string literals "Hello, " and " (age " and ")\n".

A string read using >> is (by default) terminated by whitespace; that is, it
reads a single word. But sometimes, we want to read more than one word. There
are of course many ways of doing this. For example, we can read a name consist-
ing of two words like this:

int main()
{
 cout << "Please enter your first and second names\n";
 string first;
 string second;
 cin >> first >> second; // read two strings
 cout << "Hello, " << first <<" << second << '\n';
}

We simply used >> twice, once for each name. When we want to write the names
to output, we must insert a space between them.

TRY THIS

Get the “name and age” example to run. Then, modify it to write out the age
in months: read the input in years and multiply (using the * operator) by 12.
Read the age into a double to allow for children who can be very proud of
being five and a half years old rather than just five.

T

Stroustrup_book.indb 65Stroustrup_book.indb 65 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES66

3.4 Operations and operators
In addition to specifying what values can be stored in a variable, the type of a
variable determines what operations we can apply to it and what they mean. For
example:

int count;
cin >> count; // >> reads an integer into count
string name;
cin >> name; // >> reads a string into name

int c2 = count+2; // + adds integers
string s2 = name + " Jr. "; // + appends characters

int c3 = count–2; // – subtracts integers
string s3 = name – " Jr. "; // error: – isn’t defined for strings

By “error” we mean that the compiler will reject a program trying to subtract
strings. The compiler knows exactly which operations can be applied to each
variable and can therefore prevent many mistakes. However, the compiler doesn’t
know which operations make sense to you for which values, so it will happily ac-
cept legal operations that yield results that may look absurd to you. For example:

int age = –100;

It may be obvious to you that you can’t have a negative age (why not?) but no-
body told the compiler, so it’ll produce code for that definition.

Here is a table of useful operators for some common and useful types:

bool char int double string

assignment = = = = =
addition + +
concatenation +
subtraction – –
multiplication * *
division / /
remainder (modulo) %
increment by 1 ++ ++
decrement by 1 –– ––
increment by n += n += n

Stroustrup_book.indb 66Stroustrup_book.indb 66 4/22/14 9:42 AM4/22/14 9:42 AM

3.4 OPERATIONS AND OPERATORS 67

bool char int double string

add to end +=
decrement by n –= n –= n
multiply and assign *= *=
divide and assign /= /=
remainder and assign %=
read from s into x s >> x s >> x s >> x s >> x s >> x
write x to s s << x s << x s << x s << x s << x
equals == == == == ==
not equal != != != != !=
greater than > > > > >
greater than or equal >= >= >= >= >=
less than < < < < <
less than or equal <= <= <= <= <=

A blank square indicates that an operation is not directly available for a type
(though there may be indirect ways of using that operation; see §3.9.1). We’ll
explain these operations, and more, as we go along. The key points here are that
there are a lot of useful operators and that their meaning tends to be the same for
similar types.

Let’s try an example involving floating-point numbers:

// simple program to exercise operators
int main()
{
 cout << "Please enter a floating-point value: ";
 double n;
 cin >> n;
 cout << "n == " << n
 << "\nn+1 == " << n+1
 << "\nthree times n == " << 3*n
 << "\ntwice n == " << n+n
 << "\nn squared == " << n*n
 << "\nhalf of n == " << n/2
 << "\nsquare root of n == " << sqrt(n)
 << '\n'; // another name for newline (“end of line”) in output
}

Obviously, the usual arithmetic operations have their usual notation and meaning
as we know them from primary school. Naturally, not everything we might want

Stroustrup_book.indb 67Stroustrup_book.indb 67 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES68

to do to a floating-point number, such as taking its square root, is available as an
operator. Many operations are represented as named functions. In this case, we
use sqrt() from the standard library to get the square root of n: sqrt(n). The nota-
tion is familiar from math. We’ll use functions along the way and discuss them in
some detail in §4.5 and §8.5.

TRY THIS

Get this little program to run. Then, modify it to read an int rather than a
double. Note that sqrt() is not defined for an int so assign n to a double and
take sqrt() of that. Also, “exercise” some other operations. Note that for ints
/ is integer division and % is remainder (modulo), so that 5/2 is 2 (and not 2.5
or 3) and 5%2 is 1. The definitions of integer *, /, and % guarantee that for
two positive ints a and b we have a/b * b + a%b == a.

Strings have fewer operators, but as we’ll see in Chapter 23, they have plenty of
named operations. However, the operators they do have can be used convention-
ally. For example:

// read first and second name
int main()
{

 cout << "Please enter your first and second names\n";
 string first;
 string second;
 cin >> first >> second; // read two strings
 string name = first + ' ' + second; // concatenate strings
 cout << "Hello, " << name << '\n';
}

For strings + means concatenation; that is, when s1 and s2 are strings, s1+s2 is a
string where the characters from s1 are followed by the characters from s2. For
example, if s1 has the value "Hello" and s2 the value "World", then s1+s2 will
have the value "HelloWorld". Comparison of strings is particularly useful:

// read and compare names
int main()
{
 cout << "Please enter two names\n";
 string first;
 string second;

T

Stroustrup_book.indb 68Stroustrup_book.indb 68 4/22/14 9:42 AM4/22/14 9:42 AM

3.5 ASSIGNMENT AND INITIALIZATION 69

 cin >> first >> second; // read two strings
 if (first == second) cout << "that's the same name twice\n";
 if (first < second)
 cout << first << " is alphabetically before " << second <<'\n';
 if (first > second)
 cout << first << " is alphabetically after " << second <<'\n';
}

Here, we used an if-statement, which will be explained in detail in §4.4.1.1, to
select actions based on conditions.

3.5 Assignment and initialization
In many ways, the most interesting operator is assignment, represented as =. It
gives a variable a new value. For example:

int a = 3; // a starts out with the value 3

3a:

a = 4; // a gets the value 4 (“becomes 4”)

4a:

int b = a; // b starts out with a copy of a’s value (that is, 4)

4a:

4b:

b = a+5; // b gets the value a+5 (that is, 9)

4a:

9b:

a = a+7; // a gets the value a+7 (that is, 11)

11a:

9b:

That last assignment deserves notice. First of all it clearly shows that = does not
mean equals — clearly, a doesn’t equal a+7. It means assignment, that is, to place a
new value in a variable. What is done for a=a+7 is the following:

 1. First, get the value of a; that’s the integer 4.
 2. Next, add 7 to that 4, yielding the integer 11.
 3. Finally, put that 11 into a.

Stroustrup_book.indb 69Stroustrup_book.indb 69 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES70

We can also illustrate assignments using strings:

string a = "alpha"; // a starts out with the value “alpha”

a: alpha

a = "beta"; // a gets the value “beta” (becomes “beta”)

a: beta

string b = a; // b starts out with a copy of a’s value (that is, “beta”)

a: beta

b: beta

b = a+"gamma"; // b gets the value a+“gamma” (that is, “betagamma”)

a: beta

b: betagamma

a = a+"delta"; // a gets the value a+“delta” (that is, “betadelta”)

a: betadelta

b: betagamma

Above, we use “starts out with” and “gets” to distinguish two similar, but logically
distinct, operations:

• Initialization (giving a variable its initial value)
• Assignment (giving a variable a new value)

These operations are so similar that C++ allows us to use the same notation (the
=) for both:

int y = 8; // initialize y with 8
x = 9; // assign 9 to x

string t = "howdy!"; // initialize t with “howdy!”
s = "G'day"; // assign “G’day” to s

However, logically assignment and initialization are different. You can tell the two
apart by the type specification (like int or string) that always starts an initializa-
tion; an assignment does not have that. In principle, an initialization always finds

Stroustrup_book.indb 70Stroustrup_book.indb 70 4/22/14 9:42 AM4/22/14 9:42 AM

3.5 ASSIGNMENT AND INITIALIZATION 71

the variable empty. On the other hand, an assignment (in principle) must clear
out the old value from the variable before putting in the new value. You can think
of the variable as a kind of small box and the value as a concrete thing, such as a
coin, that you put into it. Before initialization, the box is empty, but after initializa-
tion it always holds a coin so that to put a new coin in, you (i.e., the assignment
operator) first have to remove the old one (“destroy the old value”). Things are
not quite this literal in the computer’s memory, but it’s not a bad way of thinking
of what’s going on.

3.5.1 An example: detect repeated words
Assignment is needed when we want to put a new value into an object. When
you think of it, it is obvious that assignment is most useful when you do things
many times. We need an assignment when we want to do something again with a
different value. Let’s have a look at a little program that detects adjacent repeated
words in a sequence of words. Such code is part of most grammar checkers:

int main()
{
 string previous = " "; // previous word; initialized to “not a word”
 string current; // current word
 while (cin>>current) { // read a stream of words
 if (previous == current) // check if the word is the same as last
 cout << "repeated word: " << current << '\n';
 previous = current;
 }
}

This program is not the most helpful since it doesn’t tell where the repeated word
occurred in the text, but it’ll do for now. We will look at this program line by line
starting with

string current; // current word

This is the string variable into which we immediately read the current (i.e., most
recently read) word using

while (cin>>current)

This construct, called a while-statement, is interesting in its own right, and we’ll
examine it further in §4.4.2.1. The while says that the statement after (cin>>
current) is to be repeated as long as the input operation cin>>current succeeds,
and cin>>current will succeed as long as there are characters to read on the

Stroustrup_book.indb 71Stroustrup_book.indb 71 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES72

standard input. Remember that for a string, >> reads whitespace-separated words.
You terminate this loop by giving the program an end-of-input character (usually
referred to as end of file). On a Windows machine, that’s Ctrl+Z (Control and Z
pressed together) followed by an Enter (return). On a Unix or Linux machine
that’s Ctrl+D (Control and D pressed together).

So, what we do is to read a word into current and then compare it to the pre-
vious word (stored in previous). If they are the same, we say so:

if (previous == current) // check if the word is the same as last
 cout << "repeated word: " << current << '\n';

Then we have to get ready to do this again for the next word. We do that by
copying the current word into previous:

previous = current;

This handles all cases provided that we can get started. What should this code do
for the first word where we have no previous word to compare? This problem is
dealt with by the definition of previous:

string previous = " "; // previous word; initialized to “not a word”

The " " contains only a single character (the space character, the one we get by
hitting the space bar on our keyboard). The input operator >> skips whitespace,
so we couldn’t possibly read that from input. Therefore, the first time through the
while-statement, the test

if (previous == current)

fails (as we want it to).
One way of understanding program flow is to “play computer,” that is, to fol-

low the program line for line, doing what it specifies. Just draw boxes on a piece
of paper and write their values into them. Change the values stored as specified
by the program.

TRY THIS

Execute this program yourself using a piece of paper. Use the input The cat
cat jumped. Even experienced programmers use this technique to visualize the
actions of small sections of code that somehow don’t seem completely obvious.

T

Stroustrup_book.indb 72Stroustrup_book.indb 72 4/22/14 9:42 AM4/22/14 9:42 AM

3.6 COMPOSITE ASSIGNMENT OPERATORS 73

TRY THIS

Get the “repeated word detection program” to run. Test it with the sentence
She she laughed He He He because what he did did not look very very good
good. How many repeated words were there? Why? What is the definition of
word used here? What is the definition of repeated word? (For example, is She
she a repetition?)

3.6 Composite assignment operators
Incrementing a variable (that is, adding 1 to it) is so common in programs that
C++ provides a special syntax for it. For example:

++counter

means

counter = counter + 1

There are many other common ways of changing the value of a variable based on
its current value. For example, we might like to add 7 to it, to subtract 9, or to mul-
tiply it by 2. Such operations are also supported directly by C++. For example:

a += 7; // means a = a+7
b –= 9; // means b = b–9
c *= 2; // means c = c*2

In general, for any binary operator oper, a oper= b means a = a oper b (§A.5).
For starters, that rule gives us operators +=, –=, *=, /=, and %=. This provides a
pleasantly compact notation that directly reflects our ideas. For example, in many
application domains *= and /= are referred to as “scaling.”

3.6.1 An example: fi nd repeated words
Consider the example of detecting repeated adjacent words above. We could im-
prove that by giving an idea of where the repeated word was in the sequence. A
simple variation of that idea simply counts the words and outputs the count for
the repeated word:

int main()
{

T

Stroustrup_book.indb 73Stroustrup_book.indb 73 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES74

 int number_of_words = 0;
 string previous = " "; // not a word
 string current;
 while (cin>>current) {
 ++number_of_words; // increase word count
 if (previous == current)

cout << "word number " << number_of_words
 << " repeated: " << current << '\n';
 previous = current;
 }
}

We start our word counter at 0. Each time we see a word, we increment that
counter:

++number_of_words;

That way, the first word becomes number 1, the next number 2, and so on. We
could have accomplished the same by saying

number_of_words += 1;

or even

number_of_words = number_of_words+1;

but ++number_of_words is shorter and expresses the idea of incrementing directly.
Note how similar this program is to the one from §3.5.1. Obviously, we just

took the program from §3.5.1 and modified it a bit to serve our new purpose.
That’s a very common technique: when we need to solve a problem, we look
for a similar problem and use our solution for that with suitable modification.
Don’t start from scratch unless you really have to. Using a previous version of a
program as a base for modification often saves a lot of time, and we benefit from
much of the effort that went into the original program.

3.7 Names
We name our variables so that we can remember them and refer to them from
other parts of a program. What can be a name in C++? In a C++ program, a
name starts with a letter and contains only letters, digits, and underscores. For
example:

Stroustrup_book.indb 74Stroustrup_book.indb 74 4/22/14 9:42 AM4/22/14 9:42 AM

3.7 NAMES 75

x
number_of_elements
Fourier_transform
z2
Polygon

The following are not names:

2x // a name must start with a letter
timetomarket // $ is not a letter, digit, or underscore
Start menu // space is not a letter, digit, or underscore

When we say “not names,” we mean that a C++ compiler will not accept them
as names.

If you read system code or machine-generated code, you might see names
starting with underscores, such as _foo. Never write those yourself; such names
are reserved for implementation and system entities. By avoiding leading under-
scores, you will never find your names clashing with some name that the imple-
mentation generated.

Names are case sensitive; that is, uppercase and lowercase letters are distinct,
so x and X are different names. This little program has at least four errors:

#include "std_lib_facilities.h"

int Main()
{
 STRING s = "Goodbye, cruel world! ";
 cOut << S << '\n';
}

It is usually not a good idea to define names that differ only in the case of a
character, such as one and One; that will not confuse a compiler, but it can easily
confuse a programmer.

TRY THIS

Compile the “Goodbye, cruel world!” program and examine the error mes-
sages. Did the compiler find all the errors? What did it suggest as the prob-
lems? Did the compiler get confused and diagnose more than four errors?
Remove the errors one by one, starting with the lexically first, and see how
the error messages change (and improve).

T

Stroustrup_book.indb 75Stroustrup_book.indb 75 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES76

The C++ language reserves many (about 85) names as “keywords.” We list them
in §A.3.1. You can’t use those to name your variables, types, functions, etc. For
example:

int if = 7; // error: if is a keyword

You can use names of facilities in the standard library, such as string, but you
shouldn’t. Reuse of such a common name will cause trouble if you should ever
want to use the standard library:

int string = 7; // this will lead to trouble

When you choose names for your variables, functions, types, etc., choose mean-
ingful names; that is, choose names that will help people understand your pro-
gram. Even you will have problems understanding what your program is supposed
to do if you have littered it with variables with “easy to type” names like x1, x2, s3,
and p7. Abbreviations and acronyms can confuse people, so use them sparingly.
These acronyms were obvious to us when we wrote them, but we expect you’ll
have trouble with at least one:

mtbf
TLA
myw
NBV

We expect that in a few months, we’ll also have trouble with at least one.
Short names, such as x and i, are meaningful when used conventionally; that

is, x should be a local variable or a parameter (see §4.5 and §8.4) and i should be
a loop index (see §4.4.2.3).

Don’t use overly long names; they are hard to type, make lines so long that
they don’t fit on a screen, and are hard to read quickly. These are probably OK:

partial_sum
element_count
stable_partition

These are probably too long:

the_number_of_elements
remaining_free_slots_in_symbol_table

Our “house style” is to use underscores to separate words in an identifier, such
as element_count, rather than alternatives, such as elementCount and Element-
Count. We never use names with all capital letters, such as ALL_CAPITAL_LETTERS,

Stroustrup_book.indb 76Stroustrup_book.indb 76 4/22/14 9:42 AM4/22/14 9:42 AM

3.8 TYPES AND OBJECTS 77

because that’s conventionally reserved for macros (§27.8 and §A.17.2), which we
avoid. We use an initial capital letter for types we define, such as Square and Graph.
The C++ language and standard library don’t use the initial-capital-letter style, so
it’s int rather than Int and string rather than String. Thus, our convention helps
to minimize confusion between our types and the standard ones.

Avoid names that are easy to mistype, misread, or confuse. For example:

Name names nameS
foo f00 fl
f1 fI fi

The characters 0 (zero), o (lowercase O), O (uppercase o), 1 (one), I (uppercase i),
and l (lowercase L) are particularly prone to cause trouble.

3.8 Types and objects
The notion of type is central to C++ and most other programming languages.
Let’s take a closer and slightly more technical look at types, specifically at the
types of the objects in which we store our data during computation. It’ll save time
in the long run, and it may save you some confusion.

• A type defi nes a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of a given type.
• A value is a set of bits in memory interpreted according to a type.
• A variable is a named object.
• A declaration is a statement that gives a name to an object.
• A defi nition is a declaration that sets aside memory for an object.

Informally, we think of an object as a box into which we can put values of a given
type. An int box can hold integers, such as 7, 42, and –399. A string box can hold
character string values, such as "Interoperability", "tokens: !@#$%^&*", and
"Old MacDonald had a farm". Graphically, we can think of it like this:

int a = 7; a: 7

int b = 9; b: 9

char c = 'a'; c: a

double x = 1.2; x: 1.2

string s1 = "Hello, World!"; s1: 13 Hello, World!

string s2 = "1.2"; s2: 3 1.2

Stroustrup_book.indb 77Stroustrup_book.indb 77 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES78

The representation of a string is a bit more complicated than that of an int be-
cause a string keeps track of the number of characters it holds. Note that a double
stores a number whereas a string stores characters. For example, x stores the
number 1.2, whereas s2 stores the three characters '1', '.', and '2'. The quotes for
character and string literals are not stored.

Every int is of the same size; that is, the compiler sets aside the same fixed
amount of memory for each int. On a typical desktop computer, that amount is 4
bytes (32 bits). Similarly, bools, chars, and doubles are fixed size. You’ll typically
find that a desktop computer uses a byte (8 bits) for a bool or a char and 8 bytes for
a double. Note that different types of objects take up different amounts of space.
In particular, a char takes up less space than an int, and string differs from double,
int, and char in that different strings can take up different amounts of space.

The meaning of bits in memory is completely dependent on the type used to
access it. Think of it this way: computer memory doesn’t know about our types;
it’s just memory. The bits of memory get meaning only when we decide how that
memory is to be interpreted. This is similar to what we do every day when we use
numbers. What does 12.5 mean? We don’t know. It could be $12.5 or 12.5cm or
12.5gallons. Only when we supply the unit does the notation 12.5 mean anything.

For example, the very same bits of memory that represent the value 120 when
looked upon as an int would be 'x' when looked upon as a char. If looked at as
a string, it wouldn’t make sense at all and would become a run-time error if we
tried to use it. We can illustrate this graphically like this, using 1 and 0 to indicate
the value of bits in memory:

00000000 00000000 00000000 01111000

This is the setting of the bits of an area of memory (a word) that could be read as
an int (120) or as a char ('x', looking at the rightmost 8 bits only). A bit is a unit
of computer memory that can hold the value 0 or 1. For the meaning of binary
numbers, see §A.2.1.1.

3.9 Type safety
Every object is given a type when it is defined. A program — or a part of a pro-
gram — is type-safe when objects are used only according to the rules for their
type. Unfortunately, there are ways of doing operations that are not type-safe. For
example, using a variable before it has been initialized is not considered type-safe:

int main()
{
 double x; // we “forgot” to initialize:
 // the value of x is undefined

Stroustrup_book.indb 78Stroustrup_book.indb 78 4/22/14 9:42 AM4/22/14 9:42 AM

3.9 TYPE SAFETY 79

 double y = x; // the value of y is undefined
 double z = 2.0+x; // the meaning of + and the value of z are undefined
}

An implementation is even allowed to give a hardware error when the uninitialized
x is used. Always initialize your variables! There are a few — very few — exceptions
to this rule, such as a variable we immediately use as the target of an input opera-
tion, but always to initialize is a good habit that’ll save you a lot of grief.

Complete type safety is the ideal and therefore the general rule for the lan-
guage. Unfortunately, a C++ compiler cannot guarantee complete type safety,
but we can avoid type safety violations through a combination of good coding
practice and run-time checks. The ideal is never to use language features that
the compiler cannot prove to be safe: static type safety. Unfortunately, that’s too
restrictive for most interesting uses of programming. The obvious fallback, that
the compiler implicitly generates code that checks for type safety violations and
catches all of them, is beyond C++. When we decide to do things that are (type)
unsafe, we must do some checking ourselves. We’ll point out such cases as we get
to them.

The ideal of type safety is incredibly important when writing code. That’s why
we spend time on it this early in the book. Please note the pitfalls and avoid them.

3.9.1 Safe conversions
In §3.4, we saw that we couldn’t directly add chars or compare a double to an
int. However, C++ provides an indirect way to do both. When needed, a char is
converted to an int and an int is converted to a double. For example:

char c = 'x';
int i1 = c;
int i2 = 'x';

Here both i1 and i2 get the value 120, which is the integer value of the character
'x' in the most popular 8-bit character set, ASCII. This is a simple and safe way of
getting the numeric representation of a character. We call this char-to-int conver-
sion safe because no information is lost; that is, we can copy the resulting int back
into a char and get the original value:

char c2 = i1;
cout << c << ' << i1 << ' << c2 << '\n';

This will print

x 120 x

Stroustrup_book.indb 79Stroustrup_book.indb 79 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES80

In this sense — that a value is always converted to an equal value or (for doubles)
to the best approximation of an equal value — these conversions are safe:

bool to char

bool to int

bool to double

char to int

char to double

int to double

The most useful conversion is int to double because it allows us to mix ints and
doubles in expressions:

double d1 = 2.3;
double d2 = d1+2; // 2 is converted to 2.0 before adding
if (d1 < 0) // 0 is converted to 0.0 before comparison
 cout << "d1 is negative";

For a really large int, we can (for some computers) suffer a loss of precision when
converting to double. This is a rare problem.

3.9.2 Unsafe conversions
Safe conversions are usually a boon to the programmer and simplify writing code.
Unfortunately, C++ also allows for (implicit) unsafe conversions. By unsafe, we
mean that a value can be implicitly turned into a value of another type that does
not equal the original value. For example:

int main()
{
 int a = 20000;
 char c = a; // try to squeeze a large int into a small char
 int b = c;
 if (a != b) // != means “not equal”
 cout << "oops!: " << a << "!=" << b << '\n';
 else
 cout << "Wow! We have large characters\n";
}

Such conversions are also called “narrowing” conversions, because they put a
value into an object that may be too small (“narrow”) to hold it. Unfortunately,

Stroustrup_book.indb 80Stroustrup_book.indb 80 4/22/14 9:42 AM4/22/14 9:42 AM

3.9 UNSAFE CONVERSIONS 81

few compilers warn about the unsafe initialization of the char with an int. The
problem is that an int is typically much larger than a char, so that it can (and in this
case does) hold an int value that cannot be represented as a char. Try it to see what
value b gets on your machine (32 is a common result); better still, experiment:

int main()
{
 double d = 0;
 while (cin>>d) { // repeat the statements below
 // as long as we type in numbers
 int i = d; // try to squeeze a double into an int
 char c = i; // try to squeeze an int into a char
 int i2 = c; // get the integer value of the character
 cout << "d==" << d // the original double
 << " i=="<< i // converted to int
 << " i2==" << i2 // int value of char
 << " char(" << c << ")\n"; // the char
 }
}

The while-statement that we use to allow many values to be tried will be ex-
plained in §4.4.2.1.

TRY THIS

Run this program with a variety of inputs. Try small values (e.g., 2 and 3); try
large values (larger than 127, larger than 1000); try negative values; try 56; try
89; try 128; try non-integer values (e.g., 56.9 and 56.2). In addition to showing
how conversions from double to int and conversions from int to char are
done on your machine, this program shows you what character (if any) your
machine will print for a given integer value.

You’ll find that many input values produce “unreasonable” results. Basically,
we are trying to put a gallon into a pint pot (about 4 liters into a 500ml glass). All
of the conversions

double to int

double to char

double to bool

int to char

T

Stroustrup_book.indb 81Stroustrup_book.indb 81 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES82

int to bool

char to bool

are accepted by the compiler even though they are unsafe. They are unsafe in the
sense that the value stored might differ from the value assigned. Why can this
be a problem? Because often we don’t suspect that an unsafe conversion is taking
place. Consider:

double x = 2.7;
// lots of code
int y = x; // y becomes 2

By the time we define y we may have forgotten that x was a double, or we may
have temporarily forgotten that a double-to-int conversion truncates (always
rounds down, toward zero) rather than using the conventional 4/5 rounding.
What happens is perfectly predictable, but there is nothing in the int y = x; to
remind us that information (the .7) is thrown away.

Conversions from int to char don’t have problems with truncation — neither
int nor char can represent a fraction of an integer. However, a char can hold only
very small integer values. On a PC, a char is 1 byte whereas an int is 4 bytes:

char:

int:

So, we can’t put a large number, such as 1000, into a char without loss of informa-
tion: the value is “narrowed.” For example:

int a = 1000;
char b = a; // b becomes –24 (on some machines)

Not all int values have char equivalents, and the exact range of char values de-
pends on the particular implementation. On a PC the range of char values is
[–128:127], but only [0:127] can be used portably because not every computer is
a PC, and different computers have different ranges for their char values, such
as [0:255].

Why do people accept the problem of narrowing conversions? The major
reason is history: C++ inherited narrowing conversions from its ancestor lan-
guage, C, so from day one of C++, there existed much code that depended on
narrowing conversions. Also, many such conversions don’t actually cause prob-
lems because the values involved happen to be in range, and many programmers
object to compilers “telling them what to do.” In particular, the problems with
unsafe conversions are often manageable in small programs and for experienced

Stroustrup_book.indb 82Stroustrup_book.indb 82 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 DRILL 83

programmers. They can be a source of errors in larger programs, though, and a
significant cause of problems for novice programmers. However, compilers can
warn about narrowing conversions — and many do.

C++11 introduced an initialization notation that outlaws narrowing con-
versions. For example, we could (and should) rewrite the troublesome examples
above using a {}-list notation, rather than the = notation:

double x {2.7}; // OK
int y {x}; // error: double -> int might narrow

int a {1000}; // OK
char b {a}; // error: int -> char might narrow

When the initializer is an integer literal, the compiler can check the actual
value and accept values that do not imply narrowing:

int char b1 {1000}; // error: narrowing (assuming 8-bit chars)
char b2 {48}; // OK

So what should you do if you think that a conversion might lead to a bad
value? Use {} initializers to avoid accidents, and when you want a conversion,
check the value before assigning as we did in the first example in this section. See
§5.6.4 and §7.5 for a simplified way of doing such checking. The {}-list-based no-
tation is known as universal and uniform initialization and we will see much more of
that later on.

D rill
After each step of this drill, run your program to make sure it is really doing what
you expect it to. Keep a list of what mistakes you make so that you can try to
avoid those in the future.

 1. This drill is to write a program that produces a simple form letter based on
user input. Begin by typing the code from §3.1 prompting a user to enter
his or her first name and writing “Hello, first_name” where first_name is
the name entered by the user. Then modify your code as follows: change
the prompt to “Enter the name of the person you want to write to” and
change the output to “Dear first_name,”. Don’t forget the comma.

 2. Add an introductory line or two, like “How are you? I am fine. I miss
you.” Be sure to indent the first line. Add a few more lines of your choos-
ing — it’s your letter.

Stroustrup_book.indb 83Stroustrup_book.indb 83 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES84

 3. Now prompt the user for the name of another friend, and store it in friend_
name. Add a line to your letter: “Have you seen friend_name lately?”

 4. Declare a char variable called friend_sex and initialize its value to 0.
Prompt the user to enter an m if the friend is male and an f if the friend is
female. Assign the value entered to the variable friend_sex. Then use two
if-statements to write the following:

If the friend is male, write “If you see friend_name please ask him to
call me.”
If the friend is female, write “If you see friend_name please ask her to
call me.”

 5. Prompt the user to enter the age of the recipient and assign it to an int
variable age. Have your program write “I hear you just had a birthday
and you are age years old.” If age is 0 or less or 110 or more, call simple_
error("you're kidding!") using simple_error() from std_lib_facilities.h.

 6. Add this to your letter:

If your friend is under 12, write “Next year you will be age+1.”
If your friend is 17, write “Next year you will be able to vote.”
If your friend is over 70, write “I hope you are enjoying retirement.”

 Check your program to make sure it responds appropriately to each kind
of value.

 7. Add “Yours sincerely,” followed by two blank lines for a signature, fol-
lowed by your name.

Review
 1. What is meant by the term prompt?
 2. Which operator do you use to read into a variable?
 3. If you want the user to input an integer value into your program for a

variable named number, what are two lines of code you could write to
ask the user to do it and to input the value into your program?

 4. What is \n called and what purpose does it serve?
 5. What terminates input into a string?
 6. What terminates input into an integer?
 7. How would you write

cout << "Hello, ";
cout << fi rst_name;
cout << "!\n";

 as a single line of code?

Stroustrup_book.indb 84Stroustrup_book.indb 84 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 EXERCISES 85

 8. What is an object?
 9. What is a literal?
 10. What kinds of literals are there?
 11. What is a variable?
 12. What are typical sizes for a char, an int, and a double?
 13. What measures do we use for the size of small entities in memory, such

as ints and strings?
 14. What is the difference between = and ==?
 15. What is a definition?
 16. What is an initialization and how does it differ from an assignment?
 17. What is string concatenation and how do you make it work in C++?
 18. Which of the following are legal names in C++? If a name is not legal,

why not?

This_little_pig This_1_is fi ne 2_For_1_special
latest thing the_$12_method _this_is_ok
MiniMineMine number correct?

 19. Give five examples of legal names that you shouldn’t use because they are
likely to cause confusion.

 20. What are some good rules for choosing names?
 21. What is type safety and why is it important?
 22. Why can conversion from double to int be a bad thing?
 23. Define a rule to help decide if a conversion from one type to another is

safe or unsafe.

Terms
assignment defi nition operation
cin increment operator
concatenation initialization type
conversion name type safety
declaration narrowing value
decrement object variable

Exercises
 1. If you haven’t done so already, do the Try this exercises from this chapter.
 2. Write a program in C++ that converts from miles to kilometers. Your

program should have a reasonable prompt for the user to enter a number
of miles. Hint: There are 1.609 kilometers to the mile.

 3. Write a program that doesn’t do anything, but declares a number of vari-
ables with legal and illegal names (such as int double = 0;), so that you
can see how the compiler reacts.

Stroustrup_book.indb 85Stroustrup_book.indb 85 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 • OBJECTS, TYPES, AND VALUES86

 4. Write a program that prompts the user to enter two integer values. Store
these values in int variables named val1 and val2. Write your program to
determine the smaller, larger, sum, difference, product, and ratio of these
values and report them to the user.

 5. Modify the program above to ask the user to enter floating-point values
and store them in double variables. Compare the outputs of the two pro-
grams for some inputs of your choice. Are the results the same? Should
they be? What’s the difference?

 6. Write a program that prompts the user to enter three integer values, and
then outputs the values in numerical sequence separated by commas. So,
if the user enters the values 10 4 6, the output should be 4, 6, 10. If two
values are the same, they should just be ordered together. So, the input
4 5 4 should give 4, 4, 5.

 7. Do exercise 6, but with three string values. So, if the user enters the val-
ues Steinbeck, Hemingway, Fitzgerald, the output should be Fitzgerald,
Hemingway, Steinbeck.

 8. Write a program to test an integer value to determine if it is odd or
even. As always, make sure your output is clear and complete. In other
words, don’t just output yes or no. Your output should stand alone,
like The value 4 is an even number. Hint: See the remainder (modulo)
operator in §3.4.

 9. Write a program that converts spelled-out numbers such as “zero” and
“two” into digits, such as 0 and 2. When the user inputs a number, the
program should print out the corresponding digit. Do it for the values 0,
1, 2, 3, and 4 and write out not a number I know if the user enters some-
thing that doesn’t correspond, such as stupid computer!.

 10. Write a program that takes an operation followed by two operands and
outputs the result. For example:

+ 100 3.14
* 4 5

 Read the operation into a string called operation and use an
if-statement to figure out which operation the user wants, for example,
if (operation=="+"). Read the operands into variables of type double.
Implement this for operations called +, –, *, /, plus, minus, mul, and div
with their obvious meanings.

 11. Write a program that prompts the user to enter some number of pen-
nies (1-cent coins), nickels (5-cent coins), dimes (10-cent coins), quar-
ters (25-cent coins), half dollars (50-cent coins), and one-dollar coins
(100-cent coins). Query the user separately for the number of each size

Stroustrup_book.indb 86Stroustrup_book.indb 86 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 3 POSTSCRIPT 87

coin, e.g., “How many pennies do you have?” Then your program should
print out something like this:

You have 23 pennies.
You have 17 nickels.
You have 14 dimes.
You have 7 quarters.
You have 3 half dollars.
The value of all of your coins is 573 cents.

 Make some improvements: if only one of a coin is reported, make the
output grammatically correct, e.g., 14 dimes and 1 dime (not 1 dimes).
Also, report the sum in dollars and cents, i.e., $5.73 instead of 573 cents.

Postscript
Please don’t underestimate the importance of the notion of type safety. Types are
at the center of most notions of correct programs, and some of the most effective
techniques for constructing programs rely on the design and use of types — as
you’ll see in Chapters 6 and 9, Parts II, III, and IV.

Stroustrup_book.indb 87Stroustrup_book.indb 87 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 88Stroustrup_book.indb 88 4/22/14 9:42 AM4/22/14 9:42 AM

89

4

Computation

“If it doesn’t have
to produce correct results,

I can make it arbitrarily fast.”

—Gerald M. Weinberg

This chapter presents the basics of computation. In par-

ticular, we discuss how to compute a value from a set of

operands (expression), how to choose among alternative actions

(selection), and how to repeat a computation for a series of val-

ues (iteration). We also show how a particular sub-computation

can be named and specified separately (a function). Our primary

concern is to express computations in ways that lead to cor-

rect and well-organized programs. To help you perform more

realistic computations, we introduce the vector type to hold

sequences of values.

Stroustrup_book.indb 89Stroustrup_book.indb 89 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION90

4.1 Computation
From one point of view, all that a program ever does is to compute; that is, it takes
some inputs and produces some output. After all, we call the hardware on which
we run the program a computer. This view is accurate and reasonable as long as
we take a broad view of what constitutes input and output:

Code
(often messy
 often lots of code)Input Output

Data

The input can come from a keyboard, from a mouse, from a touch screen, from
files, from other input devices, from other programs, from other parts of a pro-
gram. “Other input devices” is a category that contains most really interesting
input sources: music keyboards, video recorders, network connections, tempera-
ture sensors, digital camera image sensors, etc. The variety is essentially infinite.

To deal with input, a program usually contains some data, sometimes referred
to as its data structures or its state. For example, a calendar program may contain
lists of holidays in various countries and a list of your appointments. Some of that
data is part of the program from the start; other data is built up as the program
reads input and collects useful information from it. For example, the calendar pro-
gram will probably build your list of appointments from the input you give it. For
the calendar, the main inputs are the requests to see the months and days you ask
for (probably using mouse clicks) and the appointments you give it to keep track
of (probably by typing information on your keyboard). The output is the display

4.1 Computation

4.2 Objectives and tools

4.3 Expressions
4.3.1 Constant expressions
4.3.2 Operators
4.3.3 Conversions

4.4 Statements
4.4.1 Selection
4.4.2 Iteration

4.5 Functions
 4.5.1 Why bother with functions?
 4.5.2 Function declarations

4.6 vector
4.6.1 Traversing a vector
4.6.2 Growing a vector
4.6.3 A numeric example
4.6.4 A text example

4.7 Language features

Stroustrup_book.indb 90Stroustrup_book.indb 90 4/22/14 9:42 AM4/22/14 9:42 AM

4.1 COMPUTATION 91

of calendars and appointments, plus the buttons and prompts for input that the
calendar program writes on your screen.

Input comes from a wide variety of sources. Similarly, output can go to a wide
variety of destinations. Output can be to a screen, to files, to network connections,
to other output devices, to other programs, and to other parts of a program. Ex-
amples of output devices include network interfaces, music synthesizers, electric
motors, light generators, heaters, etc.

From a programming point of view the most important and interesting cat-
egories are “to/from another program” and “to/from other parts of a program.”
Most of the rest of this book could be seen as discussing that last category: how
do we express a program as a set of cooperating parts and how can they share
and exchange data? These are key questions in programming. We can illustrate
that graphically:

Input Output
Code

Data
I/O

Code

Data
I/O

Code

Data

The abbreviation I/O stands for “input/output.” In this case, the output from one
part of code is the input for the next part. What such “parts of a program” share
is data stored in main memory, on persistent storage devices (such as disks), or
transmitted over network connections. By “parts of a program” we mean entities
such as a function producing a result from a set of input arguments (e.g., a square
root from a floating-point number), a function performing an action on a physical
object (e.g., a function drawing a line on a screen), or a function modifying some
table within the program (e.g., a function adding a name to a table of customers).

When we say “input” and “output” we generally mean information coming
into and out of a computer, but as you see, we can also use the terms for informa-
tion given to or produced by a part of a program. Inputs to a part of a program are
often called arguments and outputs from a part of a program are often called results.

By computation we simply mean the act of producing some outputs based on
some inputs, such as producing the result (output) 49 from the argument (input) 7
using the computation (function) square (see §4.5). As a possibly helpful curiosity,
we note that until the 1950s a computer was defined as a person who did com-
putations, such as an accountant, a navigator, or a physicist. Today, we simply
delegate most computations to computers (machines) of various forms, of which
the pocket calculator is among the simplest.

Stroustrup_book.indb 91Stroustrup_book.indb 91 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION92

4.2 Objectives and tools
Our job as programmers is to express computations

• Correctly
• Simply
• Effi ciently

Please note the order of those ideals: it doesn’t matter how fast a program is if
it gives the wrong results. Similarly, a correct and efficient program can be so
complicated that it must be thrown away or completely rewritten to produce a
new version (release). Remember, useful programs will always be modified to ac-
commodate new needs, new hardware, etc. Therefore a program — and any part
of a program — should be as simple as possible to perform its task. For example,
assume that you have written the perfect program for teaching basic arithmetic
to children in your local school, and that its internal structure is a mess. Which
language did you use to communicate with the children? English? English and
Spanish? What if I’d like to use it in Finland? In Kuwait? How would you change
the (natural) language used for communication with a child? If the internal struc-
ture of the program is a mess, the logically simple (but in practice almost always
very difficult) operation of changing the natural language used to communicate
with users becomes insurmountable.

Concerns about correctness, simplicity, and efficiency become ours the min-
ute we start writing code for others and accept the responsibility to do that well;
that is, we must accept that responsibility when we decide to become profession-
als. In practical terms, this means that we can’t just throw code together until it
appears to work; we must concern ourselves with the structure of code. Para-
doxically, concerns for structure and “quality of code” are often the fastest ways
of getting something to work. When programming is done well, such concerns
minimize the need for the most frustrating part of programming: debugging; that
is, good program structure during development can minimize the number of mis-
takes made and the time needed to search for such errors and to remove them.

Our main tool for organizing a program — and for organizing our thoughts
as we program — is to break up a big computation into many little ones. This
technique comes in two variations:

• Abstraction: Hide details that we don’t need to use a facility (“implemen-
tation details”) behind a convenient and general interface. For example,
rather than considering the details of how to sort a phone book (thick
books have been written about how to sort), we just call the sort algo-
rithm from the C++ standard library. All we need to know to sort is how
to invoke (call) that algorithm, so we can write sort(b) where b refers to

Stroustrup_book.indb 92Stroustrup_book.indb 92 4/22/14 9:42 AM4/22/14 9:42 AM

4.2 OBJECTIVES AND TOOLS 93

the phone book; sort() is a variant (§21.9) of the standard library sort
algorithm (§21.8, §B.5.4) defi ned in std_library.h. Another example is the
way we use computer memory. Direct use of memory can be quite messy,
so we access it through typed and named variables (§3.2), standard li-
brary vectors (§4.6, Chapters 17–19), maps (Chapter 21), etc.

• “Divide and conquer”: Here we take a large problem and divide it into sev-
eral little ones. For example, if we need to build a dictionary, we can sep-
arate that job into three: read the data, sort the data, and output the data.
Each of the resulting problems is signifi cantly smaller than the original.

Why does this help? After all, a program built out of parts is likely to be slightly
larger than a program where everything is optimally merged together. The reason
is that we are not very good at dealing with large problems. The way we actually
deal with those — in programming and elsewhere — is to break them down into
smaller problems, and we keep breaking those into even smaller parts until we
get something simple enough to understand and solve. In terms of programming,
you’ll find that a 1000-line program has far more than ten times as many errors
as a 100-line program, so we try to compose the 1000-line program out of parts
with fewer than 100 lines. For large programs, say 10,000,000 lines, applying
abstraction and divide-and-conquer is not just an option, it’s an essential require-
ment. We simply cannot write and maintain large monolithic programs. One way
of looking at the rest of this book is as a long series of examples of problems that
need to be broken up into smaller parts together with the tools and techniques
needed to do so.

When we consider dividing up a program, we must always consider what
tools we have available to express the parts and their communications. A good
library, supplying useful facilities for expressing ideas, can crucially affect the way
we distribute functionality into different parts of a program. We cannot just sit
back and “imagine” how best to partition a program; we must consider what
libraries we have available to express the parts and their communication. It is
early days yet, but not too soon to point out that if you can use an existing library,
such as the C++ standard library, you can save yourself a lot of work, not just
on programming but also on testing and documentation. The iostreams save us
from having to directly deal with the hardware’s input/output ports. This is a
first example of partitioning a program using abstraction. Every new chapter will
provide more examples.

Note the emphasis on structure and organization: you don’t get good code
just by writing a lot of statements. Why do we mention this now? At this stage
you (or at least many readers) have little idea about what code is, and it will be
months before you are ready to write code upon which other people could de-
pend for their lives or livelihood. We mention it to help you get the emphasis of

Stroustrup_book.indb 93Stroustrup_book.indb 93 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION94

your learning right. It is very tempting to dash ahead, focusing on the parts of pro-
gramming that — like what is described in the rest of this chapter — are concrete
and immediately useful and to ignore the “softer,” more conceptual parts of the
art of software development. However, good programmers and system designers
know (often having learned it the hard way) that concerns about structure lie at
the heart of good software and that ignoring structure leads to expensive messes.
Without structure, you are (metaphorically speaking) building with mud bricks. It
can be done, but you’ll never get to the fifth floor (mud bricks lack the structural
strength for that). If you have the ambition to build something reasonably perma-
nent, you pay attention to matters of code structure and organization along the
way, rather than having to come back and learn them after failures.

4.3 Expressions
The most basic building block of programs is an expression. An expression com-
putes a value from a number of operands. The simplest expression is simply a
literal value, such as 10, 'a', 3.14, or "Norah".

Names of variables are also expressions. A variable represents the object of
which it is the name. Consider:

// compute area:
int length = 20; // a literal integer (used to initialize a variable)
int width = 40;
int area = length*width; // a multiplication

Here the literals 20 and 40 are used to initialize the variables length and width.
Then, length and width are multiplied; that is, we multiply the values found in
length and width. Here, length is simply shorthand for “the value found in the
object named length.” Consider also

length = 99; // assign 99 to length

Here, as the left-hand operand of the assignment, length means “the object named
length,” so that the assignment expression is read “Put 99 into the object named by
length.” We distinguish between length used on the left-hand side of an assignment
or an initialization (“the lvalue of length” or “the object named by length”) and
length used on the right-hand side of an assignment or initialization (“the rvalue of
length,” “the value of the object named by length,” or just “the value of length”).
In this context, we find it useful to visualize a variable as a box labeled by its name:

99length:
int:

Stroustrup_book.indb 94Stroustrup_book.indb 94 4/22/14 9:42 AM4/22/14 9:42 AM

4.3 EXPRESSIONS 95

That is, length is the name of an object of type int containing the value 99. Some-
times (as an lvalue) length refers to the box (object) and sometimes (as an rvalue)
length refers to the value in that box.

We can make more complicated expressions by combining expressions using
operators, such as + and *, in just the way that we are used to. When needed, we
can use parentheses to group expressions:

int perimeter = (length+width)*2; // add then multiply

Without parentheses, we’d have had to say

int perimeter = length*2+width*2;

which is clumsy, and we might even have made this mistake:

int perimeter = length+width*2; // add width*2 to length

This last error is logical and cannot be found by the compiler. All the compiler
sees is a variable called perimeter initialized by a valid expression. If the result
of that expression is nonsense, that’s your problem. You know the mathematical
definition of a perimeter, but the compiler doesn’t.

The usual mathematical rules of operator precedence apply, so length+width*2
means length+(width*2). Similarly a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d.
See §A.5 for a precedence table.

The first rule for the use of parentheses is simply “If in doubt, parenthesize,”
but please do learn enough about expressions so that you are not in doubt about
a*b+c/d. Overuse of parentheses, as in (a*b)+(c/d), decreases readability.

Why should you care about readability? Because you and possibly others
will read your code, and ugly code slows down reading and comprehension. Ugly
code is not just hard to read, it is also much harder to get correct. Ugly code often
hides logical errors. It is slower to read and makes it harder to convince your-
self — and others — that the ugly code is correct. Don’t write absurdly complicated
expressions such as

a*b+c/d*(e–f/g)/h+7 // too complicated

and always try to choose meaningful names.

4.3.1 Constant expressions
Programs typically use a lot of constants. For example, a geometry program might
use pi and an inch-to-centimeter conversion program will use a conversion factor
such as 2.54. Obviously, we want to use meaningful names for those constants (as
we did for pi; we didn’t say 3.14159). Similarly, we don’t want to change those

Stroustrup_book.indb 95Stroustrup_book.indb 95 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION96

constants accidentally. Consequently, C++ offers the notion of a symbolic con-
stant, that is, a named object to which you can’t give a new value after it has been
initialized. For example:

constexpr double pi = 3.14159;
pi = 7; // error: assignment to constant
double c = 2*pi*r; // OK: we just read pi; we don’t try to change it

Such constants are useful for keeping code readable. You might have recognized
3.14159 as an approximation to pi if you saw it in some code, but would you have
recognized 299792458? Also, if someone asked you to change some code to use
pi with the precision of 12 digits for your computation, you could search for 3.14
in your code, but if someone incautiously had used 22/7, you probably wouldn’t
find it. It would be much better just to change the definition of pi to use the more
appropriate value:

constexpr double pi = 3.14159265359;

Consequently, we prefer not to use literals (except very obvious ones, such as
0 and 1) in most places in our code. Instead, we use constants with descriptive
names. Non-obvious literals in code (outside definitions of symbolic constants)
are derisively referred to as magic constants.

In some places, such as case labels (§4.4.1.3), C++ requires a constant expres-
sion, that is, an expression with an integer value composed exclusively of con-
stants. For example:

constexpr int max = 17; // a literal is a constant expression
int val = 19;

max+2 // a constant expression (a const int plus a literal)
val+2 // not a constant expression: it uses a variable

And by the way, 299792458 is one of the fundamental constants of the universe:
the speed of light in vacuum measured in meters per second. If you didn’t in-
stantly recognize that, why would you expect not to be confused and slowed
down by other literals embedded in code? Avoid magic constants!

A constexpr symbolic constant must be given a value that is known at com-
pile time. For example:

constexpr int max = 100;

void use(int n)
{

Stroustrup_book.indb 96Stroustrup_book.indb 96 4/22/14 9:42 AM4/22/14 9:42 AM

4.3 EXPRESSIONS 97

 constexpr int c1 = max+7; // OK: c1 is 107
 constexpr int c2 = n+7; // error: we don’t know the value of c2
 // …
}

To handle cases where the value of a “variable” that is initialized with a value that
is not known at compile time but never changes after initialization, C++ offers a
second form of constant (a const):

constexpr int max = 100;

void use(int n)
{
 constexpr int c1 = max+7; // OK: c1 is 107
 const int c2 = n+7; // OK, but don’t try to change the value of c2
 // …
 c2 = 7; // error: c2 is a const
}

Such “const variables” are very common for two reasons:

• C++98 did not have constexpr, so people used const.
• “Variables” that are not constant expressions (their value is not known

at compile time) but do not change values after initialization are in them-
selves widely useful.

4.3.2 Operators
We just used the simplest operators. However, you will soon need more as you
want to express more complex operations. Most operators are conventional, so
we’ll just explain them later as needed and you can look up details if and when
you find a need. Here is a list of the most common operators:

Name Comment

f(a) function call pass a to f as an argument
++lval pre-increment increment and use the incremented value
− −lval pre-decrement decrement and use the decremented value
!a not result is bool
–a unary minus
a*b multiply
a/b divide

(continues)

Stroustrup_book.indb 97Stroustrup_book.indb 97 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION98

Name Comment

a%b modulo (remainder) only for integer types
a+b add
a–b subtract
out<<b write b to out where out is an ostream
in>>b read from in into b where in is an istream
a<b less than result is bool
a<=b less than or equal result is bool
a>b greater than result is bool
a>=b greater than or equal result is bool
a==b equal not to be confused with =
a!=b not equal result is bool
a && b logical and result is bool
a || b logical or result is bool
lval = a assignment not to be confused with ==
lval *= a compound assignment lval = lval*a; also for /, %, +, –

We used lval (short for “value that can appear on the left-hand side of an as-
signment”) where the operator modifies an operand. You can find a complete
list in §A.5.

For examples of the use of the logical operators && (and), || (or), and ! (not),
see §5.5.1, §7.7, §7.8.2, and §10.4.

Note that a<b<c means (a<b)<c and that a<b evaluates to a Boolean value:
true or false. So, a<b<c will be equivalent to either true<c or false<c. In partic-
ular, a<b<c does not mean “Is b between a and c?” as many have naively (and
not unreasonably) assumed. Thus, a<b<c is basically a useless expression. Don’t
write such expressions with two comparison operations, and be very suspicious
if you find such an expression in someone else’s code — it is most likely an error.

An increment can be expressed in at least three ways:

++a
a+=1
a=a+1

Which notation should we use? Why? We prefer the first version, ++a, because
it more directly expresses the idea of incrementing. It says what we want to do
(increment a) rather than how to do it (add 1 to a and then write the result to a).
In general, a way of saying something in a program is better than another if it
more directly expresses an idea. The result is more concise and easier for a reader
to understand. If we wrote a=a+1, a reader could easily wonder whether we really

Stroustrup_book.indb 98Stroustrup_book.indb 98 4/22/14 9:42 AM4/22/14 9:42 AM

4.3 EXPRESSIONS 99

meant to increment by 1. Maybe we just mistyped a=b+1, a=a+2, or even a=a–1;
with ++a there are far fewer opportunities for such doubts. Please note that this
is a logical argument about readability and correctness, not an argument about
efficiency. Contrary to popular belief, modern compilers tend to generate exactly
the same code from a=a+1 as for ++a when a is one of the built-in types. Similarly,
we prefer a*=scale over a=a*scale.

4.3.3 Conversions
We can “mix” different types in expressions. For example, 2.5/2 is a dou-
ble divided by an int. What does this mean? Do we do integer division or
floating-point division? Integer division throws away the remainder; for example,
5/2 is 2. Floating-point division is different in that there is no remainder to throw
away; for example, 5.0/2.0 is 2.5. It follows that the most obvious answer to the
question “Is 2.5/2 integer division or floating-point division?” is “Floating-point, of
course; otherwise we’d lose information.” We would prefer the answer 1.25 rather
than 1, and 1.25 is what we get. The rule (for the types we have presented so far)
is that if an operator has an operand of type double, we use floating-point arith-
metic yielding a double result; otherwise, we use integer arithmetic yielding an
int result. For example:

5/2 is 2 (not 2.5)
2.5/2 means 2.5/double(2), that is, 1.25
'a'+1 means int{'a'}+1

The notations type(value) and type{value} mean “convert value to type as if you
were initializing a variable of type type with the value value.” In other words, if
necessary, the compiler converts (“promotes”) int operands to doubles or char
operands to ints. The type{value} notation prevents narrowing (§3.9.2), but the
type(value) notation does not. Once the result has been calculated, the compiler
may have to convert it (again) to use it as an initializer or the right hand of an
assignment. For example:

double d = 2.5;
int i = 2;

double d2 = d/i; // d2 == 1.25
int i2 = d/i; // i2 == 1
int i3 {d/i}; // error: double -> int conversion may narrow (§3.9.2)

d2 = d/i; // d2 == 1.25
i2 = d/i; // i2 == 1

Stroustrup_book.indb 99Stroustrup_book.indb 99 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION100

Beware that it is easy to forget about integer division in an expression that also
contains floating-point operands. Consider the usual formula for converting de-
grees Celsius to degrees Fahrenheit: f = 9/5 * c + 32. We might write

double dc;
cin >> dc;
double df = 9/5*dc+32; // beware!

Unfortunately, but quite logically, this does not represent an accurate temperature
scale conversion: the value of 9/5 is 1 rather than the 1.8 we might have hoped
for. To get the code mathematically correct, either 9 or 5 (or both) will have to be
changed into a double. For example:

double dc;
cin >> dc;
double df = 9.0/5*dc+32; // better

4.4 Statements
An expression computes a value from a set of operands using operators like the
ones mentioned in §4.3. What do we do when we want to produce several values?
When we want to do something many times? When we want to choose among
alternatives? When we want to get input or produce output? In C++, as in many
languages, you use language constructs called statements to express those things.

So far, we have seen two kinds of statements: expression statements and dec-
larations. An expression statement is simply an expression followed by a semico-
lon. For example:

a = b;
++b;

Those are two expression statements. Note that the assignment = is an operator
so that a=b is an expression and we need the terminating semicolon to make a=b;
a statement. Why do we need those semicolons? The reason is largely technical.
Consider:

a = b ++ b; // syntax error: missing semicolon

Without the semicolon, the compiler doesn’t know whether we mean a=b++;
b; or a=b; ++b;. This kind of problem is not restricted to computer languages;
consider the exclamation “man eating tiger!” Who is eating whom? Punctuation
exists to eliminate such problems, for example, “man-eating tiger!”

Stroustrup_book.indb 100Stroustrup_book.indb 100 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 101

When statements follow each other, the computer executes them in the order
in which they are written. For example:

int a = 7;
cout << a << '\n';

Here the declaration, with its initialization, is executed before the output expres-
sion statement.

In general, we want a statement to have some effect. Statements without effect
are typically useless. For example:

1+2; // do an addition, but don’t use the sum
a*b; // do a multiplication, but don’t use the product

Such statements without effects are typically logical errors, and compilers often
warn against them. Thus, expression statements are typically assignments, I/O
statements, or function calls.

We will mention one more type of statement: the “empty statement.” Con-
sider the code:

if (x == 5);
{ y = 3; }

This looks like an error, and it almost certainly is. The ; in the first line is not
supposed to be there. But, unfortunately, this is a legal construct in C++. It is
called an empty statement, a statement doing nothing. An empty statement before a
semicolon is rarely useful. In this case, it has the unfortunate consequence of al-
lowing what is almost certainly an error to be acceptable to the compiler, so it will
not alert you to the error and you will have that much more difficulty finding it.

What will happen if this code is run? The compiler will test x to see if it has
the value 5. If this condition is true, the following statement (the empty statement)
will be executed, with no effect. Then the program continues to the next line, as-
signing the value 3 to y (which is what you wanted to have happen if x equals 5).
If, on the other hand, x does not have the value 5, the compiler will not execute
the empty statement (still no effect) and will continue as before to assign the value
3 to y (which is not what you wanted to have happen unless x equals 5). In other
words, the if-statement doesn’t matter; y is going to get the value 3 regardless.
This is a common error for novice programmers, and it can be difficult to spot,
so watch out for it.

The next section is devoted to statements used to alter the order of evaluation
to allow us to express more interesting computations than those we get by just
executing statements in the order in which they were written.

Stroustrup_book.indb 101Stroustrup_book.indb 101 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION102

4.4.1 Selection
In programs, as in life, we often have to select among alternatives. In C++, that is
done using either an if-statement or a switch-statement.

4.4.1.1 if-statements
The simplest form of selection is an if-statement, which selects between two alter-
natives. For example:

int main()
{
 int a = 0;
 int b = 0;
 cout << "Please enter two integers\n";
 cin >> a >> b;

 if (a<b) // condition
 // 1st alternative (taken if condition is true):
 cout << "max(" << a << "," << b <<") is " << b <<"\n";

 else
 // 2nd alternative (taken if condition is false):
 cout << "max(" << a << "," << b <<") is " << a << "\n";
}

An if-statement chooses between two alternatives. If its condition is true, the first
statement is executed; otherwise, the second statement is. This notion is simple.
Most basic programming language features are. In fact, most basic facilities in a
programming language are just new notation for things you learned in primary
school — or even before that. For example, you were probably told in kindergar-
ten that to cross the street at a traffic light, you had to wait for the light to turn
green: “If the traffic light is green, go” and “If the traffic light is red, wait.” In C++
that becomes something like

if (traffic_light==green) go();

and

if (traffic_light==red) wait();

So, the basic notion is simple, but it is also easy to use if-statements in a
too-simple-minded manner. Consider what’s wrong with this program (apart
from leaving out the #include as usual):

Stroustrup_book.indb 102Stroustrup_book.indb 102 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 103

// convert from inches to centimeters or centimeters to inches
// a suffix ‘i’ or ‘c’ indicates the unit of the input

int main()
{
 constexpr double cm_per_inch = 2.54; // number of centimeters in

// an inch
 double length = 1; // length in inches or

// centimeters
 char unit = 0;
 cout<< "Please enter a length followed by a unit (c or i):\n";
 cin >> length >> unit;

 if (unit == 'i')
 cout << length << "in == " << cm_per_inch*length << "cm\n";
 else
 cout << length << "cm == " << length/cm_per_inch << "in\n";
}

Actually, this program works roughly as advertised: enter 1i and you get 1in ==
2.54cm; enter 2.54c and you’ll get 2.54cm == 1in. Just try it; it’s good practice.

The snag is that we didn’t test for bad input. The program assumes that the
user enters proper input. The condition unit=='i' distinguishes between the case
where the unit is 'i' and all other cases. It never looks for a 'c'.

What if the user entered 15f (for feet) “just to see what happens”? The con-
dition (unit == 'i') would fail and the program would execute the else part (the
second alternative), converting from centimeters to inches. Presumably that was
not what we wanted when we entered 'f'.

We must always test our programs with “bad” input, because someone will
eventually — intentionally or accidentally — enter bad input. A program should
behave sensibly even if its users don’t.

Here is an improved version:

// convert from inches to centimeters or centimeters to inches
// a suffix ‘i’ or ‘c’ indicates the unit of the input
// any other suffix is an error
int main()
{
 constexpr double cm_per_inch = 2.54; // number of centimeters in

// an inch
 double length = 1; // length in inches or

// centimeters
 char unit = ' '; // a space is not a unit

Stroustrup_book.indb 103Stroustrup_book.indb 103 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION104

 cout<< "Please enter a length followed by a unit (c or i):\n";
 cin >> length >> unit;

 if (unit == 'i')
 cout << length << "in == " << cm_per_inch*length << "cm\n";
 else if (unit == 'c')
 cout << length << "cm == " << length/cm_per_inch << "in\n";
 else
 cout << "Sorry, I don't know a unit called '" << unit << "'\n";
}

We first test for unit=='i' and then for unit=='c' and if it isn’t (either) we say,
“Sorry.” It may look as if we used an “else-if-statement,” but there is no such
thing in C++. Instead, we combined two if-statements. The general form of an
if-statement is

if (expression) statement else statement

That is, an if, followed by an expression in parentheses, followed by a statement, fol-
lowed by an else, followed by a statement. What we did was to use an if-statement as
the else part of an if-statement:

if (expression) statement else if (expression) statement else statement

For our program that gives this structure:

if (unit == 'i')
 . . . // 1st alternative
else if (unit == 'c')
 . . . // 2nd alternative
else
 . . . // 3rd alternative

In this way, we can write arbitrarily complex tests and associate a statement with
each alternative. However, please remember that one of the ideals for code is sim-
plicity, rather than complexity. You don’t demonstrate your cleverness by writing
the most complex program. Rather, you demonstrate competence by writing the
simplest code that does the job.

Stroustrup_book.indb 104Stroustrup_book.indb 104 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 105

TRY THIS

Use the example above as a model for a program that converts yen, euros,
and pounds into dollars. If you like realism, you can find conversion rates on
the web.

4.4.1.2 switch-statements
Actually, the comparison of unit to 'i' and to 'c' is an example of the most com-
mon form of selection: a selection based on comparison of a value against several
constants. Such selection is so common that C++ provides a special statement for
it: the switch-statement. We can rewrite our example as

int main()
{
 constexpr double cm_per_inch = 2.54; // number of centimeters in
 // an inch
 double length = 1; // length in inches or
 // centimeters
 char unit = 'a';
 cout<< "Please enter a length followed by a unit (c or i):\n";
 cin >> length >> unit;
 switch (unit) {
 case 'i':
 cout << length << "in == " << cm_per_inch*length << "cm\n";
 break;
 case 'c':
 cout << length << "cm == " << length/cm_per_inch << "in\n";
 break;
 default:
 cout << "Sorry, I don't know a unit called '" << unit << "'\n";
 break;
 }
}

The switch-statement syntax is archaic but still clearer than nested if-statements,
especially when we compare against many constants. The value presented in pa-
rentheses after the switch is compared to a set of constants. Each constant is

T

Stroustrup_book.indb 105Stroustrup_book.indb 105 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION106

presented as part of a case label. If the value equals the constant in a case label,
the statement for that case is chosen. Each case is terminated by a break. If the
value doesn’t match any of the case labels, the statement identified by the default
label is chosen. You don’t have to provide a default, but it is a good idea to do
so unless you are absolutely certain that you have listed every alternative. If you
don’t already know, programming will teach you that it’s hard to be absolutely
certain (and right) about anything.

4.4.1.3 Switch technicalities
Here are some technical details about switch-statements:

 1. The value on which we switch must be of an integer, char, or enumera-
tion (§9.5) type. In particular, you cannot switch on a string.

 2. The values in the case labels must be constant expressions (§4.3.1). In
particular, you cannot use a variable in a case label.

 3. You cannot use the same value for two case labels.
 4. You can use several case labels for a single case.
 5. Don’t forget to end each case with a break. Unfortunately, the compiler

probably won’t warn you if you forget.

For example:

int main() // you can switch only on integers, etc.
{
 cout << "Do you like fish?\n";
 string s;
 cin >> s;
 switch (s) { // error: the value must be of integer, char, or enum type
 case "no":
 // . . .
 break;
 case "yes":
 // . . .
 break;
 }
}

To select based on a string you have to use an if-statement or a map (Chapter 21).
A switch-statement generates optimized code for comparing against a set of

constants. For larger sets of constants, this typically yields more efficient code

Stroustrup_book.indb 106Stroustrup_book.indb 106 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 107

than a collection of if-statements. However, this means that the case label values
must be constants and distinct. For example:

int main() // case labels must be constants
{
 // define alternatives:
 int y = 'y'; // this is going to cause trouble
 constexpr char n = 'n';
 constexpr char m = '?';
 cout << "Do you like fish?\n";
 char a;
 cin >> a;
 switch (a) {
 case n:
 // . . .
 break;
 case y: // error: variable in case label
 // . . .
 break;
 case m:
 // . . .
 break;
 case 'n': // error: duplicate case label (n’s value is ‘n’)
 // . . .
 break;
 default:
 // . . .
 break;
 }
}

Often you want the same action for a set of values in a switch. It would be tedious
to repeat the action so you can label a single action by a set of case labels. For
example:

int main() // you can label a statement with several case labels
{
 cout << "Please enter a digit\n";
 char a;
 cin >> a;

Stroustrup_book.indb 107Stroustrup_book.indb 107 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION108

 switch (a) {
 case '0': case '2': case '4': case '6': case '8':
 cout << "is even\n";
 break;
 case '1': case '3': case '5': case '7': case '9':
 cout << "is odd\n";
 break;
 default:
 cout << "is not a digit\n";
 break;
 }
}

The most common error with switch-statements is to forget to terminate a case
with a break. For example:

int main() // example of bad code (a break is missing)
{
 constexpr double cm_per_inch = 2.54; // number of centimeters in

// an inch
 double length = 1; // length in inches or

// centimeters
 char unit = 'a';
 cout << "Please enter a length followed by a unit (c or i):\n";
 cin >> length >> unit;

 switch (unit) {
 case 'i':
 cout << length << "in == " << cm_per_inch*length << "cm\n";
 case 'c':
 cout << length << "cm == " << length/cm_per_inch << "in\n";
 }
}

Unfortunately, the compiler will accept this, and when you have finished case 'i'
you’ll just “drop through” into case 'c', so that if you enter 2i the program will
output

2in == 5.08cm
2cm == 0.787402in

You have been warned!

Stroustrup_book.indb 108Stroustrup_book.indb 108 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 109

TRY THIS

Rewrite your currency converter program from the previous Try this to use a
switch-statement. Add conversions from yuan and kroner. Which version of
the program is easier to write, understand, and modify? Why?

4.4.2 Iteration
We rarely do something only once. Therefore, programming languages provide
convenient ways of doing something several times. This is called repetition or — espe-
cially when you do something to a series of elements of a data structure — iteration.

4.4.2.1 while-statements
As an example of iteration, consider the first program ever to run on a
stored-program computer (the EDSAC). It was written and run by David Wheeler
in the computer laboratory in Cambridge University, England, on May 6, 1949,
to calculate and print a simple list of squares like this:

0 0
1 1
2 4
3 9
4 16
 . . .
98 9604
99 9801

Each line is a number followed by a “tab” character ('\t'), followed by the square
of the number. A C++ version looks like this:

// calculate and print a table of squares 0–99
int main()
{
 int i = 0; // start from 0
 while (i<100) {
 cout << i << '\t' << square(i) << '\n';
 ++i; // increment i (that is, i becomes i+1)
 }
}

The notation square(i) simply means the square of i. We’ll later explain how it
gets to mean that (§4.5).

T

Stroustrup_book.indb 109Stroustrup_book.indb 109 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION110

No, this first modern program wasn’t actually written in C++, but the logic
was as is shown here:

• We start with 0.
• We see if we have reached 100, and if so we are fi nished.
• Otherwise, we print the number and its square, separated by a tab ('\t'),

increase the number, and try again.

Clearly, to do this we need

• A way to repeat some statement (to loop)
• A variable to keep track of how many times we have been through the

loop (a loop variable or a control variable), here the int called i
• An initializer for the loop variable, here 0
• A termination criterion, here that we want to go through the loop 100 times
• Something to do each time around the loop (the body of the loop)

The language construct we used is called a while-statement. Just following its
distinguishing keyword, while, it has a condition “on top” followed by its body:

while (i<100) // the loop condition testing the loop variable i
{
 cout << i << '\t' << square(i) << '\n';
 ++i ; // increment the loop variable i
}

The loop body is a block (delimited by curly braces) that writes out a row of the
table and increments the loop variable, i. We start each pass through the loop by
testing if i<100. If so, we are not yet finished and we can execute the loop body.
If we have reached the end, that is, if i is 100, we leave the while-statement and
execute what comes next. In this program the end of the program is next, so we
leave the program.

The loop variable for a while-statement must be defined and initialized out-
side (before) the while-statement. If we fail to define it, the compiler will give us
an error. If we define it, but fail to initialize it, most compilers will warn us, saying
something like “local variable i not set,” but would be willing to let us execute the
program if we insisted. Don’t insist! Compilers are almost certainly right when
they warn about uninitialized variables. Uninitialized variables are a common
source of errors. In this case, we wrote

int i = 0; // start from 0

so all is well.

Stroustrup_book.indb 110Stroustrup_book.indb 110 4/22/14 9:42 AM4/22/14 9:42 AM

4.4 STATEMENTS 111

Basically, writing a loop is simple. Getting it right for real-world problems can
be tricky, though. In particular, it can be hard to express the condition correctly
and to initialize all variables so that the loop starts correctly.

TRY THIS

The character 'b' is char('a'+1), 'c' is char('a'+2), etc. Use a loop to write out
a table of characters with their corresponding integer values:

a 97
b 98
. . .
z 122

4.4.2.2 Blocks
Note how we grouped the two statements that the while had to execute:

while (i<100) {
 cout << i << '\t' << square(i) << '\n';
 ++i ; // increment i (that is, i becomes i+1)
}

A sequence of statements delimited by curly braces { and } is called a block or a com-
pound statement. A block is a kind of statement. The empty block { } is sometimes
useful for expressing that nothing is to be done. For example:

if (a<=b) { // do nothing
}
else { // swap a and b
 int t = a;
 a = b;
 b = t;
}

4.4.2.3 for-statements
Iterating over a sequence of numbers is so common that C++, like most other
programming languages, has a special syntax for it. A for-statement is like a
while-statement except that the management of the control variable is concentrated

T

Stroustrup_book.indb 111Stroustrup_book.indb 111 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION112

at the top where it is easy to see and understand. We could have written the “first
program” like this:

// calculate and print a table of squares 0–99
int main()
{
 for (int i = 0; i<100; ++i)
 cout << i << '\t' << square(i) << '\n';
}

This means “Execute the body with i starting at 0 incrementing i after each execu-
tion of the body until we reach 100.” A for-statement is always equivalent to some
while-statement. In this case

for (int i = 0; i<100; ++i)
 cout << i << '\t' << square(i) << '\n';

means

{
 int i = 0; // the for-statement initializer
 while (i<100) { // the for-statement condition
 cout << i << '\t' << square(i) << '\n'; // the for-statement body
 ++i; // the for-statement increment
 }
}

Some novices prefer while-statements and some novices prefer for-statements.
However, using a for-statement yields more easily understood and more main-
tainable code whenever a loop can be defined as a for-statement with a simple
initializer, condition, and increment operation. Use a while-statement only when
that’s not the case.

Never modify the loop variable inside the body of a for-statement. That would
violate every reader’s reasonable assumption about what a loop is doing. Consider:

int main()
{
 for (int i = 0; i<100; ++i) { // for i in the [0:100) range
 cout << i << '\t' << square(i) << '\n';
 ++i; // what's going on here? It smells like an error!
 }
}

Stroustrup_book.indb 112Stroustrup_book.indb 112 4/22/14 9:42 AM4/22/14 9:42 AM

4.5 FUNCTIONS 113

Anyone looking at this loop would reasonably assume that the body would be
executed 100 times. However, it isn’t. The ++i in the body ensures that i is incre-
mented twice each time around the loop so that we get an output only for the 50
even values of i. If we saw such code, we would assume it to be an error, probably
caused by a sloppy conversion from a while-statement. If you want to increment
by 2, say so:

// calculate and print a table of squares of even numbers in the [0:100) range
int main()
{
 for (int i = 0; i<100; i+=2)
 cout << i << '\t' << square(i) << '\n';
}

Please note that the cleaner, more explicit version is shorter than the messy one.
That’s typical.

TRY THIS

Rewrite the character value example from the previous Try this to use a
for-statement. Then modify your program to also write out a table of the
integer values for uppercase letters and digits.

There is also a simpler “range-for-loop” for traversing collections of data,
such as vectors; see §4.6.

4.5 Functions
In the program above, what was square(i)? It is a call of a function. In particular,
it is a call of the function called square with the argument i. A function is a named
sequence of statements. A function can return a result (also called a return value).
The standard library provides a lot of useful functions, such as the square root
function sqrt() that we used in §3.4. However, we write many functions ourselves.
Here is a plausible definition of square:

int square(int x) // return the square of x
{
 return x*x;
}

T

Stroustrup_book.indb 113Stroustrup_book.indb 113 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION114

The first line of this definition tells us that this is a function (that’s what the pa-
rentheses mean), that it is called square, that it takes an int argument (here, called
x), and that it returns an int (the type of the result always comes first in a function
declaration); that is, we can use it like this:

int main()
{
 cout << square(2) << '\n'; // print 4
 cout << square(10) << '\n'; // print 100
}

We don’t have to use the result of a function call, but we do have to give a func-
tion exactly the arguments it requires. Consider:

square(2); // probably a mistake: unused return value
int v1 = square(); // error: argument missing
int v2 = square; // error: parentheses missing
int v3 = square(1,2); // error: too many arguments
int v4 = square("two"); // error: wrong type of argument – int expected

Many compilers warn against unused results, and all give errors as indicated. You
might think that a computer should be smart enough to figure out that by the
string "two" you really meant the integer 2. However, a C++ compiler deliber-
ately isn’t that smart. It is the compiler’s job to do exactly what you tell it to do
after verifying that your code is well formed according to the definition of C++. If
the compiler guessed about what you meant, it would occasionally guess wrong,
and you — or the users of your program — would be quite annoyed. You’ll find it
hard enough to predict what your code will do without having the compiler “help
you” by second-guessing you.

The function body is the block (§4.4.2.2) that actually does the work.

{
 return x*x; // return the square of x
}

For square, the work is trivial: we produce the square of the argument and return
that as our result. Saying that in C++ is easier than saying it in English. That’s
typical for simple ideas. After all, a programming language is designed to state
such simple ideas simply and precisely.

The syntax of a function definition can be described like this:

type identifi er (parameter-list) function-body

Stroustrup_book.indb 114Stroustrup_book.indb 114 4/22/14 9:42 AM4/22/14 9:42 AM

4.5 FUNCTIONS 115

That is, a type (the return type), followed by an identifier (the name of the func-
tion), followed by a list of parameters in parentheses, followed by the body of the
function (the statements to be executed). The list of arguments required by the
function is called a parameter list and its elements are called parameters (or formal
arguments). The list of parameters can be empty, and if we don’t want to return a
result we give void (meaning “nothing”) as the return type. For example:

void write_sorry() // take no argument; return no value
{
 cout << "Sorry\n";
}

The language-technical aspects of functions will be examined more closely in
Chapter 8.

4.5.1 Why bother with functions?
We define a function when we want a separate computation with a name because
doing so

• Makes the computation logically separate
• Makes the program text clearer (by naming the computation)
• Makes it possible to use the function in more than one place in our

program
• Eases testing

We’ll see many examples of each of those reasons as we go along, and we’ll oc-
casionally mention a reason. Note that real-world programs use thousands of
functions, some even hundreds of thousands of functions. Obviously, we would
never be able to write or understand such programs if their parts (e.g., compu-
tations) were not clearly separated and named. Also, you’ll soon find that many
functions are repeatedly useful and you’d soon tire of repeating equivalent code.
For example, you might be happy writing x*x and 7*7 and (x+7)*(x+7), etc. rather
than square(x) and square(7) and square(x+7), etc. However, that’s only because
square is a very simple computation. Consider square root (called sqrt in C++):
you prefer to write sqrt(x) and sqrt(7) and sqrt(x+7), etc. rather than repeating the
(somewhat complicated and many lines long) code for computing square root.
Even better: you don’t have to even look at the computation of square root be-
cause knowing that sqrt(x) gives the square root of x is sufficient.

In §8.5 we will address many function technicalities, but for now, we’ll just
give another example.

Stroustrup_book.indb 115Stroustrup_book.indb 115 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION116

If we had wanted to make the loop in main() really simple, we could have
written

void print_square(int v)
{
 cout << v << '\t' << v*v << '\n';
}

int main()
{
 for (int i = 0; i<100; ++i) print_square(i);
}

Why didn’t we use the version using print_square()? That version is not signifi-
cantly simpler than the version using square(), and note that

• print_square() is a rather specialized function that we could not expect to
be able to use later, whereas square() is an obvious candidate for other uses

• square() hardly requires documentation, whereas print_square() obvi-
ously needs explanation

The underlying reason for both is that print_square() performs two logically sep-
arate actions:

• It prints.
• It calculates a square.

Programs are usually easier to write and to understand if each function performs
a single logical action. Basically, the square() version is the better design.

Finally, why did we use square(i) rather than simply i*i in the first version of
the problem? Well, one of the purposes of functions is to simplify code by separat-
ing out complicated calculations as named functions, and for the 1949 version of
the program there was no hardware that directly implemented “multiply.” Conse-
quently, in the 1949 version of the program, i*i was actually a fairly complicated
calculation, similar to what you’d do by hand using a piece of paper. Also, the writer
of that original version, David Wheeler, was the inventor of the function (then
called a subroutine) in modern computing, so it seemed appropriate to use it here.

TRY THIS

Implement square() without using the multiplication operator; that is, do the
x*x by repeated addition (start a variable result at 0 and add x to it x times).
Then run some version of “the first program” using that square().

T

Stroustrup_book.indb 116Stroustrup_book.indb 116 4/22/14 9:42 AM4/22/14 9:42 AM

4.6 VECTOR 117

4.5.2 Function declarations
Did you notice that all the information needed to call a function was in the first
line of its definition? For example:

int square(int x)

Given that, we know enough to say

int x = square(44);

We don’t really need to look at the function body. In real programs, we most often
don’t want to look at a function body. Why would we want to look at the body
of the standard library sqrt() function? We know it calculates the square root of
its argument. Why would we want to see the body of our square() function? Of
course we might just be curious. But almost all of the time, we are just interested
in knowing how to call a function — seeing the definition would just be distracting.
Fortunately, C++ provides a way of supplying that information separate from the
complete function definition. It is called a function declaration:

int square(int); // declaration of square
double sqrt(double); // declaration of sqrt

Note the terminating semicolons. A semicolon is used in a function declaration
instead of the body used in the corresponding function definition:

int square(int x) // definition of square
{
 return x*x;
}

So, if you just want to use a function, you simply write — or more commonly
#include — its declaration. The function definition can be elsewhere. We’ll dis-
cuss where that “elsewhere” might be in §8.3 and §8.7. This distinction between
declarations and definitions becomes essential in larger programs where we use
declarations to keep most of the code out of sight to allow us to concentrate on a
single part of a program at a time (§4.2).

4.6 vector
To do just about anything of interest in a program, we need a collection of data to
work on. For example, we might need a list of phone numbers, a list of members
of a football team, a list of courses, a list of books read over the last year, a catalog

Stroustrup_book.indb 117Stroustrup_book.indb 117 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION118

of songs for download, a set of payment options for a car, a list of the weather
forecasts for the next week, a list of prices for a camera in different web stores, etc.
The possibilities are literally endless and therefore ubiquitous in programs. We’ll
get to see a variety of ways of storing collections of data (a variety of containers
of data; see Chapters 20 and 21). Here we will start with one of the simplest, and
arguably the most useful, ways of storing data: a vector.

A vector is simply a sequence of elements that you can access by an index. For
example, here is a vector called v:

v:
size()

6

v’s elements:
v[0]

5

v[1]

7

v[2]

9

v[3]

4

v[4]

6

v[5]

8

That is, the first element has index 0, the second index 1, and so on. We refer to an
element by subscripting the name of the vector with the element’s index, so here
the value of v[0] is 5, the value of v[1] is 7, and so on. Indices for a vector always
start with 0 and increase by 1. This should look familiar: the standard library vec-
tor is simply the C++ standard library’s version of an old and well-known idea. I
have drawn the vector so as to emphasize that it “knows its size”; that is, a vector
doesn’t just store its elements, it also stores its size.

We could make such a vector like this:

vector<int> v = {5, 7, 9, 4, 6, 8}; // vector of 6 ints

We see that to make a vector we need to specify the type of the elements and the
initial set of elements. The element type comes after vector in angle brackets (<
>), here <int>. Here is another example:

vector<string> philosopher
 = {"Kant", "Plato", "Hume", "Kierkegaard"}; // vector of 4 strings

Naturally, a vector will only accept elements of its declared element type:

philosopher[2] = 99; // error: trying to assign an int to a string
v[2] = "Hume"; // error: trying to assign a string to an int

We can also define a vector of a given size without specifying the element values.
In that case, we use the (n) notation where n is the number of elements, and the
elements are given a default value according to the element type. For example:

vector<int> vi(6); // vector of 6 ints initialized to 0
vector<string> vs(4); // vector of 4 strings initialized to “”

Stroustrup_book.indb 118Stroustrup_book.indb 118 4/22/14 9:42 AM4/22/14 9:42 AM

4.6 VECTOR 119

The string with no characters "" is called the empty string.
Please note that you cannot simply refer to a nonexistent element of a vector:

vi[20000] = 44; // run-time error

We will discuss run-time errors and subscripting in the next chapter.

4.6.1 Traversing a vector
A vector “knows” its size, so we can print the elements of a vector like this:

vector<int> v = {5, 7, 9, 4, 6, 8};
for (int i=0; i<v.size(); ++i)
 cout << v[i] << '\n';

The call v.size() gives the number of elements of the vector called v. In general,
v.size() gives us the ability to access elements of a vector without accidentally re-
ferring to an element outside the vector’s range. The range for a vector v is [0:v.
size()). That’s the mathematical notation for a half-open sequence of elements.
The first element of v is v[0] and the last v[v.size()–1]. If v.size==0, v has no ele-
ments, that is, v is an empty vector. This notion of half-open sequences is used
throughout C++ and the C++ standard library (§17.3, §20.3).

The language takes advantage of the notion of a half-open sequence to pro-
vide a simple loop over all the elements of a sequence, such as the elements of a
vector. For example:

vector<int> v = {5, 7, 9, 4, 6, 8};
for (int x : v) // for each x in v
 cout << x << '\n';

This is called a range-for-loop because the word range is often used to mean the
same as “sequence of elements.” We read for (int x : v) as “for each int x in v” and
the meaning of the loop is exactly like the equivalent loop over the subscripts [0:v.
size()). We use the range-for-loop for simple loops over all the elements of a se-
quence looking at one element at a time. More complicated loops, such as looking
at every third element of a vector, looking at only the second half of a vector, or
comparing elements of two vectors, are usually better done using the more com-
plicated and more general traditional for-statement (§4.4.2.3).

4.6.2 Growing a vector
Often, we start a vector empty and grow it to its desired size as we read or com-
pute the data we want in it. The key operation here is push_back(), which adds a

Stroustrup_book.indb 119Stroustrup_book.indb 119 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION120

new element to a vector. The new element becomes the last element of the vector.
For example:

vector<double> v; // start off empty; that is, v has no elements

v: 0

v.push_back(2.7); // add an element with the value 2.7 at end (“the back”) of v
 // v now has one element and v[0]==2.7

v: 1 2.7

v.push_back(5.6); // add an element with the value 5.6 at end of v
 // v now has two elements and v[1]==5.6

v: 2 2.7 5.6

v.push_back(7.9); // add an element with the value 7.9 at end of v
 // v now has three elements and v[2]==7.9

v: 3 2.7 5.6 7.9

Note the syntax for a call of push_back(). It is called a member function call; push_
back() is a member function of vector and must be called using this dot notation:

member-function-call:
 object_name.member-function-name (argument-list)

The size of a vector can be obtained by a call to another of vector’s member
functions: size(). Initially v.size() was 0, and after the third call of push_back(),
v.size() has become 3.

If you have programmed before, you will note that a vector is similar to an
array in C and other languages. However, you need not specify the size (length)
of a vector in advance, and you can add as many elements as you like. As we go
along, you’ll find that the C++ standard vector has other useful properties.

4.6.3 A numeric example
Let’s look at a more realistic example. Often, we have a series of values that we
want to read into our program so that we can do something with them. The
“something” could be producing a graph of the values, calculating the mean

Stroustrup_book.indb 120Stroustrup_book.indb 120 4/22/14 9:42 AM4/22/14 9:42 AM

4.6 VECTOR 121

and median, finding the largest element, sorting them, combining them with
other data, searching for “interesting” values, comparing them to other data, etc.
There is no limit to the range of computations we might perform on data, but
first we need to get it into our computer’s memory. Here is the basic technique
for getting an unknown — possibly large — amount of data into a computer. As
a concrete example, we chose to read in floating-point numbers representing
temperatures:

// read some temperatures into a vector
int main()
{
 vector<double> temps; // temperatures
 for (double temp; cin>>temp;) // read into temp
 temps.push_back(temp); // put temp into vector
 // . . . do something . . .
}

So, what goes on here? First we declare a vector to hold the data:

vector<double> temps; // temperatures

This is where the type of input we expect is mentioned. We read and store doubles.
Next comes the actual read loop:

for (double temp; cin>>temp;) // read into temp
 temps.push_back(temp); // put temp into vector

We define a variable temp of type double to read into. The cin>>temp reads a
double, and that double is pushed into the vector (placed at the back). We have
seen those individual operations before. What’s new here is that we use the input
operation, cin>>temp, as the condition for a for-statement. Basically, cin>>temp
is true if a value was read correctly and false otherwise, so that for-statement will
read all the doubles we give it and stop when we give it anything else. For exam-
ple, if you typed

1.2 3.4 5.6 7.8 9.0 |

then temps would get the five elements 1.2, 3.4, 5.6, 7.8, 9.0 (in that order, for ex-
ample, temps[0]==1.2). We used the character '|' to terminate the input — anything
that isn’t a double can be used. In §10.6 we discuss how to terminate input and
how to deal with errors in input.

Stroustrup_book.indb 121Stroustrup_book.indb 121 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION122

To limit the scope of our input variable, temp, to the loop, we used a for-state-
ment, rather than a while-statement:

 double temp;
 while (cin>>temp) // read
 temps.push_back(temp); // put into vector
// … temp might be used here …

As usual, a for-loop shows what is going on “up front” so that the code is
easier to understand and accidental errors are harder to make.

Once we get data into a vector we can easily manipulate it. As an example,
let’s calculate the mean and median temperatures:

// compute mean and median temperatures
int main()
{
 vector<double> temps; // temperatures
 for (double temp; cin>>temp;) // read into temp
 temps.push_back(temp); // put temp into vector

 // compute mean temperature:
 double sum = 0;
 for (int x : temps) sum += x;
 cout << "Average temperature: " << sum/temps.size() << '\n';

 // compute median temperature:
 sort(temps); // sort temperatures
 cout << "Median temperature: " << temps[temps.size()/2] << '\n';
}

We calculate the average (the mean) by simply adding all the elements into sum,
and then dividing the sum by the number of elements (that is, temps.size()):

// compute average temperature:
double sum = 0;
for (int x : temps) sum += x;
cout << "Average temperature: " << sum/temps.size() << '\n';

Note how the += operator comes in handy.
To calculate a median (a value chosen so that half of the values are lower and

the other half are higher) we need to sort the elements. For that, we use a variant
of the standard library sort algorithm, sort():

Stroustrup_book.indb 122Stroustrup_book.indb 122 4/22/14 9:42 AM4/22/14 9:42 AM

4.6 VECTOR 123

// compute median temperature:
sort(temps); // sort temperatures
cout << "Median temperature: " << temps[temps.size()/2] << '\n';

We will explain the standard library algorithms much later (Chapter 20). Once
the temperatures are sorted, it’s easy to find the median: we just pick the middle
element, the one with index temps.size()/2. If you feel like being picky (and if you
do, you are starting to think like a programmer), you could observe that the value
we found may not be a median according to the definition we offered above. Ex-
ercise 2 at the end of this chapter is designed to solve that little problem.

4.6.4 A text example
We didn’t present the temperature example because we were particularly inter-
ested in temperatures. Many people — such as meteorologists, agronomists, and
oceanographers — are very interested in temperature data and values based on it,
such as means and medians. However, we are not. From a programmer’s point
of view, what’s interesting about this example is its generality: the vector and the
simple operations on it can be used in a huge range of applications. It is fair to
say that whatever you are interested in, if you need to analyze data, you’ll use
vector (or a similar data structure; see Chapter 21). As an example, let’s build a
simple dictionary:

// simple dictionary: list of sorted words
int main()
{
 vector<string> words;
 for(string temp; cin>>temp;) // read whitespace-separated words
 words.push_back(temp); // put into vector
 cout << "Number of words: " << words.size() << '\n';

 sort(words); // sort the words

 for (int i = 0; i<words.size(); ++i)
 if (i==0 || words[i–1]!=words[i]) // is this a new word?
 cout << words[i] << "\n";
}

If we feed some words to this program, it will write them out in order without
repeating a word. For example, given

a man a plan a canal panama

Stroustrup_book.indb 123Stroustrup_book.indb 123 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION124

it will write

a
canal
man
panama
plan

How do we stop reading string input? In other words, how do we terminate the
input loop?

for (string temp; cin>>temp;) // read
 words.push_back(temp); // put into vector

When we read numbers (in §4.6.2), we just gave some input character that wasn’t
a number. We can’t do that here because every (ordinary) character can be read
into a string. Fortunately, there are characters that are “not ordinary.” As men-
tioned in §3.5.1, Ctrl+Z terminates an input stream under Windows and Ctrl+D
does that under Unix.

Most of this program is remarkably similar to what we did for the tempera-
tures. In fact, we wrote the “dictionary program” by cutting and pasting from the
“temperature program.” The only thing that’s new is the test

if (i==0 || words[i–1]!=words[i]) // is this a new word?

If you deleted that test the output would be

a
a
a
canal
man
panama
plan

We didn’t like the repetition, so we eliminated it using that test. What does the test
do? It looks to see if the previous word we printed is different from the one we
are about to print (words[i–1]!=words[i]) and if so, we print that word; otherwise,
we do not. Obviously, we can’t talk about a previous word when we are about

Stroustrup_book.indb 124Stroustrup_book.indb 124 4/22/14 9:42 AM4/22/14 9:42 AM

4.7 LANGUAGE FEATURES 125

to print the first word (i==0), so we first test for that and combine those two tests
using the || (or) operator:

if (i==0 || words[i–1]!=words[i]) // is this a new word?

Note that we can compare strings. We use != (not equals) here; == (equals), < (less
than), <= (less than or equal), > (greater than), and >= (greater than or equal) also
work for strings. The <, >, etc. operators use the usual lexicographical ordering,
so "Ape" comes before "Apple" and "Chimpanzee".

TRY THIS

Write a program that “bleeps” out words that you don’t like; that is, you
read in words using cin and print them again on cout. If a word is among a
few you have defined, you write out BLEEP instead of that word. Start with
one “disliked word” such as

string disliked = “Broccoli”;

When that works, add a few more.

4.7 Language features
The temperature and dictionary programs used most of the fundamental lan-
guage features we presented in this chapter: iteration (the for-statement and the
while-statement), selection (the if-statement), simple arithmetic (the ++ and +=
operators), comparisons and logical operators (the ==, !=, and || operators), vari-
ables, and functions (e.g., main(), sort(), and size()). In addition, we used standard
library facilities, such as vector (a container of elements), cout (an output stream),
and sort() (an algorithm).

If you count, you’ll find that we actually achieved quite a lot with rather few
features. That’s the ideal! Each programming language feature exists to express
a fundamental idea, and we can combine them in a huge (really, infinite) number
of ways to write useful programs. This is a key notion: a computer is not a gad-
get with a fixed function. Instead it is a machine that we can program to do any
computation we can think of, and given that we can attach computers to gadgets
that interact with the world outside the computer, we can in principle get it to
do anything.

T

Stroustrup_book.indb 125Stroustrup_book.indb 125 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION126

Drill
Go through this drill step by step. Do not try to speed up by skipping steps. Test
each step by entering at least three pairs of values — more values would be better.

 1. Write a program that consists of a while-loop that (each time around the
loop) reads in two ints and then prints them. Exit the program when a
terminating '|' is entered.

 2. Change the program to write out the smaller value is: followed by the
smaller of the numbers and the larger value is: followed by the larger
value.

 3. Augment the program so that it writes the line the numbers are equal
(only) if they are equal.

 4. Change the program so that it uses doubles instead of ints.
 5. Change the program so that it writes out the numbers are almost equal

after writing out which is the larger and the smaller if the two numbers
differ by less than 1.0/100.

 6. Now change the body of the loop so that it reads just one double each
time around. Define two variables to keep track of which is the smallest
and which is the largest value you have seen so far. Each time through
the loop write out the value entered. If it’s the smallest so far, write the
smallest so far after the number. If it is the largest so far, write the largest
so far after the number.

 7. Add a unit to each double entered; that is, enter values such as 10cm,
2.5in, 5ft, or 3.33m. Accept the four units: cm, m, in, ft. Assume con-
version factors 1m == 100cm, 1in == 2.54cm, 1ft == 12in. Read the unit
indicator into a string. You may consider 12 m (with a space between the
number and the unit) equivalent to 12m (without a space).

 8. Reject values without units or with “illegal” representations of units, such
as y, yard, meter, km, and gallons.

 9. Keep track of the sum of values entered (as well as the smallest and the
largest) and the number of values entered. When the loop ends, print the
smallest, the largest, the number of values, and the sum of values. Note
that to keep the sum, you have to decide on a unit to use for that sum; use
meters.

 10. Keep all the values entered (converted into meters) in a vector. At the
end, write out those values.

 11. Before writing out the values from the vector, sort them (that’ll make
them come out in increasing order).

Stroustrup_book.indb 126Stroustrup_book.indb 126 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 REVIEW 127

Review
 1. What is a computation?
 2. What do we mean by inputs and outputs to a computation? Give examples.
 3. What are the three requirements a programmer should keep in mind when

expressing computations?
 4. What does an expression do?
 5. What is the difference between a statement and an expression, as described

in this chapter?
 6. What is an lvalue? List the operators that require an lvalue. Why do

these operators, and not the others, require an lvalue?
 7. What is a constant expression?
 8. What is a literal?
 9. What is a symbolic constant and why do we use them?
 10. What is a magic constant? Give examples.
 11. What are some operators that we can use for integers and floating-point

values?
 12. What operators can be used on integers but not on floating-point numbers?
 13. What are some operators that can be used for strings?
 14. When would a programmer prefer a switch-statement to an if-statement?
 15. What are some common problems with switch-statements?
 16. What is the function of each part of the header line in a for-loop, and in

what sequence are they executed?
 17. When should the for-loop be used and when should the while-loop be

used?
 18. How do you print the numeric value of a char?
 19. Describe what the line char foo(int x) means in a function definition.
 20. When should you define a separate function for part of a program? List

reasons.
 21. What can you do to an int that you cannot do to a string?
 22. What can you do to a string that you cannot do to an int?
 23. What is the index of the third element of a vector?
 24. How do you write a for-loop that prints every element of a vector?
 25. What does vector<char> alphabet(26); do?
 26. Describe what push_back() does to a vector.
 27. What do vector’s member functions begin(), end(), and size() do?
 28. What makes vector so popular/useful?
 29. How do you sort the elements of a vector?

Stroustrup_book.indb 127Stroustrup_book.indb 127 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION128

Terms
abstraction
begin()
computation
conditional statement
declaration
defi nition
divide and conquer
else
end()
expression
for-statement

range-for-statement
function
if-statement
increment
input
iteration
loop
lvalue
member function
output

push_back()
repetition
rvalue
selection
size()
sort()
statement
switch-statement
vector
while-statement

Exercises
 1. If you haven’t already, do the Try this exercises from this chapter.
 2. If we define the median of a sequence as “a number so that exactly as

many elements come before it in the sequence as come after it,” fix the
program in §4.6.3 so that it always prints out a median. Hint: A median
need not be an element of the sequence.

 3. Read a sequence of double values into a vector. Think of each value as
the distance between two cities along a given route. Compute and print
the total distance (the sum of all distances). Find and print the smallest
and greatest distance between two neighboring cities. Find and print the
mean distance between two neighboring cities.

 4. Write a program to play a numbers guessing game. The user thinks of a
number between 1 and 100 and your program asks questions to figure
out what the number is (e.g., “Is the number you are thinking of less than
50?”). Your program should be able to identify the number after asking
no more than seven questions. Hint: Use the < and <= operators and the
if-else construct.

 5. Write a program that performs as a very simple calculator. Your calculator
should be able to handle the four basic math operations — add, subtract,
multiply, and divide — on two input values. Your program should prompt
the user to enter three arguments: two double values and a character to
represent an operation. If the entry arguments are 35.6, 24.1, and '+', the
program output should be The sum of 35.6 and 24.1 is 59.7. In Chapter 6
we look at a much more sophisticated simple calculator.

 6. Make a vector holding the ten string values "zero", "one", . . . "nine".
Use that in a program that converts a digit to its corresponding
spelled-out value; e.g., the input 7 gives the output seven. Have the same

Stroustrup_book.indb 128Stroustrup_book.indb 128 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 EXERCISES 129

program, using the same input loop, convert spelled-out numbers into
their digit form; e.g., the input seven gives the output 7.

 7. Modify the “mini calculator” from exercise 5 to accept (just) single-digit
numbers written as either digits or spelled out.

 8. There is an old story that the emperor wanted to thank the inventor of
the game of chess and asked the inventor to name his reward. The inven-
tor asked for one grain of rice for the first square, 2 for the second, 4 for
the third, and so on, doubling for each of the 64 squares. That may sound
modest, but there wasn’t that much rice in the empire! Write a program to
calculate how many squares are required to give the inventor at least 1000
grains of rice, at least 1,000,000 grains, and at least 1,000,000,000 grains.
You’ll need a loop, of course, and probably an int to keep track of which
square you are at, an int to keep the number of grains on the current
square, and an int to keep track of the grains on all previous squares. We
suggest that you write out the value of all your variables for each iteration
of the loop so that you can see what’s going on.

 9. Try to calculate the number of rice grains that the inventor asked for in
exercise 8 above. You’ll find that the number is so large that it won’t fit
in an int or a double. Observe what happens when the number gets too
large to represent exactly as an int and as a double. What is the larg-
est number of squares for which you can calculate the exact number of
grains (using an int)? What is the largest number of squares for which
you can calculate the approximate number of grains (using a double)?

 10. Write a program that plays the game “Rock, Paper, Scissors.” If you are not
familiar with the game do some research (e.g., on the web using Google).
Research is a common task for programmers. Use a switch-statement to
solve this exercise. Also, the machine should give random answers (i.e.,
select the next rock, paper, or scissors randomly). Real randomness is too
hard to provide just now, so just build a vector with a sequence of values
to be used as “the next value.” If you build the vector into the program,
it will always play the same game, so maybe you should let the user en-
ter some values. Try variations to make it less easy for the user to guess
which move the machine will make next.

 11. Create a program to find all the prime numbers between 1 and 100. One
way to do this is to write a function that will check if a number is prime
(i.e., see if the number can be divided by a prime number smaller than
itself) using a vector of primes in order (so that if the vector is called
primes, primes[0]==2, primes[1]==3, primes[2]==5, etc.). Then write a
loop that goes from 1 to 100, checks each number to see if it is a prime,
and stores each prime found in a vector. Write another loop that lists the
primes you found. You might check your result by comparing your vector
of prime numbers with primes. Consider 2 the first prime.

Stroustrup_book.indb 129Stroustrup_book.indb 129 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 • COMPUTATION130

 12. Modify the program described in the previous exercise to take an input
value max and then find all prime numbers from 1 to max.

 13. Create a program to find all the prime numbers between 1 and 100. There
is a classic method for doing this, called the “Sieve of Eratosthenes.” If
you don’t know that method, get on the web and look it up. Write your
program using this method.

 14. Modify the program described in the previous exercise to take an input
value max and then find all prime numbers from 1 to max.

 15. Write a program that takes an input value n and then finds the first n
primes.

 16. In the drill, you wrote a program that, given a series of numbers, found
the max and min of that series. The number that appears the most times
in a sequence is called the mode. Create a program that finds the mode of
a set of positive integers.

 17. Write a program that finds the min, max, and mode of a sequence of
strings.

 18. Write a program to solve quadratic equations. A quadratic equation is of
the form

ax2 + bx + c = 0

 If you don’t know the quadratic formula for solving such an expression,
do some research. Remember, researching how to solve a problem is of-
ten necessary before a programmer can teach the computer how to solve
it. Use doubles for the user inputs for a, b, and c. Since there are two
solutions to a quadratic equation, output both x1 and x2.

 19. Write a program where you first enter a set of name-and-value pairs, such
as Joe 17 and Barbara 22. For each pair, add the name to a vector called
names and the number to a vector called scores (in corresponding po-
sitions, so that if names[7]=="Joe" then scores[7]==17). Terminate input
with NoName 0. Check that each name is unique and terminate with an
error message if a name is entered twice. Write out all the (name,score)
pairs, one per line.

 20. Modify the program from exercise 19 so that when you enter a name, the
program will output the corresponding score or name not found.

 21. Modify the program from exercise 19 so that when you enter an integer,
the program will output all the names with that score or score not found.

Postscript
From a philosophical point of view, you can now do everything that can be done
using a computer — the rest is details! Among other things, this shows the value

Stroustrup_book.indb 130Stroustrup_book.indb 130 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 4 POSTSCRIPT 131

of “details” and the importance of practical skills, because clearly you have barely
started as a programmer. But we are serious. The tools presented in this chapter
do allow you to express every computation: you have as many variables (in-
cluding vectors and strings) as you want, you have arithmetic and comparisons,
and you have selection and iteration. Every computation can be expressed using
those primitives. You have text and num eric input and output, and every input
or output can be expressed as text (even graphics). You can even organize your
computations as sets of named functions. What is left for you to do is “just” to
learn to write good programs, that is, to write programs that are correct, maintain-
able, and reasonably effi cient. Importantly, you must try to learn to do so with a
reasonable amount of effort.

Stroustrup_book.indb 131Stroustrup_book.indb 131 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 132Stroustrup_book.indb 132 4/22/14 9:42 AM4/22/14 9:42 AM

133

5

Errors

“I realized that from now on a large part
of my life would be spent fi nding and

correcting my own mistakes.”

—Maurice Wilkes, 1949

In this chapter, we discuss correctness of programs, errors, and

error handling. If you are a genuine novice, you’ll find the dis-

cussion a bit abstract at times and painfully detailed at other times.

Can error handling really be this important? It is, and you’ll learn

that one way or another before you can write programs that others

are willing to use. What we are trying to do is to show you what

“thinking like a programmer” is about. It combines fairly abstract

strategy with painstaking analysis of details and alternatives.

Stroustrup_book.indb 133Stroustrup_book.indb 133 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS134

5.1 Introduction
We have referred to errors repeatedly in the previous chapters, and — having
done the drills and some exercises — you have some idea why. Errors are simply
unavoidable when you develop a program, yet the final program must be free of
errors, or at least free of errors that we consider unacceptable for it.

There are many ways of classifying errors. For example:

• Compile-time errors: Errors found by the compiler. We can further clas-
sify compile-time errors based on which language rules they violate, for
example:

• Syntax errors
• Type errors

• Link-time errors: Errors found by the linker when it is trying to combine
object fi les into an executable program.

• Run-time errors: Errors found by checks in a running program. We can
further classify run-time errors as

• Errors detected by the computer (hardware and/or operating system)
• Errors detected by a library (e.g., the standard library)
• Errors detected by user code

• Logic errors: Errors found by the programmer looking for the causes of
erroneous results.

5.1 Introduction

5.2 Sources of errors

5.3 Compile-time errors
5.3.1 Syntax errors
5.3.2 Type errors
5.3.3 Non-errors

5.4 Link-time errors

5.5 Run-time errors
5.5.1 The caller deals with errors
5.5.2 The callee deals with errors
5.5.3 Error reporting

5.6 Exceptions
5.6.1 Bad arguments
5.6.2 Range errors
5.6.3 Bad input
5.6.4 Narrowing errors

5.7 Logic errors

5.8 Estimation

5.9 Debugging
5.9.1 Practical debug advice

5.10 Pre- and post-conditions
5.10.1 Post-conditions

5.11 Testing

Stroustrup_book.indb 134Stroustrup_book.indb 134 4/22/14 9:42 AM4/22/14 9:42 AM

5.1 INTRODUCTION 135

It is tempting to say that our job as programmers is to eliminate all errors. That is
of course the ideal, but often that’s not feasible. In fact, for real-world programs it
can be hard to know exactly what “all errors” means. If we kicked out the power
cord from your computer while it executed your program, would that be an er-
ror that you were supposed to handle? In many cases, the answer is “Obviously
not,” but what if we were talking about a medical monitoring program or the
control program for a telephone switch? In those cases, a user could reasonably
expect that something in the system of which your program was a part will do
something sensible even if your computer lost power or a cosmic ray damaged
the memory holding your program. The key question becomes: “Is my program
supposed to detect that error?” Unless we specifically say otherwise, we will
assume that your program

 1. Should produce the desired results for all legal inputs
 2. Should give reasonable error messages for all illegal inputs
 3. Need not worry about misbehaving hardware
 4. Need not worry about misbehaving system software
 5. Is allowed to terminate after finding an error

Essentially all programs for which assumptions 3, 4, or 5 do not hold can be con-
sidered advanced and beyond the scope of this book. However, assumptions 1
and 2 are included in the definition of basic professionalism, and professionalism
is one of our goals. Even if we don’t meet that ideal 100% of the time, it must be
the ideal.

When we write programs, errors are natural and unavoidable; the question
is: How do we deal with them? Our guess is that avoiding, finding, and correcting
errors takes 90% or more of the effort when developing serious software. For
safety-critical programs, the effort can be greater still. You can do much better
for small programs; on the other hand, you can easily do worse if you’re sloppy.

Basically, we offer three approaches to producing acceptable software:

• Organize software to minimize errors.
• Eliminate most of the errors we made through debugging and testing.
• Make sure the remaining errors are not serious.

None of these approaches can completely eliminate errors by itself; we have to
use all three.

Experience matters immensely when it comes to producing reliable programs,
that is, programs that can be relied on to do what they are supposed to do with an
acceptable error rate. Please don’t forget that the ideal is that our programs always
do the right thing. We are usually able only to approximate that ideal, but that’s
no excuse for not trying very hard.

Stroustrup_book.indb 135Stroustrup_book.indb 135 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS136

5.2 Sources of errors
Here are some sources of errors:

• Poor specifi cation: If we are not specifi c about what a program should do,
we are unlikely to adequately examine the “dark corners” and make sure
that all cases are handled (i.e., that every input gives a correct answer or
an adequate error message).

• Incomplete programs: During development, there are obviously cases that we
haven’t yet taken care of. That’s unavoidable. What we must aim for is to
know when we have handled all cases.

• Unexpected arguments: Functions take arguments. If a function is given an
argument we don’t handle, we have a problem. An example is calling the
standard library square root function with –1.2: sqrt(–1.2). Since sqrt()
of a double returns a double, there is no possible correct return value.
§5.5.3 discusses this kind of problem.

• Unexpected input: Programs typically read data (from a keyboard, from
fi les, from GUIs, from network connections, etc.). A program makes
many assumptions about such input, for example, that the user will input
a number. What if the user inputs “aw, shut up!” rather than the expected
integer? §5.6.3 and §10.6 discuss this kind of problem.

• Unexpected state: Most programs keep a lot of data (“state”) around for use
by different parts of the system. Examples are address lists, phone directo-
ries, and vectors of temperature readings. What if such data is incomplete
or wrong? The various parts of the program must still manage. §26.3.5
discusses this kind of problem.

• Logical errors: That is, code that simply doesn’t do what it was supposed
to do; we’ll just have to fi nd and fi x such problems. §6.6 and §6.9 give
examples of fi nding such problems.

This list has a practical use. We can use it as a checklist when we are considering
how far we have come with a program. No program is complete until we have
considered all of these potential sources of errors. In fact, it is prudent to keep
them in mind from the very start of a project, because it is most unlikely that a
program that is just thrown together without thought about errors can have its
errors found and removed without a serious rewrite.

5.3 Compile-time errors
When you are writing programs, your compiler is your first line of defense against
errors. Before generating code, the compiler analyzes code to detect syntax errors
and type errors. Only if it finds that the program completely conforms to the

Stroustrup_book.indb 136Stroustrup_book.indb 136 4/22/14 9:42 AM4/22/14 9:42 AM

5.3 COMPILE-TIME ERRORS 137

language specification will it allow you to proceed. Many of the errors that the
compiler finds are simply “silly errors” caused by mistyping or incomplete edits of
the source code. Others result from flaws in our understanding of the way parts
of our program interact. To a beginner, the compiler often seems petty, but as you
learn to use the language facilities — and especially the type system — to directly
express your ideas, you’ll come to appreciate the compiler’s ability to detect prob-
lems that would otherwise have caused you hours of tedious searching for bugs.

As an example, we will look at some calls of this simple function:

int area(int length, int width); // calculate area of a rectangle

5.3.1 Syntax errors
What if we were to call area() like this:

int s1 = area(7; // error:) missing
int s2 = area(7) // error: ; missing
Int s3 = area(7); // error: Int is not a type
int s4 = area('7); // error: non-terminated character (' missing)

Each of those lines has a syntax error; that is, they are not well formed according
to the C++ grammar, so the compiler will reject them. Unfortunately, syntax er-
rors are not always easy to report in a way that you, the programmer, find easy to
understand. That’s because the compiler may have to read a bit further than the
error to be sure that there really is an error. The effect of this is that even though
syntax errors tend to be completely trivial (you’ll often find it hard to believe you
have made such a mistake once you find it), the reporting is often cryptic and
occasionally refers to a line further on in the program. So, for syntax errors, if
you don’t see anything wrong with the line the compiler points to, also look at
previous lines in the program.

Note that the compiler has no idea what you are trying to do, so it cannot
report errors in terms of your intent, only in terms of what you did. For example,
given the error in the declaration of s3 above, a compiler is unlikely to say

“You misspelled int; don’t capitalize the i.”

Rather, it’ll say something like

“syntax error: missing ‘;’ before identifi er ‘s3’”
“‘s3’ missing storage-class or type identifi ers”
“‘Int’ missing storage-class or type identifi ers”

Such messages tend to be cryptic, until you get used to them, and to use a vocabulary
that can be hard to penetrate. Different compilers can give very different-looking

Stroustrup_book.indb 137Stroustrup_book.indb 137 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS138

error messages for the same code. Fortunately, you soon get used to reading such
stuff. After all, a quick look at those cryptic lines can be read as

“There was a syntax error before s3,
and it had something to do with the type of Int or s3.”

Given that, it’s not rocket science to find the problem.

TRY THIS

Try to compile those examples and see how the compiler responds.

5.3.2 Type errors
Once you have removed syntax errors, the compiler will start reporting type er-
rors; that is, it will report mismatches between the types you declared (or forgot to
declare) for your variables, functions, etc. and the types of values or expressions
you assign to them, pass as function arguments, etc. For example:

int x0 = arena(7); // error: undeclared function
int x1 = area(7); // error: wrong number of arguments
int x2 = area("seven",2); // error: 1st argument has a wrong type

Let’s consider these errors.

 1. For arena(7), we misspelled area as arena, so the compiler thinks we want
to call a function called arena. (What else could it “think”? That’s what
we said.) Assuming there is no function called arena(), you’ll get an error
message complaining about an undeclared function. If there is a function
called arena, and if that function accepts 7 as an argument, you have a
worse problem: the program will compile but do something you didn’t
expect it to (that’s a logical error; see §5.7).

 2. For area(7), the compiler detects the wrong number of arguments. In
C++, every function call must provide the expected number of argu-
ments, of the right types, and in the right order. When the type system is
used appropriately, this can be a powerful tool for avoiding run-time er-
rors (see §14.1).

 3. For area("seven",2), you might hope that the computer would look at
"seven" and figure out that you meant the integer 7. It won’t. If a func-
tion needs an integer, you can’t give it a string. C++ does support some
implicit type conversions (see §3.9) but not string to int. The compiler
does not try to guess what you meant. What would you have expected
for area("Hovel lane",2), area("7,2"), and area("sieben","zwei")?

T

Stroustrup_book.indb 138Stroustrup_book.indb 138 4/22/14 9:42 AM4/22/14 9:42 AM

5.4 LINK-TIME ERRORS 139

These are just a few examples. There are many more errors that the compiler will
find for you.

TRY THIS

Try to compile those examples and see how the compiler responds. Try
thinking of a few more errors yourself, and try those.

5.3.3 Non-errors
As you work with the compiler, you’ll wish that it was smart enough to figure out
what you meant; that is, you’d like some of the errors it reports not to be errors.
That’s natural. More surprisingly, as you gain experience, you’ll begin to wish
that the compiler would reject more code, rather than less. Consider:

int x4 = area(10,–7); // OK: but what is a rectangle with a width of minus 7?
int x5 = area(10.7,9.3); // OK: but calls area(10,9)
char x6 = area(100,9999); // OK: but truncates the result

For x4 we get no error message from the compiler. From the compiler’s point of
view, area (10,–7) is fine: area() asks for two integers and you gave them to it;
nobody said that those arguments had to be positive.

For x5, a good compiler will warn about the truncation of the doubles 10.7
and 9.3 into the ints 10 and 9 (see §3.9.2). However, the (ancient) language rules
state that you can implicitly convert a double to an int, so the compiler is not
allowed to reject the call area(10.7,9.3).

The initialization of x6 suffers from a variant of the same problem as the
call area(10.7,9.3). The int returned by area(100,9999), probably 999900, will be
assigned to a char. The most likely result is for x6 to get the “truncated” value
–36. Again, a good compiler will give you a warning even though the (ancient)
language rules prevent it from rejecting the code.

As you gain experience, you’ll learn how to get the most out of the compil-
er’s ability to detect errors and to dodge its known weaknesses. However, don’t
get overconfident: “my program compiled” doesn’t mean that it will run. Even
if it does run, it typically gives wrong results at first until you find the flaws in
your logic.

5.4 Link-time errors
A program consists of several separately compiled parts, called translation units.
Every function in a program must be declared with exactly the same type in

T

Stroustrup_book.indb 139Stroustrup_book.indb 139 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS140

every translation unit in which it is used. We use header files to ensure that; see
§8.3. Every function must also be defined exactly once in a program. If either
of these rules is violated, the linker will give an error. We discuss how to avoid
link-time errors in §8.3. For now, here is an example of a program that might give
a typical linker error:

int area(int length, int width); // calculate area of a rectangle

int main()
{
 int x = area(2,3);
}

Unless we somehow have defined area() in another source file and linked the code
generated from that source file to this code, the linker will complain that it didn’t
find a definition of area().

The definition of area() must have exactly the same types (both the return
type and the argument types) as we used in our file, that is:

int area(int x, int y) { /* . . . */ } // “our” area()

Functions with the same name but different types will not match and will be
ignored:

double area(double x, double y) { /* . . . */ } // not “our” area()

int area(int x, int y, char unit) { /* . . . */ } // not “our” area()

Note that a misspelled function name doesn’t usually give a linker error. Instead,
the compiler gives an error immediately when it sees a call to an undeclared func-
tion. That’s good: compile-time errors are found earlier than link-time errors and
are typically easier to fix.

The linkage rules for functions, as stated above, also hold for all other entities
of a program, such as variables and types: there has to be exactly one definition
of an entity with a given name, but there can be many declarations, and all have
to agree exactly on its type. For more details, see §8.2–3.

5.5 Run-time errors
If your program has no compile-time errors and no link-time errors, it’ll run. This
is where the fun really starts. When you write the program you are able to detect

Stroustrup_book.indb 140Stroustrup_book.indb 140 4/22/14 9:42 AM4/22/14 9:42 AM

5.5 RUN-TIME ERRORS 141

errors, but it is not always easy to know what to do with an error once you catch
it at run time. Consider:

int area(int length, int width) // calculate area of a rectangle
{
 return length*width;
}

int framed_area(int x, int y) // calculate area within frame
{
 return area(x–2,y–2);
}

int main()
{
 int x = –1;
 int y = 2;
 int z = 4;
 // . . .
 int area1 = area(x,y);
 int area2 = framed_area(1,z);
 int area3 = framed_area(y,z);
 double ratio = double(area1)/area3; // convert to double to get
 // floating-point division
}

We used the variables x, y, z (rather than using the values directly as arguments) to
make the problems less obvious to the human reader and harder for the compiler
to detect. However, these calls lead to negative values, representing areas, being
assigned to area1 and area2. Should we accept such erroneous results, which violate
most notions of math and physics? If not, who should detect the errors: the caller of
area() or the function itself? And how should such errors be reported?

Before answering those questions, look at the calculation of the ratio in the
code above. It looks innocent enough. Did you notice something wrong with it? If
not, look again: area3 will be 0, so that double(area1)/area3 divides by zero. This
leads to a hardware-detected error that terminates the program with some cryptic
message relating to hardware. This is the kind of error that you — or your users —
will have to deal with if you don’t detect and deal sensibly with run-time errors.
Most people have low tolerance for such “hardware violations” because to anyone
not intimately familiar with the program all the information provided is “Some-
thing went wrong somewhere!” That’s insufficient for any constructive action, so
we feel angry and would like to yell at whoever supplied the program.

Stroustrup_book.indb 141Stroustrup_book.indb 141 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS142

So, let’s tackle the problem of argument errors with area(). We have two ob-
vious alternatives:

 a. Let the caller of area() deal with bad arguments.
 b. Let area() (the called function) deal with bad arguments.

5.5.1 The caller deals with errors
Let’s try the first alternative (“Let the user beware!”) first. That’s the one we’d
have to choose if area() was a function in a library where we couldn’t modify it.
For better or worse, this is the most common approach.

Protecting the call of area(x,y) in main() is relatively easy:

if (x<=0) error("non-positive x");
if (y<=0) error("non-positive y");
int area1 = area(x,y);

Really, the only question is what to do if we find an error. Here, we have called a
function error() which we assume will do something sensible. In fact, in std_lib_
facilities.h we supply an error() function that by default terminates the program
with a system error message plus the string we passed as an argument to error().
If you prefer to write out your own error message or take other actions, you catch
runtime_error (§5.6.2, §7.3, §7.8, §B.2.1). This approach suffices for most student
programs and is an example of a style that can be used for more sophisticated
error handling.

If we didn’t need separate error messages about each argument, we would
simplify:

if (x<=0 || y<=0) error("non-positive area() argument"); // || means “or”
int area1 = area(x,y);

To complete protecting area() from bad arguments, we have to deal with the calls
through framed_area(). We could write

if (z<=2)
 error("non-positive 2nd area() argument called by framed_area()");
int area2 = framed_area(1,z);
if (y<=2 || z<=2)
 error("non-positive area() argument called by framed_area()");
int area3 = framed_area(y,z);

This is messy, but there is also something fundamentally wrong. We could write
this only by knowing exactly how framed_area() used area(). We had to know that
framed_area() subtracted 2 from each argument. We shouldn’t have to know such
details! What if someone modified framed_area() to use 1 instead of 2? Someone

Stroustrup_book.indb 142Stroustrup_book.indb 142 4/22/14 9:42 AM4/22/14 9:42 AM

5.5 RUN-TIME ERRORS 143

doing that would have to look at every call of framed_area() and modify the
error-checking code correspondingly. Such code is called “brittle” because it breaks
easily. This is also an example of a “magic constant” (§4.3.1). We could make the
code less brittle by giving the value subtracted by framed_area() a name:

constexpr int frame_width = 2;
int framed_area(int x, int y) // calculate area within frame
{
 return area(x–frame_width,y–frame_width);
}

That name could be used by code calling framed_area():

if (1–frame_width<=0 || z–frame_width<=0)
 error("non-positive argument for area() called by framed_area()");
int area2 = framed_area(1,z);
if (y–frame_width<=0 || z–frame_width<=0)
 error("non-positive argument for area() called by framed_area()");
int area3 = framed_area(y,z);

Look at that code! Are you sure it is correct? Do you find it pretty? Is it easy to
read? Actually, we find it ugly (and therefore error-prone). We have more than
trebled the size of the code and exposed an implementation detail of framed_area().
There has to be a better way!

Look at the original code:

int area2 = framed_area(1,z);
int area3 = framed_area(y,z);

It may be wrong, but at least we can see what it is supposed to do. We can keep
this code if we put the check inside framed_area().

5.5.2 The callee deals with errors
Checking for valid arguments within framed_area() is easy, and error() can still be
used to report a problem:

int framed_area(int x, int y) // calculate area within frame
{
 constexpr int frame_width = 2;
 if (x–frame_width<=0 || y–frame_width<=0)
 error("non-positive area() argument called by framed_area()");
 return area(x–frame_width,y–frame_width);
}

Stroustrup_book.indb 143Stroustrup_book.indb 143 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS144

This is rather nice, and we no longer have to write a test for each call of
framed_area(). For a useful function that we call 500 times in a large program,
that can be a huge advantage. Furthermore, if anything to do with the error han-
dling changes, we only have to modify the code in one place.

Note something interesting: we almost unconsciously slid from the “caller must
check the arguments” approach to the “function must check its own arguments”
approach (also called “the callee checks” because a called function is often called “a
callee”). One benefit of the latter approach is that the argument-checking code is in
one place. We don’t have to search the whole program for calls. Furthermore, that
one place is exactly where the arguments are to be used, so all the information we
need is easily available for us to do the check.

Let’s apply this solution to area():

int area(int length, int width) // calculate area of a rectangle
{
 if (length<=0 || width <=0) error("non-positive area() argument");
 return length*width;
}

This will catch all errors in calls to area(), so we no longer need to check in framed_
area(). We might want to, though, to get a better — more specific — error message.

Checking arguments in the function seems so simple, so why don’t people do
that always? Inattention to error handling is one answer, sloppiness is another, but
there are also respectable reasons:

• We can’t modify the function defi nition: The function is in a library that for
some reason can’t be changed. Maybe it’s used by others who don’t share
your notions of what constitutes good error handling. Maybe it’s owned
by someone else and you don’t have the source code. Maybe it’s in a
library where new versions come regularly so that if you made a change,
you’d have to change it again for each new release of the library.

• The called function doesn’t know what to do in case of error: This is typically the
case for library functions. The library writer can detect the error, but only
you know what is to be done when an error occurs.

• The called function doesn’t know where it was called from: When you get an error
message, it tells you that something is wrong, but not how the executing
program got to that point. Sometimes, you want an error message to be
more specifi c.

• Performance: For a small function the cost of a check can be more than
the cost of calculating the result. For example, that’s the case with area(),
where the check also more than doubles the size of the function (that is,

Stroustrup_book.indb 144Stroustrup_book.indb 144 4/22/14 9:42 AM4/22/14 9:42 AM

5.5 RUN-TIME ERRORS 145

the number of machine instructions that need to be executed, not just the
length of the source code). For some programs, that can be critical, espe-
cially if the same information is checked repeatedly as functions call each
other, passing information along more or less unchanged.

So what should you do? Check your arguments in a function unless you have a
good reason not to.

After examining a few related topics, we’ll return to the question of how to
deal with bad arguments in §5.10.

5.5.3 Error reporting
Let’s consider a slightly different question: Once you have checked a set of ar-
guments and found an error, what should you do? Sometimes you can return an
“error value.” For example:

// ask user for a yes-or-no answer;
// return 'b' to indicate a bad answer (i.e., not yes or no)
char ask_user(string question)
{
 cout << question << "? (yes or no)\n";

string answer = " ";
cin >> answer;
if (answer =="y" || answer=="yes") return 'y';
if (answer =="n" || answer=="no") return 'n';

 return 'b'; // ‘b’ for “bad answer”
}

// calculate area of a rectangle;
// return –1 to indicate a bad argument
int area(int length, int width)
{
 if (length<=0 || width <=0) return –1;

return length*width;
}

That way, we can have the called function do the detailed checking, while letting
each caller handle the error as desired. This approach seems like it could work,
but it has a couple of problems that make it unusable in many cases:

• Now both the called function and all callers must test. The caller has only
a simple test to do but must still write that test and decide what to do if
it fails.

Stroustrup_book.indb 145Stroustrup_book.indb 145 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS146

• A caller can forget to test. That can lead to unpredictable behavior further
along in the program.

• Many functions do not have an “extra” return value that they can use to
indicate an error. For example, a function that reads an integer from input
(such as cin’s operator >>) can obviously return any int value, so there is
no int that it could return to indicate failure.

The second case above — a caller forgetting to test — can easily lead to surprises.
For example:

int f(int x, int y, int z)
{
 int area1 = area(x,y);
 if (area1<=0) error("non-positive area");
 int area2 = framed_area(1,z);
 int area3 = framed_area(y,z);
 double ratio = double(area1)/area3;
 // . . .
}

Do you see the errors? This kind of error is hard to find because there is no obvi-
ous “wrong code” to look at: the error is the absence of a test.

TRY THIS

Test this program with a variety of values. Print out the values of area1, area2,
area3, and ratio. Insert more tests until all errors are caught. How do you
know that you caught all errors? This is not a trick question; in this particular
example you can give a valid argument for having caught all errors.

There is another solution that deals with that problem: using exceptions.

5.6 Exceptions
Like most modern programming languages, C++ provides a mechanism to help
deal with errors: exceptions. The fundamental idea is to separate detection of an
error (which should be done in a called function) from the handling of an error
(which should be done in the calling function) while ensuring that a detected error
cannot be ignored; that is, exceptions provide a mechanism that allows us to com-
bine the best of the various approaches to error handling we have explored so far.
Nothing makes error handling easy, but exceptions make it easier.

T

Stroustrup_book.indb 146Stroustrup_book.indb 146 4/22/14 9:42 AM4/22/14 9:42 AM

5.6 EXCEPTIONS 147

The basic idea is that if a function finds an error that it cannot handle, it does
not return normally; instead, it throws an exception indicating what went wrong.
Any direct or indirect caller can catch the exception, that is, specify what to do if
the called code used throw. A function expresses interest in exceptions by using a
try-block (as described in the following subsections) listing the kinds of exceptions
it wants to handle in the catch parts of the try-block. If no caller catches an excep-
tion, the program terminates.

We’ll come back to exceptions much later (Chapter 19) to see how to use
them in slightly more advanced ways.

5.6.1 Bad arguments
Here is a version of area() using exceptions:

class Bad_area { }; // a type specifically for reporting errors from area()

// calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)
{
 if (length<=0 || width<=0) throw Bad_area{};
 return length*width;
}

That is, if the arguments are OK, we return the area as always; if not, we get out
of area() using the throw, hoping that some catch will provide an appropriate
response. Bad_area is a new type we define with no other purpose than to provide
something unique to throw from area() so that some catch can recognize it as the
kind of exception thrown by area(). User-defined types (classes and enumeration)
will be discussed in Chapter 9. The notation Bad_area{} means “Make an object
of type Bad_area with the default value,” so throw Bad_area{} means “Make an
object of type Bad_area and throw it.”

We can now write

int main()
try {
 int x = –1;
 int y = 2;
 int z = 4;
 // . . .
 int area1 = area(x,y);
 int area2 = framed_area(1,z);
 int area3 = framed_area(y,z);
 double ratio = area1/area3;
}

Stroustrup_book.indb 147Stroustrup_book.indb 147 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS148

catch (Bad_area) {
 cout << "Oops! bad arguments to area()\n";
}

First note that this handles all calls to area(), both the one in main() and the two
through framed_area(). Second, note how the handling of the error is cleanly
separated from the detection of the error: main() knows nothing about which
function did a throw Bad_area{}, and area() knows nothing about which func-
tion (if any) cares to catch the Bad_area exceptions it throws. This separation
is especially important in large programs written using many libraries. In such
programs, nobody can “just deal with an error by putting some code where it’s
needed,” because nobody would want to modify code in both the application and
in all of the libraries.

5.6.2 Range errors
Most real-world code deals with collections of data; that is, it uses all kinds of
tables, lists, etc. of data elements to do a job. In the context of C++, we often
refer to “collections of data” as containers. The most common and useful standard
library container is the vector we introduced in §4.6. A vector holds a number of
elements, and we can determine that number by calling the vector’s size() mem-
ber function. What happens if we try to use an element with an index (subscript)
that isn’t in the valid range [0:v.size())? The general notation [low:high) means
indices from low to high–1, that is, including low but not high:

. . .

low: high:

Before answering that question, we should pose another question and answer it:

“Why would you do that?” After all, you know that a subscript for v should
be in the range [0,v.size()), so just be sure that’s so!

As it happens, that’s easy to say but sometimes hard to do. Consider this plausible
program:

vector<int> v; // a vector of ints
for (int i; cin>>I;)
 v.push_back(i); // get values
for (int i = 0; i<=v.size(); ++i) // print values
 cout << "v[" << i <<"] == " << v[i] << '\n';

Do you see the error? Please try to spot it before reading on. It’s not an uncom-
mon error. We have made such errors ourselves — especially late at night when

Stroustrup_book.indb 148Stroustrup_book.indb 148 4/22/14 9:42 AM4/22/14 9:42 AM

5.6 EXCEPTIONS 149

we were tired. Errors are always more common when you are tired or rushed.
We use 0 and size() to try to make sure that i is always in range when we do v[i].

Unfortunately, we made a mistake. Look at the for-loop: the termination con-
dition is i<=v.size() rather than the correct i<v.size(). This has the unfortunate
consequence that if we read in five integers we’ll try to write out six. We try to
read v[5], which is one beyond the end of the vector. This kind of error is so com-
mon and “famous” that it has several names: it is an example of an off-by-one error,
a range error because the index (subscript) wasn’t in the range required by the
vector, and a bounds error because the index was not within the limits (bounds) of
the vector.

Why didn’t we use a range-for-statement to express that loop? With a
range-for, we cannot get the end of the loop wrong. However, for this loop, we
wanted not only the value of each element but also the indices (subscripts). A
range-for doesn’t give that without extra effort.

Here is a simpler version that produces the same range error as the loop:

vector<int> v(5);
int x = v[5];

However, we doubt that you’d have considered that realistic and worth serious
attention.

So what actually happens when we make such a range error? The subscript
operation of vector knows the size of the vector, so it can check (and the vector
we are using does; see §4.6 and §19.4). If that check fails, the subscript operation
throws an exception of type out_of_range. So, if the off-by-one code above had
been part of a program that caught exceptions, we would at least have gotten a
decent error message:

int main()
try {
 vector<int> v; // a vector of ints
 for (int x; cin>>x;)
 v.push_back(x); // set values
 for (int i = 0; i<=v.size(); ++i) // print values
 cout << "v[" << i <<"] == " << v[i] << '\n';
} catch (out_of_range) {
 cerr << "Oops! Range error\n";
 return 1;
} catch (...) { // catch all other exceptions
 cerr << "Exception: something went wrong\n";
 return 2;
}

Stroustrup_book.indb 149Stroustrup_book.indb 149 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS150

Note that a range error is really a special case of the argument errors we discussed
in §5.5.2. We didn’t trust ourselves to consistently check the range of vector indi-
ces, so we told vector’s subscript operation to do it for us. For the reasons we out-
line, vector’s subscript function (called vector::operator[]) reports finding an error
by throwing an exception. What else could it do? It has no idea what we would like
to happen in case of a range error. The author of vector couldn’t even know what
programs his or her code would be part of.

5.6.3 Bad input
We’ll postpone the detailed discussion of what to do with bad input until §10.6.
However, once bad input is detected, it is dealt with using the same techniques
and language features as argument errors and range errors. Here, we’ll just
show how you can tell if your input operations succeeded. Consider reading a
floating-point number:

double d = 0;
cin >> d;

We can test if the last input operation succeeded by testing cin:

if (cin) {
 // all is well, and we can try reading again
}
else {
 // the last read didn’t succeed, so we take some other action
}

There are several possible reasons for that input operation’s failure. The one that
should concern you right now is that there wasn’t a double for >> to read.

During the early stages of development, we often want to indicate that we
have found an error but aren’t yet ready to do anything particularly clever about
it; we just want to report the error and terminate the program. Later, maybe, we’ll
come back and do something more appropriate. For example:

double some_function()
{
 double d = 0;
 cin >> d;
 if (!cin) error("couldn't read a double in 'some_function()'");
 // do something useful
}

Stroustrup_book.indb 150Stroustrup_book.indb 150 4/22/14 9:42 AM4/22/14 9:42 AM

5.6 EXCEPTIONS 151

The condition !cin (“not cin,” that is, cin is not in a good state) means that the
previous operation on cin failed.

The string passed to error() can then be printed as a help to debugging or
as a message to the user. How can we write error() so as to be useful in a lot of
programs? It can’t return a value because we wouldn’t know what to do with that
value; instead error() is supposed to terminate the program after getting its mes-
sage written. In addition, we might want to take some minor action before exiting,
such as keeping a window alive long enough for us to read the message. That’s an
obvious job for an exception (see §7.3).

The standard library defines a few types of exceptions, such as the out_of_range
thrown by vector. It also supplies runtime_error which is pretty ideal for our
needs because it holds a string that can be used by an error handler. So, we can
write our simple error() like this:

void error(string s)
{
 throw runtime_error(s);
}

When we want to deal with runtime_error we simply catch it. For simple pro-
grams, catching runtime_error in main() is ideal:

int main()
try {
 // . . . our program . . .
 return 0; // 0 indicates success
}
catch (runtime_error& e) {
 cerr << "runtime error: " << e.what() << '\n';
 keep_window_open();
 return 1; // 1 indicates failure
}

The call e.what() extracts the error message from the runtime_error. The & in

catch(runtime_error& e) {

is an indicator that we want to “pass the exception by reference.” For now, please
treat this as simply an irrelevant technicality. In §8.5.4–6, we explain what it
means to pass something by reference.

Note that we used cerr rather than cout for our error output: cerr is exactly
like cout except that it is meant for error output. By default both cerr and cout

Stroustrup_book.indb 151Stroustrup_book.indb 151 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS152

write to the screen, but cerr isn’t optimized so it is more resilient to errors, and
on some operating systems it can be diverted to a different target, such as a file.
Using cerr also has the simple effect of documenting that what we write relates to
errors. Consequently, we use cerr for error messages.

As it happens, out_of_range is not a runtime_error, so catching runtime_error
does not deal with the out_of_range errors that we might get from misuse of vectors
and other standard library container types. However, both out_of_range and run-
time_error are “exceptions,” so we can catch exception to deal with both:

int main()
try {
 // our program
 return 0; // 0 indicates success
}
catch (exception& e) {
 cerr << "error: " << e.what() << '\n';
 keep_window_open();
 return 1; // 1 indicates failure
}
catch (...) {
 cerr << "Oops: unknown exception!\n";
 keep_window_open();
 return 2; // 2 indicates failure
}

We added catch(...) to handle exceptions of any type whatsoever.
Dealing with exceptions of both type out_of_range and type runtime_error

through a single type exception, said to be a common base (supertype) of both,
is a most useful and general technique that we will explore in Chapters 13–16.

Note again that the return value from main() is passed to “the system” that
invoked the program. Some systems (such as Unix) often use that value, whereas
others (such as Windows) typically ignore it. A zero indicates successful comple-
tion and a nonzero return value from main() indicates some sort of failure.

When you use error(), you’ll often wish to pass two pieces of information
along to describe the problem. In that case, just concatenate the strings describing
those two pieces of information. This is so common that we provide a second
version of error() for that:

void error(string s1, string s2)
{
 throw runtime_error(s1+s2);
}

Stroustrup_book.indb 152Stroustrup_book.indb 152 4/22/14 9:42 AM4/22/14 9:42 AM

5.6 EXCEPTIONS 153

This simple error handling will do for a while, until our needs increase signifi-
cantly and our sophistication as designers and programmers increases correspond-
ingly. Note that we can use error() independently of how many function calls we
have done on the way to the error: error() will find its way to the nearest catch of
runtime_error, typically the one in main(). For examples of the use of exceptions
and error(), see §7.3 and §7.7. If you don’t catch an exception, you’ll get a default
system error (an “uncaught exception” error).

TRY THIS

To see what an uncaught exception error looks like, run a small program that
uses error() without catching any exceptions.

5.6.4 Narrowing errors
In §3.9.2 we saw a nasty kind of error: when we assign a value that’s “too large to
fit” to a variable, it is implicitly truncated. For example:

int x = 2.9;
char c = 1066;

Here x will get the value 2 rather than 2.9, because x is an int and ints don’t have
values that are fractions of an integer, just whole integers (obviously). Similarly,
if we use the common ASCII character set, c will get the value 42 (representing
the character *), rather than 1066, because there is no char with the value 1066 in
that character set.

In §3.9.2 we saw how we could protect ourselves against such narrowing
by testing. Given exceptions (and templates; see §19.3) we can write a function
that tests and throws a runtime_error exception if an assignment or initialization
would lead to a changed value. For example:

int x1 = narrow_cast<int>(2.9); // throws
int x2 = narrow_cast<int>(2.0); // OK
char c1 = narrow_cast<char>(1066); // throws
char c2 = narrow_cast<char>(85); // OK

The < . . . > brackets are the same as are used for vector<int>. They are used
when we need to specify a type, rather than a value, to express an idea. They are
called template arguments. We can use narrow_cast when we need to convert a value
and we are not sure “if it will fit”; it is defined in std_lib_facilities.h and imple-
mented using error(). The word cast means “type conversion” and indicates the

T

Stroustrup_book.indb 153Stroustrup_book.indb 153 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS154

operation’s role in dealing with something that’s broken (like a cast on a broken
leg). Note that a cast doesn’t change its operand; it produces a new value (of the
type specified in the < . . . >) that corresponds to its operand value.

5.7 Logic errors
Once we have removed the initial compiler and linker errors, the program runs.
Typically, what happens next is that no output is produced or that the output that
the program produces is just wrong. This can occur for a number of reasons.
Maybe your understanding of the underlying program logic is flawed; maybe
you didn’t write what you thought you wrote; or maybe you made some “silly
error” in one of your if-statements, or whatever. Logic errors are usually the most
difficult to find and eliminate, because at this stage the computer does what you
asked it to. Your job now is to figure out why that wasn’t really what you meant.
Basically, a computer is a very fast moron. It does exactly what you tell it to do,
and that can be most humbling.

Let us try to illustrate this with a simple example. Consider this code for find-
ing the lowest, highest, and average temperature values in a set of data:

int main()
{
 vector<double> temps; // temperatures

 for (double temp; cin>>temp;) // read and put into temps
 temps.push_back(temp);

 double sum = 0;
 double high_temp = 0;
 double low_temp = 0;

 for (int x : temps)
 {
 if(x > high_temp) high_temp = x; // find high
 if(x < low_temp) low_temp = x; // find low
 sum += x; // compute sum
 }

 cout << "High temperature: " << high_temp<< '\n';
 cout << "Low temperature: " << low_temp << '\n';
 cout << "Average temperature: " << sum/temps.size() << '\n';
}

Stroustrup_book.indb 154Stroustrup_book.indb 154 4/22/14 9:42 AM4/22/14 9:42 AM

5.7 LOGIC ERRORS 155

We tested this program by entering the hourly temperature values from the weather
center in Lubbock, Texas, for February 16, 2004 (Texas still uses Fahrenheit):

 –16.5, –23.2, –24.0, –25.7, –26.1, –18.6, –9.7, –2.4,
7.5, 12.6, 23.8, 25.3, 28.0, 34.8, 36.7, 41.5,

 40.3, 42.6, 39.7, 35.4, 12.6, 6.5, –3.7, –14.3

The output was

High temperature: 42.6
Low temperature: –26.1
Average temperature: 9.3

A naive programmer would conclude that the program works just fine. An irre-
sponsible programmer would ship it to a customer. It would be prudent to test it
again with another set of data. This time use the temperatures from July 23, 2004:

 76.5, 73.5, 71.0, 73.6, 70.1, 73.5, 77.6, 85.3,
 88.5, 91.7, 95.9, 99.2, 98.2, 100.6, 106.3, 112.4,
 110.2, 103.6, 94.9, 91.7, 88.4, 85.2, 85.4, 87.7

This time, the output was

High temperature: 112.4
Low temperature: 0.0
Average temperature: 89.2

Oops! Something is not quite right. Hard frost (0.0°F is about –18°C) in Lubbock
in July would mean the end of the world! Did you spot the error? Since low_temp
was initialized at 0.0, it would remain 0.0 unless one of the temperatures in the data
was below zero.

TRY THIS

Get this program to run. Check that our input really does produce that out-
put. Try to “break” the program (i.e., get it to give wrong results) by giving
it other input sets. What is the least amount of input you can give it to get it
to fail?

Unfortunately, there are more errors in this program. What would happen if
all of the temperatures were below zero? The initialization for high_temp has the

T

Stroustrup_book.indb 155Stroustrup_book.indb 155 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS156

equivalent problem to low_temp: high_temp will remain at 0.0 unless there is a
higher temperature in the data. This program wouldn’t work for the South Pole
in winter either.

These errors are fairly typical; they will not cause any errors when you com-
pile the program or cause wrong results for “reasonable” inputs. However, we
forgot to think about what we should consider “reasonable.” Here is an improved
program:

int main()
{
 double sum = 0;
 double high_temp = –1000; // initialize to impossibly low
 double low_temp = 1000; // initialize to “impossibly high”
 int no_of_temps = 0;

 for (double temp; cin>>temp;) { // read temp
 ++no_of_temps; // count temperatures

sum += temp; // compute sum
if (temp > high_temp) high_temp = temp; // find high
if (temp < low_temp) low_temp = temp; // find low

}

 cout << "High temperature: " << high_temp<< '\n';
 cout << "Low temperature: " << low_temp << '\n';
 cout << "Average temperature: " << sum/no_of_temps << '\n';
}

Does it work? How would you be certain? How would you precisely define
“work”? Where did we get the values 1000 and –1000? Remember that we warned
about “magic constants” (§5.5.1). Having 1000 and –1000 as literal values in the
middle of the program is bad style, but are the values also wrong? Are there places
where the temperatures go below –1000°F (–573°C)? Are there places where the
temperatures go above 1000°F (538°C)?

TRY THIS

Look it up. Check some information sources to pick good values for the
min_temp (the “minimum temperature”) and max_temp (the “maximum
temperature”) constants for our program. Those values will determine the
limits of usefulness of our program.

T

Stroustrup_book.indb 156Stroustrup_book.indb 156 4/22/14 9:42 AM4/22/14 9:42 AM

5.8 ESTIMATION 157

5.8 Estimation
Imagine you have written a program that does a simple calculation, say, comput-
ing the area of a hexagon. You run it and it gives the area –34.56. You just know
that’s wrong. Why? Because no shape has a negative area. So, you fix that bug
(whatever it was) and get 21.65685. Is that right? That’s harder to say because we
don’t usually keep the formula for the area of a hexagon in our heads. What we
must do before making fools of ourselves by delivering a program that produces
ridiculous results is just to check that the answer is plausible. In this case, that’s
easy. A hexagon is much like a square. We scribble our regular hexagon on a piece
of paper and eyeball it to be about the size of a 3-by-3 square. Such a square has
the area 9. Bummer, our 21.65685 can’t be right! So we work over our program
again and get 10.3923. Now, that just might be right!

The general point here has nothing to do with hexagons. The point is that
unless we have some idea of what a correct answer will be like — even ever so
approximately — we don’t have a clue whether our result is reasonable. Always
ask yourself this question:

 1. Is this answer to this particular problem plausible?

You should also ask the more general (and often far harder) question:

 2. How would I recognize a plausible result?

Here, we are not asking, “What’s the exact answer?” or “What’s the correct an-
swer?” That’s what we are writing the program to tell us. All we want is to know
that the answer is not ridiculous. Only when we know that we have a plausible
answer does it make sense to proceed with further work.

Estimation is a noble art that combines common sense and some very simple
arithmetic applied to a few facts. Some people are good at doing estimates in their
heads, but we prefer scribbles “on the back of an envelope” because we find we
get confused less often that way. What we call estimation here is an informal set
of techniques that are sometimes (humorously) called guesstimation because they
combine a bit of guessing with a bit of calculation.

TRY THIS

Our hexagon was regular with 2cm sides. Did we get that answer right? Just
do the “back of the envelope” calculation. Take a piece a paper and scribble
on it. Don’t feel that’s beneath you. Many famous scientists have been greatly
admired for their ability to come up with an approximate answer using a
pencil and the back of an envelope (or a napkin). This is an ability — a simple
habit, really — that can save us a lot of time and confusion.

T

Stroustrup_book.indb 157Stroustrup_book.indb 157 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS158

Often, making an estimate involves coming up with estimates of data that
are needed for a proper calculation, but that we don’t yet have. Imagine you
have to test a program that estimates driving times between cities. Is a driving
time of 15 hours and 33 minutes plausible for New York City to Denver? From
London to Nice? Why or why not? What data do you have to “guess” to answer
these questions? Often, a quick web search can be most helpful. For example,
2000 miles is not a bad guess on the road distance from New York City to Den-
ver, and it would be hard (and illegal) to maintain an average speed of 130m/hr,
so 15 hours is not plausible (15*130 is just a bit less than 2000). You can check:
we overestimated both the distance and the average speed, but for a check of
plausibility we don’t have to be exactly right; we just have to guess well enough.

TRY THIS

Estimate those driving times. Also, estimate the corresponding flight times (us-
ing ordinary commercial air travel). Then, try to verify your estimates by using
appropriate sources, such as maps and timetables. We’d use online sources.

5.9 Debugging
When you have written (drafted?) a program, it’ll have errors. Small programs do
occasionally compile and run correctly the first time you try. But if that happens
for anything but a completely trivial program, you should at first be very, very
suspicious. If it really did run correctly the first time, go tell your friends and cel-
ebrate — because this won’t happen every year.

So, when you have written some code, you have to find and remove the errors.
That process is usually called debugging and the errors bugs. The term bug is often
claimed to have originated from a hardware failure caused by insects in the elec-
tronics in the days when computers were racks of vacuum tubes and relays filling
rooms. Several people have been credited with the discovery and the application
of the word bug to errors in software. The most famous of those is Grace Murray
Hopper, the inventor of the COBOL programming language (§22.2.2.2). Whoever
invented the term more than 50 years ago, bug is evocative and ubiquitous. The
activity of deliberately searching for errors and removing them is called debugging.

Debugging works roughly like this:

 1. Get the program to compile.
 2. Get the program to link.
 3. Get the program to do what it is supposed to do.

Basically, we go through this sequence again and again: hundreds of times, thou-
sands of times, again and again for years for really large programs. Each time

T

Stroustrup_book.indb 158Stroustrup_book.indb 158 4/22/14 9:42 AM4/22/14 9:42 AM

5.9 DEBUGGING 159

something doesn’t work we have to find what caused the problem and fix it. I
consider debugging the most tedious and time-wasting aspect of programming
and will go to great lengths during design and programming to minimize the
amount of time spent hunting for bugs. Others find that hunt thrilling and the
essence of programming — it can be as addictive as any video game and keep a
programmer glued to the computer for days and nights (I can vouch for that from
personal experience also).

Here is how not to debug:

while (the program doesn't appear to work) { // pseudo code
 Randomly look through the program for something that "looks odd"
 Change it to look better
}

Why do we bother to mention this? It’s obviously a poor algorithm with little
guarantee of success. Unfortunately, that description is only a slight caricature of
what many people find themselves doing late at night when feeling particularly
lost and clueless, having tried “everything else.”

The key question in debugging is

How would I know if the program actually worked correctly?

If you can’t answer that question, you are in for a long and tedious debug session,
and most likely your users are in for some frustration. We keep returning to this
point because anything that helps answer that question minimizes debugging and
helps produce correct and maintainable programs. Basically, we’d like to design
our programs so that bugs have nowhere to hide. That’s typically too much to
ask for, but we aim to structure programs to minimize the chance of error and
maximize the chance of finding the errors that do creep in.

5.9.1 Practical debug advice
Start thinking about debugging before you write the first line of code. Once you
have a lot of code written it’s too late to try to simplify debugging.

Decide how to report errors: “Use error() and catch exception in main()” will
be your default answer in this book.

Make the program easy to read so that you have a chance of spotting the bugs:

• Comment your code well. That doesn’t simply mean “Add a lot of com-
ments.” You don’t say in English what is better said in code. Rather, you
say in the comments — as clearly and briefl y as you can — what can’t be
said clearly in code:

• The name of the program
• The purpose of the program

Stroustrup_book.indb 159Stroustrup_book.indb 159 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS160

• Who wrote this code and when
• Version numbers
• What complicated code fragments are supposed to do
• What the general design ideas are
• How the source code is organized
• What assumptions are made about inputs
• What parts of the code are still missing and what cases are still not

handled

• Use meaningful names.

• That doesn’t simply mean “Use long names.”

• Use a consistent layout of code.

• Your IDE tries to help, but it can’t do everything and you are the
one responsible.

• The style used in this book is a reasonable starting point.

• Break code into small functions, each expressing a logical action.

• Try to avoid functions longer than a page or two; most functions will
be much shorter.

• Avoid complicated code sequences.

• Try to avoid nested loops, nested if-statements, complicated condi-
tions, etc. Unfortunately, you sometimes need those, but remember
that complicated code is where bugs can most easily hide.

• Use library facilities rather than your own code when you can.

• A library is likely to be better thought out and better tested than
what you could produce as an alternative while busily solving your
main problem.

This is pretty abstract just now, but we’ll show you example after example as we
go along.

Get the program to compile. Obviously, your compiler is your best help here.
Its error messages are usually helpful — even if we always wish for better ones —
and, unless you are a real expert, assume that the compiler is always right; if you
are a real expert, this book wasn’t written for you. Occasionally, you will feel that
the rules the compiler enforces are stupid and unnecessary (they rarely are) and
that things could and ought to be simpler (indeed, but they are not). However,

Stroustrup_book.indb 160Stroustrup_book.indb 160 4/22/14 9:42 AM4/22/14 9:42 AM

5.9 DEBUGGING 161

as they say, “a poor craftsman curses his tools.” A good craftsman knows the
strengths and weaknesses of his tools and adjusts his work accordingly. Here are
some common compile-time errors:

• Is every string literal terminated?

cout << "Hello, << name << '\n'; // oops!

• Is every character literal terminated?

cout << "Hello, " << name << '\n; // oops!

• Is every block terminated?

int f(int a)
{
 if (a>0) { /* do something */ else { /* do something else */ }
} // oops!

• Is every set of parentheses matched?

if (a<=0 // oops!
 x = f(y);

The compiler generally reports this kind of error “late”; it doesn’t know
you meant to type a closing parenthesis after the 0.

• Is every name declared?

• Did you include needed headers (for now, #include "std_lib_
facilities.h")?

• Is every name declared before it’s used?
• Did you spell all names correctly?

int count; /* . . . */ ++Count; // oops!
char ch; /* . . . */ Cin>>c; // double oops!

• Did you terminate each expression statement with a semicolon?

x = sqrt(y)+2 // oops!
z = x+3;

We present more examples in this chapter’s drills. Also, keep in mind the classifi-
cation of errors from §5.2.

After the program compiles and links, next comes what is typically the hardest
part: figuring out why the program doesn’t do what it’s supposed to. You look at
the output and try to figure out how your code could have produced that. Actually,

Stroustrup_book.indb 161Stroustrup_book.indb 161 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS162

first you often look at a blank screen (or window), wondering how your program
could have failed to produce any output. A common first problem with a Windows
console-mode program is that the console window disappears before you have had
a chance to see the output (if any). One solution is to call keep_window_open()
from our std_lib_facilities.h at the end of main(). Then the program will ask for
input before exiting and you can look at the output produced before giving it the
input that will let it close the window.

When looking for a bug, carefully follow the code statement by statement
from the last point that you are sure it was correct. Pretend you’re the computer
executing the program. Does the output match your expectations? Of course not,
or you wouldn’t be debugging.

• Often, when you don’t see the problem, the reason is that you “see” what
you expect to see rather than what you wrote. Consider:

for (int i = 0; i<=max; ++j) { // oops! (twice)
 for (int i=0; 0<max; ++i); // print the elements of v
 cout << "v[" << i << "]==" << v[i] << '\n';
 // …
}

This last example came from a real program written by experienced pro-
grammers (we expect it was written very late some night).

• Often when you do not see the problem, the reason is that there is too
much code being executed between the point where the program pro-
duced the last good output and the next output (or lack of output). Most
programming environments provide a way to execute (“step through”)
the statements of a program one by one. Eventually, you’ll learn to use
such facilities, but for simple problems and simple programs, you can just
temporarily put in a few extra output statements (using cerr) to help you
see what’s going on. For example:

int my_fct(int a, double d)
{
 int res = 0;
 cerr << "my_fct(" << a << "," << d << ")\n";
 // . . . misbehaving code here . . .
 cerr << "my_fct() returns " << res << '\n';
 return res;
}

• Insert statements that check invariants (that is, conditions that should
always hold; see §9.4.3) in sections of code suspected of harboring bugs.
For example:

Stroustrup_book.indb 162Stroustrup_book.indb 162 4/22/14 9:42 AM4/22/14 9:42 AM

5.10 PRE- AND POST-CONDITIONS 163

int my_complicated_function(int a, int b, int c)
// the arguments are positive and a < b < c
{

if (!(0<a && a<b && b<c)) // ! means “not” and && means “and”
error("bad arguments for mcf");

// . . .
}

• If that doesn’t have any effect, insert invariants in sections of code not sus-
pected of harboring bugs; if you can’t fi nd a bug, you are almost certainly
looking in the wrong place.

A statement that states (asserts) an invariant is called an assertion (or just an assert).
Interestingly enough, there are many effective ways of programming. Differ-

ent people successfully use dramatically different techniques. Many differences
in debugging technique come from differences in the kinds of programs people
work on; others seem to have to do with differences in the ways people think. To
the best of our knowledge, there is no one best way to debug. One thing should
always be remembered, though: messy code can easily harbor bugs. By keeping
your code as simple, logical, and well formatted as possible, you decrease your
debug time.

5.10 Pre- and post-conditions
Now, let us return to the question of how to deal with bad arguments to a func-
tion. The call of a function is basically the best point to think about correct code
and to catch errors: this is where a logically separate computation starts (and ends
on the return). Look at what we did in the piece of advice above:

int my_complicated_function(int a, int b, int c)
// the arguments are positive and a < b < c
{

if (!(0<a && a<b && b<c)) // ! means “not” and && means “and”
 error("bad arguments for mcf");
 // . . .
}

First, we stated (in a comment) what the function required of its arguments, and
then we checked that this requirement held (throwing an exception if it did not).

This is a good basic strategy. A requirement of a function upon its argument
is often called a pre-condition: it must be true for the function to perform its action

Stroustrup_book.indb 163Stroustrup_book.indb 163 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS164

correctly. The question is just what to do if the pre-condition is violated (doesn’t
hold). We basically have two choices:

 1. Ignore it (hope/assume that all callers give correct arguments).
 2. Check it (and report the error somehow).

Looking at it this way, argument types are just a way of having the compiler check
the simplest pre-conditions for us and report them at compile time. For example:

int x = my_complicated_function(1, 2, "horsefeathers");

Here, the compiler will catch that the requirement (“pre-condition”) that the third
argument be an integer was violated. Basically, what we are talking about here
is what to do with the requirements/pre-conditions that the compiler can’t check.

Our suggestion is to always document pre-conditions in comments (so that
a caller can see what a function expects). A function with no comments will be
assumed to handle every possible argument value. But should we believe that
callers read those comments and follow the rules? Sometimes we have to, but the
“check the arguments in the callee” rule could be stated, “Let a function check its
pre-conditions.” We should do that whenever we don’t see a reason not to. The
reasons most often given for not checking pre-conditions are:

• Nobody would give bad arguments.
• It would slow down my code.
• It is too complicated to check.

The first reason can be reasonable only when we happen to know “who” calls
a function — and in real-world code that can be very hard to know.

The second reason is valid far less often than people think and should most
often be ignored as an example of “premature optimization.” You can always re-
move checks if they really turn out to be a burden. You cannot easily gain the
correctness they ensure or get back the nights’ sleep you lost looking for bugs
those tests could have caught.

The third reason is the serious one. It is easy (once you are an experienced pro-
grammer) to find examples where checking a pre-condition would take significantly
more work than executing the function. An example is a lookup in a dictionary:
a pre-condition is that the dictionary entries are sorted — and verifying that a dic-
tionary is sorted can be far more expensive than a lookup. Sometimes, it can also
be difficult to express a pre-condition in code and to be sure that you expressed it
correctly. However, when you write a function, always consider if you can write a
quick check of the pre-conditions, and do so unless you have a good reason not to.

Writing pre-conditions (even as comments) also has a significant benefit for
the quality of your programs: it forces you to think about what a function re-

Stroustrup_book.indb 164Stroustrup_book.indb 164 4/22/14 9:42 AM4/22/14 9:42 AM

5.10 PRE- AND POST-CONDITIONS 165

quires. If you can’t state that simply and precisely in a couple of comment lines,
you probably haven’t thought hard enough about what you are doing. Experi-
ence shows that writing those pre-condition comments and the pre-condition tests
helps you avoid many design mistakes. We did mention that we hated debugging;
explicitly stating pre-conditions helps in avoiding design errors as well as catching
usage errors early. Writing

int my_complicated_function(int a, int b, int c)
// the arguments are positive and a < b < c
{
 if (!(0<a && a<b && b<c)) // ! means “not” and && means “and”
 error("bad arguments for mcf");
 // . . .
}

saves you time and grief compared with the apparently simpler

int my_complicated_function(int a, int b, int c)
{
 // . . .
}

5.10.1 Post-conditions
Stating pre-conditions helps us improve our design and catch usage errors early.
Can this idea of explicitly stating requirements be used elsewhere? Yes, one more
place immediately springs to mind: the return value! After all, we typically have
to state what a function returns; that is, if we return a value from a function we
are always making a promise about the return value (how else would a caller know
what to expect?). Let’s look at our area function (from §5.6.1) again:

// calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)
{
 if (length<=0 || width <=0) throw Bad_area();
 return length*width;
}

It checks its pre-condition, but it doesn’t state it in the comment (that may be OK
for such a short function) and it assumes that the computation is correct (that’s

Stroustrup_book.indb 165Stroustrup_book.indb 165 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS166

probably OK for such a trivial computation). However, we could be a bit more
explicit:

int area(int length, int width)
// calculate area of a rectangle;
// pre-conditions: length and width are positive
// post-condition: returns a positive value that is the area
{
 if (length<=0 || width <=0) error("area() pre-condition");

int a = length*width;
if (a<=0) error("area() post-condition");
return a;

}

We couldn’t check the complete post-condition, but we checked the part that said
that it should be positive.

TRY THIS

Find a pair of values so that the pre-condition of this version of area holds, but
the post-condition doesn’t.

Pre- and post-conditions provide basic sanity checks in code. As such they are
closely connected to the notion of invariants (§9.4.3), correctness (§4.2, §5.2), and
testing (Chapter 26).

5.11 Testing
How do we know when to stop debugging? Well, we keep debugging until we
have found all the bugs — or at least we try to. How do we know that we have
found the last bug? We don’t. “The last bug” is a programmers’ joke: there is no
such creature; we never find “the last bug” in a large program. By the time we
might have, we are busy modifying the program for some new use.

In addition to debugging we need a systematic way to search for errors. This
is called testing and we’ll get back to that in §7.3, the exercises in Chapter 10, and
in Chapter 26. Basically, testing is executing a program with a large and system-
atically selected set of inputs and comparing the results to what was expected. A
run with a given set of inputs is called a test case. Realistic programs can require
millions of test cases. Basically, systematic testing cannot be done by humans
typing in one test after another, so we’ll have to wait a few chapters before we

T

Stroustrup_book.indb 166Stroustrup_book.indb 166 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 DRILL 167

have the tools necessary to properly approach testing. However, in the meantime,
remember that we have to approach testing with the attitude that finding errors
is good. Consider:

Attitude 1: I’m smarter than any program! I’ll break that @#$%^ code!
Attitude 2: I polished this code for two weeks. It’s perfect!

Who do you think will find more errors? Of course, the very best is an experi-
enced person with a bit of “attitude 1” who coolly, calmly, patiently, and systemat-
ically works through the possible failings of the program. Good testers are worth
their weight in gold.

We try to be systematic in choosing our test cases and always try both correct
and incorrect inputs. §7.3 gives the first example of this.

Drill
Below are 25 code fragments. Each is meant to be inserted into this “scaffolding”:

#include "std_lib_facilities.h"

int main()
try {
 <<your code here>>
 keep_window_open();
 return 0;
}
catch (exception& e) {
 cerr << "error: " << e.what() << '\n';
 keep_window_open();
 return 1;
}
catch (…) {
 cerr << "Oops: unknown exception!\n";
 keep_window_open();
 return 2;
}

Each has zero or more errors. Your task is to fi nd and remove all errors in each
program. When you have removed those bugs, the resulting program will com-
pile, run, and write “Success!” Even if you think you have spotted an error, you
still need to enter the (original, unimproved) program fragment and test it; you

Stroustrup_book.indb 167Stroustrup_book.indb 167 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS168

may have guessed wrong about what the error is, or there may be more errors in
a fragment than you spotted. Also, one purpose of this drill is to give you a feel for
how your compiler reacts to different kinds of errors. Do not enter the scaffolding
25 times — that’s a job for cut and paste or some similar “mechanical” technique.
Do not fi x problems by simply deleting a statement; repair them by changing,
adding, or deleting a few characters.

 1. Cout << "Success!\n";
 2. cout << "Success!\n;
 3. cout << "Success" << !\n"
 4. cout << success << '\n';
 5. string res = 7; vector<int> v(10); v[5] = res; cout << "Success!\n";
 6. vector<int> v(10); v(5) = 7; if (v(5)!=7) cout << "Success!\n";
 7. if (cond) cout << "Success!\n"; else cout << "Fail!\n";
 8. bool c = false; if (c) cout << "Success!\n"; else cout << "Fail!\n";
 9. string s = "ape"; boo c = "fool"<s; if (c) cout << "Success!\n";
 10. string s = "ape"; if (s=="fool") cout << "Success!\n";
 11. string s = "ape"; if (s=="fool") cout < "Success!\n";
 12. string s = "ape"; if (s+"fool") cout < "Success!\n";
 13. vector<char> v(5); for (int i=0; 0<v.size(); ++i) ; cout << "Success!\n";
 14. vector<char> v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";
 15. string s = "Success!\n"; for (int i=0; i<6; ++i) cout << s[i];
 16. if (true) then cout << "Success!\n"; else cout << "Fail!\n";
 17. int x = 2000; char c = x; if (c==2000) cout << "Success!\n";
 18. string s = "Success!\n"; for (int i=0; i<10; ++i) cout << s[i];
 19. vector v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";
 20. int i=0; int j = 9; while (i<10) ++j; if (j<i) cout << "Success!\n";
 21. int x = 2; double d = 5/(x–2); if (d==2*x+0.5) cout << "Success!\n";
 22. string<char> s = "Success!\n"; for (int i=0; i<=10; ++i) cout << s[i];
 23. int i=0; while (i<10) ++j; if (j<i) cout << "Success!\n";
 24. int x = 4; double d = 5/(x–2); if (d=2*x+0.5) cout << "Success!\n";
 25. cin << "Success!\n";

Review
 1. Name four major types of errors and briefly define each one.
 2. What kinds of errors can we ignore in student programs?
 3. What guarantees should every completed project offer?
 4. List three approaches we can take to eliminate errors in programs and

produce acceptable software.
 5. Why do we hate debugging?
 6. What is a syntax error? Give five examples.
 7. What is a type error? Give five examples.

Stroustrup_book.indb 168Stroustrup_book.indb 168 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 EXERCISES 169

 8. What is a linker error? Give three examples.
 9. What is a logic error? Give three examples.
 10. List four potential sources of program errors discussed in the text.
 11. How do you know if a result is plausible? What techniques do you have

to answer such questions?
 12. Compare and contrast having the caller of a function handle a run-time er-

ror vs. the called function’s handling the run-time error.
 13. Why is using exceptions a better idea than returning an “error value”?
 14. How do you test if an input operation succeeded?
 15. Describe the process of how exceptions are thrown and caught.
 16. Why, with a vector called v, is v[v.size()] a range error? What would be

the result of calling this?
 17. Define pre-condition and post-condition; give an example (that is not the area()

function from this chapter), preferably a computation that requires a loop.
 18. When would you not test a pre-condition?
 19. When would you not test a post-condition?
 20. What are the steps in debugging a program?
 21. Why does commenting help when debugging?
 22. How does testing differ from debugging?

Terms
argument error exception requirement
assertion invariant run-time error
catch link-time error syntax error
compile-time error logic error testing
container post-condition throw
debugging pre-condition type error
error range error

Exercises
 1. If you haven’t already, do the Try this exercises from this chapter.
 2. The following program takes in a temperature value in Celsius and con-

verts it to Kelvin. This code has many errors in it. Find the errors, list
them, and correct the code.

double ctok(double c) // converts Celsius to Kelvin
{
 int k = c + 273.15;
 return int
}

Stroustrup_book.indb 169Stroustrup_book.indb 169 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS170

int main()
{
 double c = 0; // declare input variable
 cin >> d; // retrieve temperature to input variable
 double k = ctok("c"); // convert temperature
 Cout << k << '/n' ; // print out temperature
}

 3. Absolute zero is the lowest temperature that can be reached; it is –273.15°C,
or 0K. The above program, even when corrected, will produce errone-
ous results when given a temperature below this. Place a check in the
main program that will produce an error if a temperature is given below
–273.15°C.

 4. Do exercise 3 again, but this time handle the error inside ctok().
 5. Add to the program so that it can also convert from Kelvin to Celsius.
 6. Write a program that converts from Celsius to Fahrenheit and from Fahr-

enheit to Celsius (formula in §4.3.3). Use estimation (§5.8) to see if your
results are plausible.

 7. Quadratic equations are of the form

a x b x c⋅ + ⋅ + =2 0

 To solve these, one uses the quadratic formula:

x
b b ac

a
=
− ± −2 4

2

 There is a problem, though: if b2–4ac is less than zero, then it will fail.
Write a program that can calculate x for a quadratic equation. Create a
function that prints out the roots of a quadratic equation, given a, b, c.
When the program detects an equation with no real roots, have it print
out a message. How do you know that your results are plausible? Can
you check that they are correct?

 8. Write a program that reads and stores a series of integers and then com-
putes the sum of the first N integers. First ask for N, then read the values
into a vector, then calculate the sum of the first N values. For example:

“Please enter the number of values you want to sum:”

3

“Please enter some integers (press '|' to stop):”

12 23 13 24 15 |

“The sum of the fi rst 3 numbers (12 23 13) is 48.”

Stroustrup_book.indb 170Stroustrup_book.indb 170 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 EXERCISES 171

 Handle all inputs. For example, make sure to give an error message if the
user asks for a sum of more numbers than there are in the vector.

 9. Modify the program from exercise 8 to write out an error if the result
cannot be represented as an int.

 10. Modify the program from exercise 8 to use double instead of int. Also,
make a vector of doubles containing the N–1 differences between adja-
cent values and write out that vector of differences.

 11. Write a program that writes out the first so many values of the Fibonacci
series, that is, the series that starts with 1 1 2 3 5 8 13 21 34. The next
number of the series is the sum of the two previous ones. Find the largest
Fibonacci number that fits in an int.

 12. Implement a little guessing game called (for some obscure reason) “Bulls
and Cows.” The program has a vector of four different integers in the
range 0 to 9 (e.g., 1234 but not 1122) and it is the user’s task to discover
those numbers by repeated guesses. Say the number to be guessed is 1234
and the user guesses 1359; the response should be “1 bull and 1 cow”
because the user got one digit (1) right and in the right position (a bull)
and one digit (3) right but in the wrong position (a cow). The guessing
continues until the user gets four bulls, that is, has the four digits correct
and in the correct order.

 13. The program is a bit tedious because the answer is hard-coded into the
program. Make a version where the user can play repeatedly (without
stopping and restarting the program) and each game has a new set of
four digits. You can get four random digits by calling the random number
generator randint(10) from std_lib_facilities.h four times. You will note
that if you run that program repeatedly, it will pick the same sequence of
four digits each time you start the program. To avoid that, ask the user
to enter a number (any number) and call srand(n) where n is the number
the user entered before calling randint(10). Such an n is called a seed, and
different seeds give different sequences of random numbers.

 14. Read (day-of-the-week,value) pairs from standard input. For example:

Tuesday 23 Friday 56 Tuesday –3 Thursday 99

 Collect all the values for each day of the week in a vector<int>. Write out
the values of the seven day-of-the-week vectors. Print out the sum of the
values in each vector. Ignore illegal days of the week, such as Funday,
but accept common synonyms such as Mon and monday. Write out the
number of rejected values.

Stroustrup_book.indb 171Stroustrup_book.indb 171 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 5 • ERRORS172

Postscript
Do you think we overemphasize errors? As novice programmers we would have
thought so. The obvious and natural reaction is “It simply can’t be that bad!”
Well, it is that bad. Many of the world’s best brains have been astounded and
confounded by the diffi culty of writing correct programs. In our experience, good
mathematicians are the people most likely to underestimate the problem of bugs,
but we all quickly exceed our natural capacity for writing programs that are cor-
rect the fi rst time. You have been warned! Fortunately, after 50 years or so, we
have a lot of experience in organizing code to minimize problems, and techniques
to fi nd the bugs that we — despite our best efforts — inevitably leave in our pro-
grams as we fi rst write them. The techniques and examples in this chapter are a
good start.

Stroustrup_book.indb 172Stroustrup_book.indb 172 4/22/14 9:42 AM4/22/14 9:42 AM

173

6

Writing a Program

 “Programming is understanding.”

– Kristen Nygaard

Writing a program involves gradually refining your ideas

of what you want to do and how you want to express

it. In this chapter and the next, we will develop a program from

a first vague idea through stages of analysis, design, implemen-

tation, testing, redesign, and re-implementation. Our aim is to

give you some idea of the kind of thinking that goes on when

you develop a piece of code. In the process, we discuss program

organization, user-defined types, and input processing.

Stroustrup_book.indb 173Stroustrup_book.indb 173 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM174

6.1 A problem
Writing a program starts with a problem; that is, you have a problem that you’d
like a program to help solve. Understanding that problem is key to a good pro-
gram. After all, a program that solves the wrong problem is likely to be of little use
to you, however elegant it may be. There are happy accidents when a program
just happens to be useful for something for which it was never intended, but let’s
not rely on such rare luck. What we want is a program that simply and cleanly
solves the problem we decided to solve.

At this stage, what would be a good program to look at? A program that

• Illustrates design and programming techniques
• Gives us a chance to explore the kinds of decisions that a programmer

must make and the considerations that go into such decisions
• Doesn’t require too many new programming language constructs
• Is complicated enough to require thought about its design
• Allows for many variations in its solution
• Solves an easily understood problem
• Solves a problem that’s worth solving
• Has a solution that is small enough to completely present and com-

pletely comprehend

We chose “Get the computer to do ordinary arithmetic on expressions we type
in”; that is, we want to write a simple calculator. Such programs are clearly use-
ful; every desktop computer comes with such a program, and you can even buy
computers specially built to run nothing but such programs: pocket calculators.

6.1 A problem

6.2 Thinking about the problem
6.2.1 Stages of development
6.2.2 Strategy

6.3 Back to the calculator!
6.3.1 First attempt
6.3.2 Tokens
6.3.3 Implementing tokens
6.3.4 Using tokens
6.3.5 Back to the drawing board

6.4 Grammars
6.4.1 A detour: English grammar
6.4.2 Writing a grammar

6.5 Turning a grammar into code
6.5.1 Implementing grammar rules
6.5.2 Expressions
6.5.3 Terms
6.5.4 Primary expressions

6.6 Trying the fi rst version

6.7 Trying the second version

6.8 Token streams
6.8.1 Implementing Token_stream
6.8.2 Reading tokens
6.8.3 Reading numbers

6.9 Program structure

Stroustrup_book.indb 174Stroustrup_book.indb 174 4/22/14 9:42 AM4/22/14 9:42 AM

6.2 THINKING ABOUT THE PROBLEM 175

For example, if you enter

2+3.1*4

the program should respond

14.4

Unfortunately, such a calculator program doesn’t give us anything we don’t al-
ready have available on our computer, but that would be too much to ask from a
first program.

6.2 Thinking about the problem
So how do we start? Basically, think a bit about the problem and how to solve it.
First think about what the program should do and how you’d like to interact with
it. Later, you can think about how the program could be written to do that. Try
writing down a brief sketch of an idea for a solution, and see what’s wrong with
that first idea. Maybe discuss the problem and how to solve it with a friend. Trying
to explain something to a friend is a marvelous way of figuring out what’s wrong
with ideas, even better than writing them down; paper (or a computer) doesn’t talk
back at you and challenge your assumptions. Ideally, design isn’t a lonely activity.

Unfortunately, there isn’t a general strategy for problem solving that works
for all people and all problems. There are whole books that claim to help you
be better at problem solving and another huge branch of literature that deals
with program design. We won’t go there. Instead, we’ll present a page’s worth of
suggestions for a general strategy for the kind of smaller problems an individual
might face. After that, we’ll quickly proceed to try out these suggestions on our
tiny calculator problem.

When reading our discussion of the calculator program, we recommend that
you adopt a more than usually skeptical attitude. For realism, we evolve our pro-
gram through a series of versions, presenting the reasoning that leads to each
version along the way. Obviously, much of that reasoning must be incomplete
or even faulty, or we would finish the chapter early. As we go along, we provide
examples of the kinds of concerns and reasoning that designers and programmers
deal with all the time. We don’t reach a version of the program that we are happy
with until the end of the next chapter.

Please keep in mind that for this chapter and the next, the way we get to the
final version of the program – the journey through partial solutions, ideas, and
mistakes – is at least as important as that final version and more important than
the language-technical details we encounter along the way (we will get back to
those later).

Stroustrup_book.indb 175Stroustrup_book.indb 175 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM176

6.2.1 Stages of development
Here is a bit of terminology for program development. As you work on a problem
you repeatedly go through these stages:

• Analysis: Figure out what should be done and write a description of your
(current) understanding of that. Such a description is called a set of re-
quirements or a specifi cation. We will not go into details about how such
requirements are developed and written down. That’s beyond the scope
of this book, but it becomes increasingly important as the size of prob-
lems increases.

• Design: Create an overall structure for the system, deciding which parts
the implementation should have and how those parts should communi-
cate. As part of the design consider which tools – such as libraries – can
help you structure the program.

• Implementation: Write the code, debug it, and test that it actually does what
it is supposed to do.

6.2.2 Strategy
Here are some suggestions that – when applied thoughtfully and with imagina-
tion – help with many programming projects:

• What is the problem to be solved? The fi rst thing to do is to try to be
specifi c about what you are trying to accomplish. This typically involves
constructing a description of the problem or – if someone else gave you
such a statement – trying to fi gure out what it really means. At this point
you should take the user’s point of view (not the programmer/implement-
er’s view); that is, you should ask questions about what the program
should do, not about how it is going to do it. Ask: “What can this pro-
gram do for me?” and “How would I like to interact with this program?”
Remember, most of us have lots of experience as users of computers on
which to draw.

• Is the problem statement clear? For real problems, it never is. Even
for a student exercise, it can be hard to be suffi ciently precise and
specifi c. So we try to clarify it. It would be a pity if we solved the
wrong problem. Another pitfall is to ask for too much. When we try
to fi gure out what we want, we easily get too greedy/ambitious. It is
almost always better to ask for less to make a program easier to spec-
ify, easier to understand, easier to use, and (hopefully) easier to im-
plement. Once it works, we can always build a fancier “version 2.0”
based on our experience.

Stroustrup_book.indb 176Stroustrup_book.indb 176 4/22/14 9:42 AM4/22/14 9:42 AM

6.2 THINKING ABOUT THE PROBLEM 177

• Does the problem seem manageable, given the time, skills, and tools
available? There is little point in starting a project that you couldn’t
possibly complete. If there isn’t suffi cient time to implement (includ-
ing testing) a program that does all that is required, it is usually wise
not to start. Instead, acquire more resources (especially more time) or
(best of all) modify the requirements to simplify your task.

• Try breaking the program into manageable parts. Even the smallest pro-
gram for solving a real problem is large enough to be subdivided.

• Do you know of any tools, libraries, etc. that might help? The answer
is almost always yes. Even at the earliest stage of learning to program,
you have parts of the C++ standard library. Later, you’ll know large
parts of that standard library and how to fi nd more. You’ll have graph-
ics and GUI libraries, a matrix library, etc. Once you have gained a
little experience, you will be able to fi nd thousands of libraries by
simple web searches. Remember: There is little value in reinventing
the wheel when you are building software for real use. When learning
to program it is a different matter; then, reinventing the wheel to see
how that is done is often a good idea. Any time you save by using a
good library can be spent on other parts of your problem, or on rest.
How do you know that a library is appropriate for your task and of
suffi cient quality? That’s a hard problem. Part of the solution is to
ask colleagues, to ask in discussion groups, and to try small examples
before committing to use a library.

• Look for parts of a solution that can be separately described (and po-
tentially used in several places in a program or even in other pro-
grams). To fi nd such parts requires experience, so we provide many
examples throughout this book. We have already used vector, string,
and iostreams (cin and cout). This chapter gives the fi rst complete ex-
amples of design, implementation, and use of program parts provided
as user-defi ned types (Token and Token_stream). Chapters 8 and 13–
15 present many more examples together with their design rationales.
For now, consider an analogy: If we were to design a car, we would
start by identifying parts, such as wheels, engine, seats, door handles,
etc., on which we could work separately before assembling the com-
plete car. There are tens of thousands of such parts of a modern car. A
real-world program is no different in that respect, except of course that
the parts are code. We would not try to build a car directly out of raw
materials, such as iron, plastics, and wood. Nor would we try to build
a major program directly out of (just) the expressions, statements, and
types provided by the language. Designing and implementing such

Stroustrup_book.indb 177Stroustrup_book.indb 177 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM178

parts is a major theme of this book and of software development in
general; see the discussions of user-defi ned types (Chapter 9), class
hierarchies (Chapter 14), and generic types (Chapter 20).

• Build a small, limited version of the program that solves a key part of the
problem. When we start, we rarely know the problem well. We often think
we do (don’t we know what a calculator program is?), but we don’t. Only a
combination of thinking about the problem (analysis) and experimentation
(design and implementation) gives us the solid understanding that we need
to write a good program. So, we build a small, limited version

• To bring out problems in our understanding, ideas, and tools.
• To see if details of the problem statement need changing to make the

problem manageable. It is rare to fi nd that we had anticipated every-
thing when we analyzed the problem and made the initial design. We
should take advantage of the feedback that writing code and testing
give us.

Sometimes, such a limited initial version aimed at experimentation is
called a prototype. If (as is likely) our fi rst version doesn’t work or is so
ugly and awkward that we don’t want to work with it, we throw it away
and make another limited version based on our experience. Repeat until
we fi nd a version that we are happy with. Do not proceed with a mess;
messes just grow with time.

• Build a full-scale solution, ideally by using parts of the initial version. The
ideal is to grow a program from working parts rather than writing all the
code at once. The alternative is to hope that by some miracle an untested
idea will work and do what we want.

6.3 Back to the calculator!
How do we want to interact with the calculator? That’s easy: we know how to use
cin and cout, but graphical user interfaces (GUIs) are not explained until Chap-
ter 16, so we’ll stick to the keyboard and a console window. Given expressions as
input from the keyboard, we evaluate them and write out the resulting value to
the screen. For example:

Expression: 2+2
Result: 4
Expression: 2+2*3
Result: 8
Expression: 2+3–25/5
Result: 0

Stroustrup_book.indb 178Stroustrup_book.indb 178 4/22/14 9:42 AM4/22/14 9:42 AM

6.3 BACK TO THE CALCULATOR! 179

The expressions, e.g., 2+2 and 2+2*3, should be entered by the user; the rest is
produced by the program. We chose to output Expression: to prompt the user.
We could have chosen Please enter an expression followed by a newline but that
seemed verbose and pointless. On the other hand, a pleasantly short prompt, such
as >, seemed too cryptic. Sketching out such examples of use early on is important.
They provide a very practical definition of what the program should minimally
do. When discussing design and analysis, such examples of use are called use cases.

When faced with the calculator problem for the first time, most people come
up with a first idea like this for the main logic of the program:

read_a_line
calculate // do the work
write_result

This kind of “scribbles” clearly isn’t code; it’s called pseudo code. We tend to use it
in the early stages of design when we are not yet certain exactly what our notation
means. For example, is “calculate” a function call? If so, what would be its argu-
ments? It is simply too early to answer such questions.

6.3.1 First attempt
At this point, we are not really ready to write the calculator program. We simply
haven’t thought hard enough, but thinking is hard work and – like most program-
mers – we are anxious to write some code. So let’s take a chance, write a simple
calculator, and see where it leads us. The first idea is something like

#include "std_lib_facilities.h"

int main()
{
 cout << "Please enter expression (we can handle + and –): ";
 int lval = 0;
 int rval;
 char op;
 int res;
 cin>>lval>>op>>rval; // read something like 1 + 3

 if (op=='+')
 res = lval + rval; // addition
 else if (op=='–')
 res = lval – rval; // subtraction

 cout << "Result: " << res << '\n';
 keep_window_open();

Stroustrup_book.indb 179Stroustrup_book.indb 179 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM180

 return 0;
}

That is, read a pair of values separated by an operator, such as 2+2, compute
the result (in this case 4), and print the resulting value. We chose the variable
names lval for left-hand value and rval for right-hand value.

This (sort of) works! So what if this program isn’t quite complete? It feels
great to get something running! Maybe this programming and computer science
stuff is easier than the rumors say. Well, maybe, but let’s not get too carried away
by an early success. Let’s

 1. Clean up the code a bit
 2. Add multiplication and division (e.g., 2*3)
 3. Add the ability to handle more than one operand (e.g., 1+2+3)

In particular, we know that we should always check that our input is reasonable
(in our hurry, we “forgot”) and that testing a value against many constants is best
done by a switch-statement rather than an if-statement.

The “chaining” of operations, such as 1+2+3+4, we will handle by adding the
values as they are read; that is, we start with 1, see +2 and add 2 to 1 (getting an in-
termediate result 3), see +3 and add that 3 to our intermediate result (3), and so on.
After a few false starts and after correcting a few syntax and logic errors, we get

#include "std_lib_facilities.h"

int main()
{
 cout << "Please enter expression (we can handle +, –, *, and /)\n";
 cout << "add an x to end expression (e.g., 1+2*3x): ";
 int lval = 0;
 int rval;
 cin>>lval; // read leftmost operand
 if (!cin) error("no first operand");
 for (char op; cin>>op;) { // read operator and right-hand operand
 // repeatedly
 if (op!='x') cin>>rval;
 if (!cin) error("no second operand");
 switch(op) {
 case '+':
 lval += rval; // add: lval = lval + rval
 break;
 case '–':
 lval –= rval; // subtract: lval = lval – rval
 break;

Stroustrup_book.indb 180Stroustrup_book.indb 180 4/22/14 9:42 AM4/22/14 9:42 AM

6.3 BACK TO THE CALCULATOR! 181

 case '*':
 lval *= rval; // multiply: lval = lval * rval
 break;
 case '/':
 lval /= rval; // divide: lval = lval / rval
 break;
 default: // not another operator: print result
 cout << "Result: " << lval << '\n';
 keep_window_open();
 return 0;
 }
 }
 error("bad expression");
}

This isn’t bad, but then we try 1+2*3 and see that the result is 9 and not the 7 our
arithmetic teachers told us was the right answer. Similarly, 1–2*3 gives –3 rather
than the –5 we expected. We are doing the operations in the wrong order: 1+2*3
is calculated as (1+2)*3 rather than as the conventional 1+(2*3). Similarly, 1–2*3
is calculated as (1–2)*3 rather than as the conventional 1–(2*3). Bummer! We
might consider the convention that “multiplication binds tighter than addition” as
a silly old convention, but hundreds of years of convention will not disappear just
to simplify our programming.

6.3.2 Tokens
So (somehow), we have to “look ahead” on the line to see if there is a * (or a /). If
so, we have to (somehow) adjust the evaluation order from the simple and obvi-
ous left-to-right order. Unfortunately, trying to barge ahead here, we immediately
hit a couple of snags:

 1. We don’t actually require an expression to be on one line. For example:
1
+
2

 works perfectly with our code so far.
 2. How do we search for a * (or a /) among digits, plusses, minuses, and

parentheses on several input lines?
 3. How do we remember where a * was?
 4. How do we handle evaluation that’s not strictly left-to-right (e.g., 1+2*3)?

Having decided to be super-optimists, we’ll solve problems 1–3 first and not
worry about 4 until later.

Stroustrup_book.indb 181Stroustrup_book.indb 181 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM182

Also, we’ll ask around for help. Surely someone will know a conventional
way of reading “stuff,” such as numbers and operators, from input and storing
it in a way that lets us look at it in convenient ways. The conventional and very
useful answer is “tokenize”: first input characters are read and assembled into
tokens, so if you type in

45+11.5/7

the program should produce a list of tokens representing

45
+
11.5
/
7

A token is a sequence of characters that represents something we consider a unit,
such as a number or an operator. That’s the way a C++ compiler deals with its
source. Actually, “tokenizing” in some form or another is the way most analysis
of text starts. Following the example of C++ expression, we see the need for three
kinds of tokens:

• Floating-point-literals: as defi ned by C++, e.g., 3.14, 0.274e2, and 42

• Operators: e.g., +, – , *, /, %
• Parentheses: (,)

The floating-point-literals look as if they may become a problem: reading 12 seems
much easier than reading 12.3e–3, but calculators do tend to do floating-point arith-
metic. Similarly, we suspect that we’ll have to accept parentheses to have our cal-
culator deemed useful.

How do we represent such tokens in our program? We could try to keep track
of where each token started (and ended), but that gets messy (especially if we
allow expressions to span line boundaries). Also, if we keep a number as a string
of characters, we later have to figure out what its value is; that is, if we see 42 and
store the characters 4 and 2 somewhere, we then later have to figure out that those
characters represent the numerical value 42 (i.e., 4*10+2). The obvious – and con-
ventional – solution is to represent each token as a (kind,value) pair. The kind tells
us if a token is a number, an operator, or a parenthesis. For a number, and in this
example only for a number, we use its numerical value as its value.

So how do we express the idea of a (kind,value) pair in code? We define a type
Token to represent tokens. Why? Remember why we use types: they hold the
data we need and give us useful operations on that data. For example, ints hold
integers and give us addition, subtraction, multiplication, division, and remainder,

Stroustrup_book.indb 182Stroustrup_book.indb 182 4/22/14 9:42 AM4/22/14 9:42 AM

6.3 BACK TO THE CALCULATOR! 183

whereas strings hold sequences of characters and give us concatenation and sub-
scripting. The C++ language and its standard library give us many types such as
char, int, double, string, vector, and ostream, but not a Token type. In fact, there
is a huge number of types – thousands or tens of thousands – that we would like
to have, but the language and its standard library do not supply them. Among
our favorite types that are not supported are Matrix (see Chapter 24), Date (see
Chapter 9), and infinite precision integers (try searching the web for “Bignum”).
If you think about it for a second, you’ll realize that a language cannot supply tens
of thousands of types: who would define them, who would implement them, how
would you find them, and how thick would the manual have to be? Like most
modern languages, C++ escapes that problem by letting us define our own types
(user-defined types) when we need them.

6.3.3 Implementing tokens
What should a token look like in our program? In other words, what would we
like our Token type to be? A Token must be able to represent operators, such as
+ and – , and numeric values, such as 42 and 3.14. The obvious implementation is
something that can represent what “kind” a token is and hold the numeric value
for tokens that have one:

pluskind:

Token:

value:
numberkind:

Token:

3.14value:

There are many ways that this idea could be represented in C++ code. Here is the
simplest that we found useful:

class Token { // a very simple user-defined type
public:
 char kind;
 double value;
};

A Token is a type (like int or char), so it can be used to define variables and hold
values. It has two parts (called members): kind and value. The keyword class means
“user-defined type”; it indicates that a type with zero or more members is being
defined. The first member, kind, is a character, char, so that it conveniently can
hold '+' and '*' to represent + and *. We can use it to make types like this:

Token t; // t is a Token
t.kind = '+'; // t represents a +

Stroustrup_book.indb 183Stroustrup_book.indb 183 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM184

Token t2; // t2 is another Token
t2.kind = '8'; // we use the digit 8 as the “kind” for numbers
t2.value = 3.14;

We use the member access notation, object_name . member_name, to access a mem-
ber. You can read t.kind as “t’s kind” and t2.value as “t2’s value.” We can copy
Tokens just as we can copy ints:

Token tt = t; // copy initialization
if (tt.kind != t.kind) error("impossible!");
t = t2; // assignment
cout << t.value; // will print 3.14

Given Token, we can represent the expression (1.5+4)*11 using seven tokens
like this:

'(' '8' '+' '8' ')' '*' '8'
1.5 4 11

Note that for simple tokens, such as +, we don’t need the value, so we don’t use
its value member. We needed a character to mean “number” and picked '8' just
because '8' obviously isn’t an operator or a punctuation character. Using '8' to
mean “number” is a bit cryptic, but it’ll do for now.

Token is an example of a C++ user-defined type. A user-defined type can
have member functions (operations) as well as data members. There can be many
reasons for defining member functions. Here, we’ll just provide two member func-
tions to give us a more convenient way of initializing Tokens:

class Token {
public:
 char kind; // what kind of token
 double value; // for numbers: a value
};

We can now initialize (“construct”) Token objects. For example:

Token t1 {'+'}; // initialize t1 so that t1.kind = ‘+’
Token t2 {'8',11.5}; // initialize t2 so that t2.kind = ‘8’ and t2.value = 11.5

For more about initializing class objects, see §9.4.2 and §9.7.

Stroustrup_book.indb 184Stroustrup_book.indb 184 4/22/14 9:42 AM4/22/14 9:42 AM

6.3 BACK TO THE CALCULATOR! 185

6.3.4 Using tokens
So, maybe now we can complete our calculator! However, maybe a small amount
of planning ahead would be worthwhile. How would we use Tokens in the calcu-
lator? We can read input into a vector of Tokens:

Token get_token(); // function to read a token from cin

vector<Token> tok; // we’ll put the tokens here

int main()
{
 while (cin) {
 Token t = get_token();
 tok.push_back(t);
 }
 // . . .
}

Now we can read an expression first and evaluate later. For example, for 11*12,
we get

'8' '*' '8'
11 12

We can look at that to find the multiplication and its operands. Having done
that, we can easily perform the multiplication because the numbers 11 and 12 are
stored as numeric values and not as strings.

Now let’s look at more complex expressions. Given 1+2*3, tok will contain
five Tokens:

'8' '+' '8'
1 2

'*' '8'
3

Now we could find the multiply operation by a simple loop:

for (int i = 0; i<tok.size(); ++i) {
 if (tok[i].kind=='*') { // we found a multiply!
 double d = tok[i–1].value*tok[i+1].value;
 // now what?
 }
}

Stroustrup_book.indb 185Stroustrup_book.indb 185 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM186

Yes, but now what? What do we do with that product d? How do we decide in
which order to evaluate the sub-expressions? Well, + comes before * so we can’t
just evaluate from left to right. We could try right-to-left evaluation! That would
work for 1+2*3 but not for 1*2+3. Worse still, consider 1+2*3+4. This example has
to be evaluated “inside out”: 1+(2*3)+4. And how will we handle parentheses, as
we eventually will have to do? We seem to have hit a dead end. We need to back
off, stop programming for a while, and think about how we read and understand
an input string and evaluate it as an arithmetic expression.

So, this first enthusiastic attempt to solve the problem (writing a calculator)
ran out of steam. That’s not uncommon for first tries, and it serves the important
role of helping us understand the problem. In this case, it even gave us the useful
notion of a token, which itself is an example of the notion of a (name,value) pair
that we will encounter again and again. However, we must always make sure
that such relatively thoughtless and unplanned “coding” doesn’t steal too much
time. We should do very little programming before we have done at least a bit of
analysis (understanding the problem) and design (deciding on an overall structure
of a solution).

TRY THIS

On the other hand, why shouldn’t we be able to find a simple solution to this
problem? It doesn’t seem to be all that difficult. If nothing else, trying would
give us a better appreciation of the problem and the eventual solution. Con-
sider what you might do right away. For example, look at the input 12.5+2.
We could tokenize that, decide that the expression was simple, and compute
the answer. That may be a bit messy, but straightforward, so maybe we could
proceed in this direction and find something that’s good enough! Consider
what to do if we found both a + and a * in the line 2+3*4. That too can be
handled by “brute force.” How would we deal with a complicated expression,
such as 1+2*3/4%5+(6–7*(8))? And how would we deal with errors, such as
2+*3 and 2&3? Consider this for a while, maybe doodling a bit on a piece of
paper trying to outline possible solutions and interesting or important input
expressions.

6.3.5 Back to the drawing board
Now, we will look at the problem again and try not to dash ahead with another
half-baked solution. One thing that we did discover was that having the program
(calculator) evaluate only a single expression was tedious. We would like to be

T

Stroustrup_book.indb 186Stroustrup_book.indb 186 4/22/14 9:42 AM4/22/14 9:42 AM

6.3 BACK TO THE CALCULATOR! 187

able to compute several expressions in a single invocation of our program; that is,
our pseudo code grows to

while (not_finished) {
 read_a_line
 calculate // do the work

write_result
}

Clearly this is a complication, but when we think about how we use calculators,
we realize that doing several calculations is very common. Could we let the user
invoke our program several times to do several calculations? We could, but pro-
gram startup is unfortunately (and unreasonably) slow on many modern operat-
ing systems, so we’d better not rely on that.

As we look at this pseudo code, our early attempts at solutions, and our ex-
amples of use, several questions – some with tentative answers – arise:

 1. If we type in 45+5/7, how do we find the individual parts 45, +, 5, /, and 7
in the input? (Tokenize!)

 2. What terminates an input expression? A newline, of course! (Always be
suspicious of “of course”: “of course” is not a reason.)

 3. How do we represent 45+5/7 as data so that we can evaluate it? Before
doing the addition we must somehow turn the characters 4 and 5 into the
integer value 45 (i.e., 4*10+5). (So tokenizing is part of the solution.)

 4. How do we make sure that 45+5/7 is evaluated as 45+(5/7) and not as
(45+5)/7?

 5. What’s the value of 5/7? About .71, but that’s not an integer. Based
on experience with calculators, we know that people would expect a
floating-point result. Should we also allow floating-point inputs? Sure!

 6. Can we have variables? For example, could we write

v=7
m=9
v*m

 Good idea, but let’s wait until later. Let’s fi rst get the basics working.

Possibly the most important decision here is the answer to question 6. In §7.8,
you’ll see that if we had said yes we’d have almost doubled the size of the initial
project. That would have more than doubled the time needed to get the initial
version running. Our guess is that if you really are a novice, it would have at least

Stroustrup_book.indb 187Stroustrup_book.indb 187 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM188

quadrupled the effort needed and most likely pushed the project beyond your
patience. It is most important to avoid “feature creep” early in a project. Instead,
always first build a simple version, implementing the essential features only. Once
you have something running, you can get more ambitious. It is far easier to build
a program in stages than all at once. Saying yes to question 6 would have had
yet another bad effect: it would have made it hard to resist the temptation to add
further “neat features” along the line. How about adding the usual mathematical
functions? How about adding loops? Once we start adding “neat features” it is
hard to stop.

From a programmer’s point of view, questions 1, 3, and 4 are the most both-
ersome. They are also related, because once we have found a 45 or a +, what do
we do with them? That is, how do we store them in our program? Obviously,
tokenizing is part of the solution, but only part.

What would an experienced programmer do? When we are faced with a
tricky technical question, there often is a standard answer. We know that people
have been writing calculator programs for at least as long as there have been com-
puters taking symbolic input from a keyboard. That is at least for 50 years. There
has to be a standard answer! In such a situation, the experienced programmer
consults colleagues and/or the literature. It would be silly to barge on, hoping to
beat 50 years of experience in a morning.

6.4 Grammars
There is a standard answer to the question of how to make sense of expressions:
first input characters are read and assembled into tokens (as we discovered). So
if you type in

45+11.5/7

the program should produce a list of tokens representing

45
+
11.5
/
7

A token is a sequence of characters that represents something we consider a unit,
such as a number or an operator.

After tokens have been produced, the program must ensure that complete
expressions are understood correctly. For example, we know that 45+11.5/7 means

Stroustrup_book.indb 188Stroustrup_book.indb 188 4/22/14 9:42 AM4/22/14 9:42 AM

6.4 GRAMMARS 189

45+(11.5/7) and not (45+11.5)/7, but how do we teach the program that useful rule
(division “binds tighter” than addition)? The standard answer is that we write a
grammar defining the syntax of our input and then write a program that imple-
ments the rules of that grammar. For example:

// a simple expression grammar:

Expression:
 Term
 Expression "+" Term // addition
 Expression "–" Term // subtraction
Term:
 Primary
 Term "*" Primary // multiplication
 Term "/" Primary // division
 Term "%" Primary // remainder (modulo)
Primary:
 Number
 "(" Expression ")" // grouping
Number:
 floating-point-literal

This is a set of simple rules. The last rule is read “A Number is a floating-point-lit-
eral.” The next-to-last rule says, “A Primary is a Number or '(' followed by an
Expression followed by ')'.” The rules for Expression and Term are similar; each
is defined in terms of one of the rules that follow.

As seen in §6.3.2, our tokens – as borrowed from the C++ definition – are

• fl oating-point-literal (as defi ned by C++, e.g., 3.14, 0.274e2, or 42)
• +, – , *, /, % (the operators)
• (,) (the parentheses)

From our first tentative pseudo code to this approach, using tokens and a grammar
is actually a huge conceptual jump. It’s the kind of jump we hope for but rarely
manage without help. This is what experience, the literature, and Mentors are for.

At first glance, a grammar probably looks like complete nonsense. Technical
notation often does. However, please keep in mind that it is a general and elegant
(as you will eventually appreciate) notation for something you have been able to
do since middle school (or earlier). You have no problem calculating 1–2*3 and
1+2–3 and 3*2+4/2. It seems hardwired in your brain. However, could you explain
how you do it? Could you explain it well enough for someone who had never
seen conventional arithmetic to grasp? Could you do so for every combination of

Stroustrup_book.indb 189Stroustrup_book.indb 189 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM190

operators and operands? To articulate an explanation in sufficient detail and pre-
cisely enough for a computer to understand, we need a notation – and a grammar
is a most powerful and conventional tool for that.

How do you read a grammar? Basically, given some input, you start with the
“top rule,” Expression, and search through the rules to find a match for the tokens
as they are read. Reading a stream of tokens according to a grammar is called
parsing, and a program that does that is often called a parser or a syntax analyzer. Our
parser reads the tokens from left to right, just like we type them and read them.
Let’s try something really simple: Is 2 an expression?

 1. An Expression must be a Term or end with a Term. That Term must be
a Primary or end with a Primary. That Primary must start with a (or be
a Number. Obviously, 2 is not a (, but a floating-point-literal, which is a
Number, which is a Primary.

 2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a com-
plete Term (rather than the end of a /, *, or % expression).

 3. That Term (the Primary 2) isn’t preceded by a + or – , so it is a complete
Expression (rather than the end of a + or – expression).

So yes, according to our grammar, 2 is an expression. We can illustrate the pro-
gression through the grammar like this:

Parsing the number 2

Expression:
 Term
 Expression “+” Term
 Expression “–” Term
Term:
 Primary
 Term “*” Primary
 Term “/” Primary
 Term “%” Primary
Primary:
 Number
 “(” Expression “)”
Number:
 floating-point-literal

2

floating-point-literal

Number

Primary

Term

Expression

This represents the path we followed through the definitions. Retracing our path,
we can say that 2 is an Expression because 2 is a floating-point-literal, which is a
Number, which is a Primary, which is a Term, which is an Expression.

Stroustrup_book.indb 190Stroustrup_book.indb 190 4/22/14 9:42 AM4/22/14 9:42 AM

6.4 GRAMMARS 191

Let’s try something a bit more complicated: Is 2+3 an Expression? Naturally,
much of the reasoning is the same as for 2:

1. An Expression must be a Term or end with a Term, which must be a
Primary or end with a Primary, and a Primary must start with a (or be a
Number. Obviously 2 is not a (, but it is a floating-point-literal, which is a
Number, which is a Primary.

2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a com-
plete Term (rather than the end of a /, *, or % expression).

3. That Term (the Primary 2) is followed by a +, so it is the end of the first
part of an Expression and we must look for the Term after the +. In
exactly the same way as we found that 2 was a Term, we find that 3 is a
Term. Since 3 is not followed by a + or a – it is a complete Term (rather
than the first part of a + or – Expression). Therefore, 2+3 matches the
Expression+Term rule and is an Expression.

Again, we can illustrate this reasoning graphically (leaving out the floating-point-
literal to Number rule to simplify):

Parsing the expression 2 + 3

Expression:
 Term
 Expression “+” Term
 Expression “–” Term
Term:
 Primary
 Term “*” Primary
 Term “/” Primary
 Term “%” Primary
Primary:
 Number
 “(” Expression “)”
Number:
 floating-point-literal

2

Number

Primary

Term

Expression

+

Expression

3

Number

Primary

Term

This represents the path we followed through the definitions. Retracing our path,
we can say that 2+3 is an Expression because 2 is a term which is an Expression, 3
is a Term, and an Expression followed by + followed by a Term is an Expression.

The real reason we are interested in grammars is that they can solve our
problem of how to correctly parse expressions with both + and *, so let’s try

Stroustrup_book.indb 191Stroustrup_book.indb 191 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM192

45+11.5*7. However, “playing computer” following the rules in detail as
we did above is tedious, so let’s skip some of the intermediate steps that we
have already gone through for 2 and 2+3. Obviously, 45, 11.5, and 7 are all
floating-point-literals which are Numbers, which are Primarys, so we can ignore
all rules below Primary. So we get:

 1. 45 is an Expression followed by a +, so we look for a Term to finish the
Expression+Term rule.

 2. 11.5 is a Term followed by *, so we look for a Primary to finish the Term*
Primary rule.

 3. 7 is Primary, so 11.5*7 is a Term according to the Term*Primary rule.
Now we can see that 45+11.5*7 is an Expression according to the
 Expression+Term rule. In particular, it is an Expression that first does the
multiplication 11.5*7 and then the addition 45+11.5*7, just as if we had
written 45+(11.5*7).

Again, we can illustrate this reasoning graphically (again leaving out the floating-
point-literal to Number rule to simplify):

Parsing the expression 45 + 11.5 * 7

Expression:
 Term
 Expression “+” Term
 Expression “–” Term
Term:
 Primary
 Term “*” Primary
 Term “/” Primary
 Term “%” Primary
Primary:
 Number
 “(” Expression “)”
Number:
 floating-point-literal

45

Number

Primary

Term

Expression Term

+

Expression

*11.5

Number

Primary

Term

7

Number

Primary

Again, this represents the path we followed through the definitions. Note how the
Term*Primary rule ensures that 11.5 is multiplied by 7 rather than added to 45.

Stroustrup_book.indb 192Stroustrup_book.indb 192 4/22/14 9:42 AM4/22/14 9:42 AM

6.4 GRAMMARS 193

You may find this logic hard to follow at first, but many humans do read
grammars, and simple grammars are not hard to understand. However, we were
not really trying to teach you to understand 2+2 or 45+11.5*7. Obviously, you
knew that already. We were trying to find a way for the computer to “understand”
45+11.5*7 and all the other complicated expressions you might give it to evaluate.
Actually, complicated grammars are not fit for humans to read, but computers
are good at it. They follow such grammar rules quickly and correctly with the
greatest of ease. Following precise rules is exactly what computers are good at.

6.4.1 A detour: English grammar
If you have never before worked with grammars, we expect that your head is now
spinning. In fact, it may be spinning even if you have seen a grammar before, but
take a look at the following grammar for a very small subset of English:

Sentence:
 Noun Verb // e.g., C++ rules
 Sentence Conjunction Sentence // e.g., Birds fly but fish swim

Conjunction:
 "and"
 "or"
 "but"

Noun:
 "birds"
 "fish"
 "C++"

Verb:
 "rules"
 "fly"
 "swim"

A sentence is built from parts of speech (e.g., nouns, verbs, and conjunctions). A
sentence can be parsed according to these rules to determine which words are
nouns, verbs, etc. This simple grammar also includes semantically meaningless
sentences such as “C++ fly and birds rules,” but fixing that is a different matter
belonging in a far more advanced book.

Many have been taught/shown such rules in middle school or in foreign lan-
guage class (e.g., English classes). These grammar rules are very fundamental. In
fact, there are serious neurological arguments for such rules being hardwired into
our brains!

Stroustrup_book.indb 193Stroustrup_book.indb 193 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM194

Now look at a parsing tree as we used above for expressions, but used here
for simple English:

Parsing a simple English sentence

Sentence:
 Noun Verb
 Sentence Conjunction Sentence

Conjunction:
 “and”
 “or”
 “but”

Noun:
 “birds”
 “fish”
 “C++”

Verb:
 “rules”
 “fly”
 “swim”

Sentence

Sentence

“fish”“but”

Noun

“swim”

Verb

Sentence Conjunction

“birds”

Noun

“fly”

Verb

This is not all that complicated. If you had trouble with §6.4, then please go
back and reread it from the beginning; it may make more sense the second time
through!

6.4.2 Writing a grammar
How did we pick those expression grammar rules? “Experience” is the honest
answer. The way we do it is simply the way people usually write expression gram-
mars. However, writing a simple grammar is pretty straightforward: we need to
know how to

 1. Distinguish a rule from a token
 2. Put one rule after another (sequencing)
 3. Express alternative patterns (alternation)
 4. Express a repeating pattern (repetition)
 5. Recognize the grammar rule to start with

Stroustrup_book.indb 194Stroustrup_book.indb 194 4/22/14 9:42 AM4/22/14 9:42 AM

6.5 TURNING A GRAMMAR INTO CODE 195

Different textbooks and different parser systems use different notational conven-
tions and different terminology. For example, some call tokens terminals and rules
non-terminals or productions. We simply put tokens in (double) quotes and start with
the first rule. Alternatives are put on separate lines. For example:

List:
 "{" Sequence "}"
Sequence:
 Element
 Element " ," Sequence
Element:
 "A"
 "B"

So a Sequence is either an Element or an Element followed by a Sequence using
a comma for separation. An Element is either the letter A or the letter B. A List is
a Sequence in “curly brackets.” We can generate these Lists (how?):

{ A }
{ B }
{ A,B }
{A,A,A,A,B }

However, these are not Lists (why not?):

{ }
A
{ A,A,A,A,B
{A,A,C,A,B }
{ A B C }
{A,A,A,A,B, }

This sequence rule is not one you learned in kindergarten or have hardwired into
your brain, but it is still not rocket science. See §7.4 and §7.8.1 for examples of
how we work with a grammar to express syntactic ideas.

6.5 Turning a grammar into code
There are many ways of getting a computer to follow a grammar. We’ll use the
simplest one: we simply write one function for each grammar rule and use our
type Token to represent tokens. A program that implements a grammar is often
called a parser.

Stroustrup_book.indb 195Stroustrup_book.indb 195 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM196

6.5.1 Implementing grammar rules
To implement our calculator, we need four functions: one to read tokens plus one
for each rule in our grammar:

get_token() // read characters and compose tokens
 // uses cin
expression() // deal with + and –
 // calls term() and get_token()
term() // deal with *, /, and %
 // calls primary() and get_token()
primary() // deal with numbers and parentheses
 // calls expression() and get_token()

Note: Each function deals with a specific part of an expression and leaves every-
thing else to other functions; this radically simplifies each function. This is much
like a group of humans dealing with problems by letting each person handle prob-
lems in his or her own specialty, handing all other problems over to colleagues.

What should these functions actually do? Each function should call other
grammar functions according to the grammar rule it is implementing and get_to-
ken() where a token is required in a rule. For example, when primary() tries to
follow the (Expression) rule, it must call

get_token() // to deal with (and)
expression() // to deal with Expression

What should such parsing functions return? How about the answer we really
wanted? For example, for 2+3, expression() could return 5. After all, the infor-
mation is all there. That’s what we’ll try! Doing so will save us from answering
one of the hardest questions from our list: “How do I represent 45+5/7 as data so
that I can evaluate it?” Instead of storing a representation of 45+5/7 in memory,
we simply evaluate it as we read it from input. This little idea is really a major
breakthrough! It will keep the program at a quarter of the size it would have been
had we had expression() return something complicated for later evaluation. We
just saved ourselves about 80% of the work.

The “odd man out” is get_token(): because it deals with tokens, not expres-
sions, it can’t return the value of a sub-expression. For example, + and (are not
expressions. So, it must return a Token. We conclude that we want

// functions to match the grammar rules:
Token get_token() // read characters and compose tokens
double expression() // deal with + and –

Stroustrup_book.indb 196Stroustrup_book.indb 196 4/22/14 9:42 AM4/22/14 9:42 AM

6.5 TURNING A GRAMMAR INTO CODE 197

double term() // deal with *, /, and %
double primary() // deal with numbers and parentheses

6.5.2 Expressions
Let’s first write expression(). The grammar looks like this:

Expression:
 Term
 Expression '+' Term
 Expression '–' Term

Since this is our first attempt to turn a set of grammar rules into code, we’ll
proceed through a couple of false starts. That’s the way it usually goes with new
techniques, and we learn useful things along the way. In particular, a novice pro-
grammer can learn a lot from looking at the dramatically different behavior of
similar pieces of code. Reading code is a useful skill to cultivate.

6.5.2.1 Expressions: first try
Looking at the Expression '+' Term rule, we try first calling expression(), then
looking for + (and –) and then term():

double expression()
{
 double left = expression(); // read and evaluate an Expression
 Token t = get_token(); // get the next token
 switch (t.kind) { // see which kind of token it is
 case '+':
 return left + term(); // read and evaluate a Term,
 // then do an add
 case '–':
 return left – term(); // read and evaluate a Term,
 // then do a subtraction
 default:
 return left; // return the value of the Expression
 }
}

It looks good. It is almost a trivial transcription of the grammar. It is quite simple,
really: first read an Expression and then see if it is followed by a + or a – , and if
it is, read the Term.

Stroustrup_book.indb 197Stroustrup_book.indb 197 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM198

Unfortunately, that doesn’t really make sense. How do we know where the
expression ends so that we can look for a + or a –? Remember, our program reads
left to right and can’t peek ahead to see if a + is coming. In fact, this expression()
will never get beyond its first line: expression() starts by calling expression() which
starts by calling expression() and so on “forever.” This is called an infinite recursion
and will in fact terminate after a short while when the computer runs out of mem-
ory to hold the “never-ending” sequence of calls of expression(). The term recursion
is used to describe what happens when a function calls itself. Not all recursions are
infinite, and recursion is a very useful programming technique (see §8.5.8).

6.5.2.2 Expressions: second try
So what do we do? Every Term is an Expression, but not every Expression is a
Term; that is, we could start looking for a Term and look for a full Expression only
if we found a + or a – . For example:

double expression()
{
 double left = term(); // read and evaluate a Term
 Token t = get_token(); // get the next token
 switch (t.kind) { // see which kind of token that is
 case '+':
 return left + expression(); // read and evaluate an Expression,
 // then do an add
 case '–':
 return left – expression(); // read and evaluate an Expression,
 // then do a subtraction
 default:
 return left; // return the value of the Term
 }
}

This actually – more or less – works. We have tried it in the finished program and it
parses every correct expression we throw at it (and no illegal ones). It even correctly
evaluates most expressions. For example, 1+2 is read as a Term (with the value 1)
followed by + followed by an Expression (which happens to be a Term with the
value 2) and gives the answer 3. Similarly, 1+2+3 gives 6. We could go on for quite
a long time about what works, but to make a long story short: How about 1–2–3?
This expression() will read the 1 as a Term, then proceed to read 2–3 as an Expres-
sion (consisting of the Term 2 followed by the Expression 3). It will then subtract
the value of 2–3 from 1. In other words, it will evaluate 1–(2–3). The value of
1–(2–3) is 2 (positive two). However, we were taught (in primary school or even
earlier) that 1–2–3 means (1–2)–3 and therefore has the value –4 (negative four).

Stroustrup_book.indb 198Stroustrup_book.indb 198 4/22/14 9:42 AM4/22/14 9:42 AM

6.5 TURNING A GRAMMAR INTO CODE 199

So we got a very nice program that just didn’t do the right thing. That’s dan-
gerous. It is especially dangerous because it gives the right answer in many cases.
For example, 1+2+3 gives the right answer (6) because 1+(2+3) equals (1+2)+3.
What fundamentally, from a programming point of view, did we do wrong? We
should always ask ourselves this question when we have found an error. That way
we might avoid making the same mistake again, and again, and again.

Fundamentally, we just looked at the code and guessed. That’s rarely good
enough! We have to understand what our code is doing and we have to be able to
explain why it does the right thing.

Analyzing our errors is often also the best way to find a correct solution.
What we did here was to define expression() to first look for a Term and then, if
that Term is followed by a + or a – , look for an Expression. This really implements
a slightly different grammar:

Expression:
 Term
 Term '+' Expression // addition
 Term '–' Expression // subtraction

The difference from our desired grammar is exactly that we wanted 1–2–3 to be the
Expression 1–2 followed by – followed by the Term 3, but what we got here was the
Term 1 followed by – followed by the Expression 2–3; that is, we wanted 1–2–3 to
mean (1–2)–3 but we got 1–(2–3).

Yes, debugging can be tedious, tricky, and time-consuming, but in this case
we are really working through rules you learned in primary school and learned to
apply without too much trouble. The snag is that we have to teach the rules to a
computer – and a computer is a far slower learner than you are.

Note that we could have defined 1–2–3 to mean 1–(2–3) rather than (1–2)–3
and avoided this discussion altogether. Often, the trickiest programming prob-
lems come when we must match conventional rules that were established by and
for humans long before we started using computers.

6.5.2.3 Expressions: third time lucky
So, what now? Look again at the grammar (the correct grammar in §6.5.2): any
Expression starts with a Term and such a Term can be followed by a + or a – . So,
we have to look for a Term, see if it is followed by a + or a – , and keep doing that
until there are no more plusses or minuses. For example:

double expression()
{
 double left = term(); // read and evaluate a Term
 Token t = get_token(); // get the next token

Stroustrup_book.indb 199Stroustrup_book.indb 199 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM200

 while (t.kind=='+' || t.kind=='–') { // look for a + or a –
 if (t.kind == '+')
 left += term(); // evaluate Term and add
 else
 left –= term(); // evaluate Term and subtract
 t = get_token();
 }
 return left; // finally: no more + or – ; return the answer
}

This is a bit messier: we had to introduce a loop to keep looking for plusses and
minuses. We also got a bit repetitive: we test for + and – twice and twice call
get_token(). Because it obscures the logic of the code, let’s just get rid of the du-
plication of the test for + and – :

double expression()
{
 double left = term(); // read and evaluate a Term
 Token t = get_token(); // get the next token
 while (true) {
 switch (t.kind) {
 case '+':
 left += term(); // evaluate Term and add
 t = get_token();
 break;
 case '–':
 left –= term(); // evaluate Term and subtract
 t = get_token();
 break;
 default:
 return left; // finally: no more + or – ; return the answer
 }
 }
}

Note that – except for the loop – this is actually rather similar to our first try
(§6.5.2.1). What we have done is to remove the mention of expression() within
expression() and replace it with a loop. In other words, we translated the Expres-
sion in the grammar rules for Expression into a loop looking for a Term followed
by a + or a – .

6.5.3 Terms
The grammar rule for Term is very similar to the Expression rule:

Stroustrup_book.indb 200Stroustrup_book.indb 200 4/22/14 9:42 AM4/22/14 9:42 AM

6.5 TURNING A GRAMMAR INTO CODE 201

Term:
 Primary
 Term '*' Primary
 Term '/' Primary
 Term '%' Primary

Consequently, the code should be very similar also. Here is a first try:

double term()
{
 double left = primary();
 Token t = get_token();
 while (true) {
 switch (t.kind) {
 case '*':
 left *= primary();
 t = get_token();
 break;
 case '/':
 left /= primary();
 t = get_token();
 break;
 case '%':
 left %= primary();
 t = get_token();
 break;
 default:
 return left;
 }
 }
}

Unfortunately, this doesn’t compile: the remainder operation (%) is not defined
for floating-point numbers. The compiler kindly tells us so. When we answered
question 5 in §6.3.5 – “Should we also allow floating-point inputs?” – with a confi-
dent “Sure!” we actually hadn’t thought the issue through and fell victim to feature
creep. That always happens! So what do we do about it? We could at run time check
that both operands of % are integers and give an error if they are not. Or we could
simply leave % out of our calculator. Let’s take the simplest choice for now. We
can always add % later; see §7.5.

After we eliminate the % case, the function works: terms are correctly parsed
and evaluated. However, an experienced programmer will notice an undesirable
detail that makes term() unacceptable. What would happen if you entered 2/0?

Stroustrup_book.indb 201Stroustrup_book.indb 201 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM202

You can’t divide by zero. If you try, the computer hardware will detect it and
terminate your program with a somewhat unhelpful error message. An inexperi-
enced programmer will discover this the hard way. So, we’d better check and give
a decent error message:

double term()
{
 double left = primary();
 Token t = get_token();
 while (true) {
 switch (t.kind) {
 case '*':
 left *= primary();
 t = get_token();
 break;
 case '/':
 { double d = primary();
 if (d == 0) error("divide by zero");
 left /= d;
 t = get_token();
 break;
 }
 default:
 return left;
 }
 }
}

Why did we put the statements handling / into a block? The compiler insists. If
you want to define and initialize variables within a switch-statement, you must
place them inside a block.

6.5.4 Primary expressions
The grammar rule for primary expressions is also simple:

Primary:
 Number
 '(' Expression ')'

The code that implements it is a bit messy because there are more opportunities
for syntax errors:

Stroustrup_book.indb 202Stroustrup_book.indb 202 4/22/14 9:42 AM4/22/14 9:42 AM

6.6 TRYING THE FIRST VERSION 203

double primary()
{
 Token t = get_token();
 switch (t.kind) {
 case '(': // handle ‘(‘ expression ‘)’
 { double d = expression();
 t = get_token();
 if (t.kind != ')') error("')' expected");
 return d;
 }
 case '8': // we use ‘8’ to represent a number
 return t.value; // return the number’s value
 default:
 error("primary expected");
 }
}

Basically there is nothing new compared to expression() and term(). We use the
same language primitives, the same way of dealing with Tokens, and the same
programming techniques.

6.6 Trying the fi rst version
To run these calculator functions, we need to implement get_token() and provide
a main(). The main() is trivial: we just keep calling expression() and printing out
its result:

int main()

try {
 while (cin)
 cout << expression() << '\n';
 keep_window_open();
}
catch (exception& e) {
 cerr << e.what() << '\n';
 keep_window_open ();
 return 1;
}
catch (...) {
 cerr << "exception \n";
 keep_window_open ();
 return 2;
}

Stroustrup_book.indb 203Stroustrup_book.indb 203 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM204

The error handling is the usual “boilerplate” (§5.6.3). Let us postpone the de-
scription of the implementation of get_token() to §6.8 and test this first version
of the calculator.

TRY THIS

This first version of the calculator program (including get_token()) is avail-
able as file calculator00.cpp. Get it to run and try it out.

Unsurprisingly, this first version of the calculator doesn’t work quite as we
expected. So we shrug and ask, “Why not?” or rather, “So, why does it work
the way it does?” and “What does it do?” Type a 2 followed by a newline. No
response. Try another newline to see if it’s asleep. Still no response. Type a 3 fol-
lowed by a newline. No response! Type a 4 followed by a newline. It answers 2!
Now the screen looks like this:

2

3
4
2

We carry on by typing 5+6. The program responds with a 5, so that the screen
looks like this:

2

3
4
2
5+6
5

Unless you have programmed before, you are most likely very puzzled! In fact,
even an experienced programmer might be puzzled. What’s going on here? At
this point, you try to get out of the program. How do you do this? We “forgot”
to program an exit command, but an error will cause the program to exit, so you
type an x and the program prints Bad token and exits. Finally, something worked
as planned!

However, we forgot to distinguish between input and output on the screen.
Before we try to solve the main puzzle, let’s just fix the output to better see what
we are doing. Adding an = to indicate output will do for now:

T

Stroustrup_book.indb 204Stroustrup_book.indb 204 4/22/14 9:42 AM4/22/14 9:42 AM

6.6 TRYING THE FIRST VERSION 205

while (cin) cout << "="<< expression() << '\n'; // version 1

Now, entering the exact sequence of characters as before, we get

2

3
4
= 2
5+6
= 5
x
Bad token

Strange! Try to figure out what the program did. We tried another few examples,
but let’s just look at this. This is a puzzle:

Why didn’t the program respond after the fi rst 2 and 3 and the newlines?
Why did the program respond with 2, rather than 4, after we entered 4?
Why did the program answer 5, rather than 11, after 5+6?

There are many possible ways of proceeding from such mysterious results. We’ll
examine some of those in the next chapter, but here, let’s just think. Could the
program be doing bad arithmetic? That’s most unlikely; the value of 4 isn’t 2,
and the value of 5+6 is 11 rather than 5. Consider what happens when we enter
1 2 3 4+5 6+7 8+9 10 11 12 followed by a newline. We get

1 2 3 4+5 6+7 8+9 10 11 12
= 1
= 4
= 6
= 8
= 10

Huh? No 2 or 3. Why 4 and not 9 (that is, 4+5)? Why 6 and not 13 (that is, 6+7)?
Look carefully: the program is outputting every third token! Maybe the program
“eats” some of our input without evaluating it? It does. Consider expression():

double expression()
{
 double left = term(); // read and evaluate a Term
 Token t = get_token(); // get the next token
 while (true) {
 switch (t.kind) {

Stroustrup_book.indb 205Stroustrup_book.indb 205 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM206

 case '+':
 left += term(); // evaluate Term and add
 t = get_token();
 break;
 case '–':
 left –= term(); // evaluate Term and subtract
 t = get_token();
 break;
 default:
 return left; // finally: no more + or – ; return the answer
 }
 }
}

When the Token returned by get_token() is not a + or a – we just return. We don’t
use that token and we don’t store it anywhere for any other function to use later.
That’s not smart. Throwing away input without even determining what it is can’t
be a good idea. A quick look shows that term() has exactly the same problem.
That explains why our calculator ate two tokens for each that it used.

Let us modify expression() so that it doesn’t “eat” tokens. Where would we
put that next token (t) when the program doesn’t need it? We could think of many
elaborate schemes, but let’s jump to the obvious answer (“obvious” once you see
it): that token is going to be used by some other function that is reading tokens
from the input, so let’s put the token back into the input stream so that it can be
read again by some other function! Actually, you can put characters back into
an istream, but that’s not really what we want. We want to deal with tokens, not
mess with characters. What we want is an input stream that deals with tokens and
that you can put an already read token back into.

So, assume that we have a stream of tokens – a “Token_stream” – called ts.
Assume further that a Token_stream has a member function get() that returns the
next token and a member function putback(t) that puts a token t back into the
stream. We’ll implement that Token_stream in §6.8 as soon as we have had a look
at how it needs to be used. Given Token_stream, we can rewrite expression() so
that it puts a token that it does not use back into the Token_stream:

double expression()
{
 double left = term(); // read and evaluate a Term
 Token t = ts.get(); // get the next Token from the Token stream

 while (true) {
 switch (t.kind) {

Stroustrup_book.indb 206Stroustrup_book.indb 206 4/22/14 9:42 AM4/22/14 9:42 AM

6.6 TRYING THE FIRST VERSION 207

 case '+':
 left += term(); // evaluate Term and add
 t = ts.get();
 break;
 case '–':
 left –= term(); // evaluate Term and subtract
 t = ts.get();
 break;
 default:
 ts.putback(t); // put t back into the token stream
 return left; // finally: no more + or –; return the answer
 }
 }
}

In addition, we must make the same change to term():

double term()
{
 double left = primary();
 Token t = ts.get(); // get the next Token from the Token stream

 while (true) {
 switch (t.kind) {
 case '*':
 left *= primary();
 t = ts.get();
 break;
 case '/':
 { double d = primary();
 if (d == 0) error("divide by zero");
 left /= d;
 t = ts.get();
 break;
 }
 default:
 ts.putback(t); // put t back into the Token stream
 return left;
 }
 }
}

Stroustrup_book.indb 207Stroustrup_book.indb 207 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM208

For our last parser function, primary(), we just need to change get_token() to
ts.get(); primary() uses every token it reads.

6.7 Trying the second version
So, we are ready to test our second version. This second version of the calcula-
tor program (including Token_stream) is available as file calculator01.cpp. Get
it to run and try it out. Type 2 followed by a newline. No response. Try another
newline to see if it’s asleep. Still no response. Type a 3 followed by a newline and
it answers 2. Try 2+2 followed by a newline and it answers 3. Now your screen
looks like this:

2

3
=2
2+2
=3

Hmm. Maybe our introduction of putback() and its use in expression() and term()
didn’t fix the problem. Let’s try another test:

2 3 4 2+3 2*3
= 2
= 3
= 4
= 5

Yes! These are correct answers! But the last answer (6) is missing. We still have a
token-look-ahead problem. However, this time the problem is not that our code
“eats” characters, but that it doesn’t get any output for an expression until we
enter the following expression. The result of an expression isn’t printed imme-
diately; the output is postponed until the program has seen the first token of the
next expression. Unfortunately, the program doesn’t see that token until we hit
Return after the next expression. The program isn’t really wrong; it is just a bit
slow responding.

How can we fix this? One obvious solution is to require a “print command.”
So, let’s accept a semicolon after an expression to terminate it and trigger output.
And while we are at it, let’s add an “exit command” to allow for graceful exit. The
character q (for “quit”) would do nicely for an exit command. In main(), we have

while (cin) cout << "=" << expression() << '\n'; // version 1

Stroustrup_book.indb 208Stroustrup_book.indb 208 4/22/14 9:42 AM4/22/14 9:42 AM

6.8 TOKEN STREAMS 209

We can change that to the messier but more useful

double val = 0;
while (cin) {
 Token t = ts.get();

 if (t.kind == 'q') break; // ‘q’ for “quit”
 if (t.kind == ';') // ‘;’ for “print now”
 cout << "=" << val << '\n';
 else
 ts.putback(t);
 val = expression();
}

Now the calculator is actually usable. For example, we get

2;
= 2
2+3;
= 5
3+4*5;
= 23
q

At this point we have a good initial version of the calculator. It’s not quite what
we really wanted, but we have a program that we can use as the base for making
a more acceptable version. Importantly, we can now correct problems and add
features one by one while maintaining a working program as we go along.

6.8 Token streams
Before further improving our calculator, let us show the implementation of
Token_stream. After all, nothing – nothing at all – works until we get correct input.
We implemented Token_stream first of all but didn’t want too much of a digres-
sion from the problems of calculation before we had shown a minimal solution.

Input for our calculator is a sequence of tokens, just as we showed for
(1.5+4)*11 above (§6.3.3). What we need is something that reads characters from
the standard input, cin, and presents the program with the next token when it
asks for it. In addition, we saw that we – that is, our calculator program – often
read a token too many, so that we must be able to put it back for later use. This
is typical and fundamental; when you see 1.5+4 reading strictly left to right, how
could you know that the number 1.5 had been completely read without reading

Stroustrup_book.indb 209Stroustrup_book.indb 209 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM210

the +? Until we see the + we might be on our way to reading 1.55555. So, we need
a “stream” that produces a token when we ask for one using get() and where we
can put a token back into the stream using putback(). Everything we use in C++
has a type, so we have to start by defining the type Token_stream.

You probably noticed the public: in the definition of Token in §6.3.3. There,
it had no apparent purpose. For Token_stream, we need it and must explain its
function. A C++ user-defined type often consists of two parts: the public interface
(labeled public:) and the implementation details (labeled private:). The idea is to
separate what a user of a type needs for convenient use from the details that we
need in order to implement the type, but that we’d rather not have users mess with:

class Token_stream {
public:

// user interface
private:
 // implementation details
 // (not directly accessible to users of Token_stream)
};

Obviously, users and implementers are often just us “playing different roles,” but
making the distinction between the (public) interface meant for users and the (pri-
vate) implementation details used only by the implementer is a powerful tool for
structuring code. The public interface should contain (only) what a user needs,
which is typically a set of functions. The private implementation contains what is
necessary to implement those public functions, typically data and functions dealing
with messy details that the users need not know about and shouldn’t directly use.

Let’s elaborate the Token_stream type a bit. What does a user want from it?
Obviously, we want get() and putback() functions – that’s why we invented the
notion of a token stream. The Token_stream is to make Tokens out of characters
that it reads for input, so we need to be able to make a Token_stream and to define
it to read from cin. Thus, the simplest Token_stream looks like this:

class Token_stream {
public:
 Token_stream(); // make a Token_stream that reads from cin
 Token get(); // get a Token
 void putback(Token t); // put a Token back
private:
 // implementation details
};

That’s all a user needs to use a Token_stream. Experienced programmers will
wonder why cin is the only possible source of characters, but we decided to take
our input from the keyboard. We’ll revisit that decision in a Chapter 7 exercise.

Stroustrup_book.indb 210Stroustrup_book.indb 210 4/22/14 9:42 AM4/22/14 9:42 AM

6.8 TOKEN STREAMS 211

Why do we use the “verbose” name putback() rather than the logically suffi-
cient put()? We wanted to emphasize the asymmetry between get() and putback();
this is an input stream, not something that you can also use for general output.
Also, istream has a putback() function: consistency in naming is a useful property
of a system. It helps people remember and helps people avoid errors.

We can now make a Token_stream and use it:

Token_stream ts; // a Token_stream called ts
Token t = ts.get(); // get next Token from ts
// . . .
ts.putback(t); // put the Token t back into ts

That’s all we need to write the rest of the calculator.

6.8.1 Implementing Token_stream
Now, we need to implement those three Token_stream functions. How do we
represent a Token_stream? That is, what data do we need to store in a Token_
stream for it to do its job? We need space for any token we put back into the
Token_stream. To simplify, let’s say we can put back at most one token at a time.
That happens to be sufficient for our program (and for many, many similar pro-
grams). That way, we just need space for one Token and an indicator of whether
that space is full or empty:

class Token_stream {
public:
 Token get(); // get a Token (get() is defined in §6.8.2)
 void putback(Token t); // put a Token back
private:
 bool full {false}; // is there a Token in the buffer?
 Token buffer; // here is where we keep a Token put back using putback()
};

Now we can define (“write”) the two member functions. The putback() is
easy, so we will define it first. The putback() member function puts its argument
back into the Token_stream’s buffer:

void Token_stream::putback(Token t)
{
 buffer = t; // copy t to buffer
 full = true; // buffer is now full
}

Stroustrup_book.indb 211Stroustrup_book.indb 211 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM212

The keyword void (meaning “nothing”) is used to indicate that putback() doesn’t
return a value.

When we define a member of a class outside the class definition itself, we
have to mention which class we mean the member to be a member of. We use
the notation

class_name :: member_name

for that. In this case, we define Token_stream’s member putback.
Why would we define a member outside its class? The main answer is clar-

ity: the class definition (primarily) states what the class can do. Member function
definitions are implementations that specify how things are done. We prefer to
put them “elsewhere” where they don’t distract. Our ideal is to have every logical
entity in a program fit on a screen. Class definitions typically do that if the mem-
ber function definitions are placed elsewhere, but not if they are placed within the
class definition (“in-class”).

If we wanted to make sure that we didn’t try to use putback() twice without
reading what we put back in between (using get()), we could add a test:

void Token_stream::putback(Token t)
{
 if (full) error("putback() into a full buffer");
 buffer = t; // copy t to buffer
 full = true; // buffer is now full
}

The test of full checks the pre-condition “There is no Token in the buffer.”
Obviously, a Token_stream should start out empty. That is, full should be

false until after the first call of get(). We achieve that by initializing the member
full right in the definition of Token_stream.

6.8.2 Reading tokens
All the real work is done by get(). If there isn’t already a Token in Token_
stream::buffer, get() must read characters from cin and compose them into
Tokens:

Token Token_stream::get()
{
 if (full) { // do we already have a Token ready?
 full = false; // remove Token from buffer
 return buffer;
 }

Stroustrup_book.indb 212Stroustrup_book.indb 212 4/22/14 9:42 AM4/22/14 9:42 AM

6.8 TOKEN STREAMS 213

 char ch;
 cin >> ch; // note that >> skips whitespace (space, newline, tab, etc.)

 switch (ch) {
 case ';': // for “print”
 case 'q': // for “quit”
 case '(': case ')': case '+': case '–': case '*': case '/':
 return Token{ch}; // let each character represent itself
 case '.':
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 { cin.putback(ch); // put digit back into the input stream
 double val;
 cin >> val; // read a floating-point number
 return Token{'8',val}; // let ‘8’ represent “a number”
 }
 default:
 error("Bad token");
 }
}

Let’s examine get() in detail. First we check if we already have a Token in the
buffer. If so, we can just return that:

if (full) { // do we already have a Token ready?
 full = false; // remove Token from buffer
 return buffer;
}

Only if full is false (that is, there is no token in the buffer) do we need to mess
with characters. In that case, we read a character and deal with it appropriately.
We look for parentheses, operators, and numbers. Any other character gets us the
call of error() that terminates the program:

default:
 error("Bad token");

The error() function is described in §5.6.3 and we make it available in
std_lib_facilities.h.

We had to decide how to represent the different kinds of Tokens; that is, we
had to choose values for the member kind. For simplicity and ease of debugging,

Stroustrup_book.indb 213Stroustrup_book.indb 213 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM214

we decided to let the kind of a Token be the parentheses and operators them-
selves. This leads to extremely simple processing of parentheses and operators:

case '(': case ')': case '+': case '–': case '*': case '/':
 return Token{ch}; // let each character represent itself

To be honest, we had forgotten ';' for “print” and 'q' for “quit” in our first ver-
sion. We didn’t add them until we needed them for our second solution.

6.8.3 Reading numbers
Now we just have to deal with numbers. That’s actually not that easy. How do
we really find the value of 123? Well, that’s 100+20+3, but how about 12.34, and
should we accept scientific notation, such as 12.34e5? We could spend hours or
days to get this right, but fortunately, we don’t have to. Input streams know what
C++ literals look like and how to turn them into values of type double. All we
have to do is to figure out how to tell cin to do that for us inside get():

case '.':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{ cin.putback(ch); // put digit back into the input stream
 double val;
 cin >> val; // read a floating-point number
 return Token{'8',val}; // let ‘8’ represent “a number”
}

We – somewhat arbitrarily – chose '8' to represent “a number” in a Token.
How do we know that a number is coming? Well, if we guess from experience

or look in a C++ reference (e.g., Appendix A), we find that a numeric literal must
start with a digit or . (the decimal point). So, we test for that. Next, we want to
let cin read the number, but we have already read the first character (a digit or
dot), so just letting cin loose on the rest will give a wrong result. We could try to
combine the value of the first character with the value of “the rest” as read by cin;
for example, if someone typed 123, we would get 1 and cin would read 23 and
we’d have to add 100 to 23. Yuck! And that’s a trivial case. Fortunately (and not by
accident), cin works much like Token_stream in that you can put a character back
into it. So instead of doing any messy arithmetic, we just put the initial character
back into cin and then let cin read the whole number.

Stroustrup_book.indb 214Stroustrup_book.indb 214 4/22/14 9:42 AM4/22/14 9:42 AM

6.9 PROGRAM STRUCTURE 215

Please note how we again and again avoid doing complicated work and in-
stead find simpler solutions – often relying on library facilities. That’s the essence
of programming: the continuing search for simplicity. Sometimes that’s – some-
what facetiously – expressed as “Good programmers are lazy.” In that sense (and
only in that sense), we should be “lazy”; why write a lot of code if we can find a
way of writing far less?

6.9 Program structure
Sometimes, the proverb says, it’s hard to see the forest for the trees. Similarly, it is
easy to lose sight of a program when looking at all its functions, classes, etc. So,
let’s have a look at the program with its details omitted:

#include "std_lib_facilities.h"

class Token { /* . . . */ };
class Token_stream { /* . . . */ };

void Token_stream::putback(Token t) { /* . . . */ }
Token Token_stream::get() { /* . . . */ }

Token_stream ts; // provides get() and putback()
double expression() // declaration so that primary() can call expression()

double primary() { /* . . . */ } // deal with numbers and parentheses
double term() { /* . . . */ } // deal with * and /
double expression() { /* . . . */ } // deal with + and –

int main() { /* . . . */ } // main loop and deal with errors

The order of the declarations is important. You cannot use a name before it has
been declared, so ts must be declared before ts.get() uses it, and error() must be
declared before the parser functions because they all use it. There is an interest-
ing loop in the call graph: expression() calls term() which calls primary() which
calls expression().

Stroustrup_book.indb 215Stroustrup_book.indb 215 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM216

We can represent that graphically (leaving out calls to error() – everyone calls
error()):

ts error() cin

primary()

term()

expression()

main()

This means that we can’t just define those three functions: there is no order that al-
lows us to define every function before it is used. We need at least one declaration
that isn’t also a definition. We chose to declare (“forward declare”) expression().

But does this work? It does, for some definition of “work.” It compiles, runs,
correctly evaluates expressions, and gives decent error messages. But does it work
in a way that we like? The unsurprising answer is “Not really.” We tried the first
version in §6.6 and removed a serious bug. This second version (§6.7) is not
much better. But that’s fine (and expected). It is good enough for its main pur-
pose, which is to be something that we can use to verify our basic ideas and get
feedback from. As such, it is a success, but try it: it’ll (still) drive you nuts!

TRY THIS

Get the calculator as presented above to run, see what it does, and try to fig-
ure out why it works as it does.

T

Stroustrup_book.indb 216Stroustrup_book.indb 216 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 REVIEW 217

Drill
This drill involves a series of modifi cations of a buggy program to turn it from
something useless into something reasonably useful.

 1. Take the calculator from the file calculator02buggy.cpp. Get it to compile.
You need to find and fix a few bugs. Those bugs are not in the text in the
book. Find the three logic errors deviously inserted in calculator02buggy
.cpp and remove them so that the calculator produces correct results.

 2. Change the character used as the exit command from q to x.
 3. Change the character used as the print command from ; to =.
 4. Add a greeting line in main():

"Welcome to our simple calculator.
Please enter expressions using fl oating-point numbers."

 5. Improve that greeting by mentioning which operators are available and
how to print and exit.

Review
 1. What do we mean by “Programming is understanding”?
 2. The chapter details the creation of a calculator program. Write a short

analysis of what the calculator should be able to do.
 3. How do you break a problem up into smaller manageable parts?
 4. Why is creating a small, limited version of a program a good idea?
 5. Why is feature creep a bad idea?
 6. What are the three main phases of software development?
 7. What is a “use case”?
 8. What is the purpose of testing?
 9. According to the outline in the chapter, describe the difference between a

Term, an Expression, a Number, and a Primary.
 10. In the chapter, an input was broken down into its component Terms, Ex-

pressions, Primarys, and Numbers. Do this for (17+4)/(5–1).
 11. Why does the program not have a function called number()?
 12. What is a token?
 13. What is a grammar? A grammar rule?
 14. What is a class? What do we use classes for?
 15. How can we provide a default value for a member of a class?
 16. In the expression function, why is the default for the switch-statement to

“put back” the token?

Stroustrup_book.indb 217Stroustrup_book.indb 217 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM218

 17. What is “look-ahead”?
 18. What does putback() do and why is it useful?
 19. Why is the remainder (modulus) operation, %, difficult to implement in

the term()?
 20. What do we use the two data members of the Token class for?
 21. Why do we (sometimes) split a class’s members into private and public

members?
 22. What happens in the Token_stream class when there is a token in the

buffer and the get() function is called?
 23. Why were the ';' and 'q' characters added to the switch-statement in the

get() function of the Token_stream class?
 24. When should we start testing our program?
 25. What is a “user-defined type”? Why would we want one?
 26. What is the interface to a C++ “user-defined type”?
 27. Why do we want to rely on libraries of code?

Terms
analysis grammar prototype
class implementation pseudo code
class member interface public
data member member function syntax analyzer
design parser token
divide by zero private use case

Exercises
 1. If you haven’t already, do the Try this exercises from this chapter.
 2. Add the ability to use {} as well as () in the program, so that {(4+5)*6} /

(3+4) will be a valid expression.
 3. Add a factorial operator: use a suffix ! operator to represent “factorial.”

For example, the expression 7! means 7 * 6 * 5 * 4 * 3 * 2 * 1. Make ! bind
tighter than * and /; that is, 7*8! means 7*(8!) rather than (7*8)!. Begin by
modifying the grammar to account for a higher-level operator. To agree
with the standard mathematical definition of factorial, let 0! evaluate to 1.
Hint: The calculator functions deal with doubles, but factorial is defined
only for ints, so just for x!, assign the x to an int and calculate the factorial
of that int.

 4. Define a class Name_value that holds a string and a value. Rework exer-
cise 19 in Chapter 4 to use a vector<Name_value> instead of two vectors.

 5. Add the article the to the “English” grammar in §6.4.1, so that it can
describe sentences such as “The birds fly but the fish swim.”

Stroustrup_book.indb 218Stroustrup_book.indb 218 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 EXERCISES 219

 6. Write a program that checks if a sentence is correct according to the “En-
glish” grammar in §6.4.1. Assume that every sentence is terminated by
a full stop (.) surrounded by whitespace. For example, birds fly but the
fish swim . is a sentence, but birds fly but the fish swim (terminating dot
missing) and birds fly but the fish swim. (no space before dot) are not. For
each sentence entered, the program should simply respond “OK” or “not
OK.” Hint: Don’t bother with tokens; just read into a string using >>.

 7. Write a grammar for bitwise logical expressions. A bitwise logical ex-
pression is much like an arithmetic expression except that the operators
are ! (not), ~ (complement), & (and), | (or), and ^ (exclusive or). Each
operator does its operation to each bit of its integer operands (see §25.5).
! and ~ are prefix unary operators. A ^ binds tighter than a | (just as *
binds tighter than +) so that x|y^z means x|(y^z) rather than (x|y)^z. The
& operator binds tighter than ^ so that x^y&z means x^(y&z).

 8. Redo the “Bulls and Cows” game from exercise 12 in Chapter 5 to use
four letters rather than four digits.

 9. Write a program that reads digits and composes them into integers. For
example, 123 is read as the characters 1, 2, and 3. The program should
output 123 is 1 hundred and 2 tens and 3 ones. The number should be
output as an int value. Handle numbers with one, two, three, or four
digits. Hint: To get the integer value 5 from the character '5' subtract '0',
that is, '5'– '0'==5.

 10. A permutation is an ordered subset of a set. For example, say you wanted
to pick a combination to a vault. There are 60 possible numbers, and
you need three different numbers for the combination. There are P(60,3)
permutations for the combination, where P is defined by the formula

P a b
a

a b
,

!
!
,() =

−()

 where ! is used as a suffix factorial operator. For example, 4! is 4*3*2*1.
 Combinations are similar to permutations, except that the order of the

objects doesn’t matter. For example, if you were making a “banana split”
sundae and wished to use three different flavors of ice cream out of five
that you had, you wouldn’t care if you used a scoop of vanilla at the
beginning or the end; you would still have used vanilla. The formula for
combinations is

C a b
P a b

b
,

,
!

.() = ()

Stroustrup_book.indb 219Stroustrup_book.indb 219 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 6 • WRITING A PROGRAM220

 Design a program that asks users for two numbers, asks them whether
they want to calculate permutations or combinations, and prints out the
result. This will have several parts. Do an analysis of the above require-
ments. Write exactly what the program will have to do. Then, go into
the design phase. Write pseudo code for the program, and break it into
sub-components. This program should have error checking. Make sure
that all erroneous inputs will generate good error messages.

Postscript
Making sense of input is one of the fundamental programming activities. Every
program somehow faces that problem. Making sense of something directly pro-
duced by a human is among the hardest problems. For example, many aspects of
voice recognition are still a research problem. Simple variations of this problem,
such as our calculator, cope by using a grammar to defi ne the input.

Stroustrup_book.indb 220Stroustrup_book.indb 220 4/22/14 9:42 AM4/22/14 9:42 AM

221

7

Completing a Program

“It ain’t over till the fat lady sings.”

—Opera proverb

Writing a program involves gradually refining your ideas

of what you want to do and how you want to express

it. In Chapter 6, we produced the initial working version of a

calculator program. Here, we’ll refine it. Completing the pro-

gram — that is, making it fit for users and maintainers — involves

improving the user interface, doing some serious work on er-

ror handling, adding a few useful features, and restructuring the

code for ease of understanding and modification.

Stroustrup_book.indb 221Stroustrup_book.indb 221 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM222

7.1 Introduction
When your program first starts running “reasonably,” you’re probably about half-
way finished. For a large program or a program that could do harm if it misbe-
haved, you will be nowhere near halfway finished. Once the program “basically
works,” the real fun begins! That’s when we have enough working code to exper-
iment with ideas.

In this chapter, we will guide you through the considerations a professional
programmer might have trying to improve the calculator from Chapter 6. Note
that the questions asked about the program and the issues considered here are far
more interesting than the calculator itself. What we do is to give an example of
how real programs evolve under the pressure of requirements and constraints and
of how a programmer can gradually improve code.

7.2 Input and output
If you look back to the beginning of Chapter 6, you’ll find that we decided to
prompt the user with

Expression:

and to report back answers with

Result:

In the heat of getting the program to run, we forgot all about that. That’s pretty
typical. We can’t think of everything all the time, so when we stop to reflect, we
find that we have forgotten something.

For some programming tasks, the initial requirements cannot be changed.
That’s usually too rigid a policy and leads to programs that are unnecessarily
poor solutions to the problems that they are written to solve. So, let’s consider

7.1 Introduction

7.2 Input and output

7.3 Error handling

7.4 Negative numbers

7.5 Remainder: %

7.6 Cleaning up the code
 7.6.1 Symbolic constants
 7.6.2 Use of functions
 7.6.3 Code layout
 7.6.4 Commenting

7.7 Recovering from errors

7.8 Variables
 7.8.1 Variables and defi nitions
 7.8.2 Introducing names
 7.8.3 Predefi ned names
 7.8.4 Are we there yet?

Stroustrup_book.indb 222Stroustrup_book.indb 222 4/22/14 9:42 AM4/22/14 9:42 AM

7.2 INPUT AND OUTPUT 223

what we would do, assuming that we can change the specification of what exactly
the program should do. Do we really want the program to write Expression: and
Result:? How would we know? Just “thinking” rarely helps. We have to try and
see what works best.

2+3; 5*7; 2+9;

currently gives

= 5
= 35
= 11

If we used Expression: and Result:, we’d get

Expression: 2+3; 5*7; 2+9;
Result : 5
Expression: Result: 35
Expression: Result: 11
Expression:

We are sure that some people will like one style and others will like the other. In
such cases, we can consider giving people a choice, but for this simple calculator
that would be overkill, so we must decide. We think that writing Expression: and
Result: is a bit too “heavy” and distracting. Using those, the actual expressions
and results are only a minor part of what appears on the screen, and since expres-
sions and results are what matters, nothing should distract from them. On the
other hand, unless we somehow separate what the user types from what the com-
puter outputs, the result can be confusing. During initial debugging, we added
= as a result indicator. We would also like a short “prompt” to indicate that the
program wants input. The > character is often used as a prompt:

> 2+3;
= 5
> 5*7;
= 35
>

This looks much better, and we can get it by a minor change to the main loop of
main():

double val = 0;
while (cin) {
 cout << "> " ; // print prompt
 Token t = ts.get();

Stroustrup_book.indb 223Stroustrup_book.indb 223 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM224

 if (t.kind == 'q') break;
 if (t.kind == ';')
 cout << "= " << val << '\n'; // print result
 else
 ts.putback(t);
 val = expression();
}

Unfortunately, the result of putting several expressions on a line is still messy:

> 2+3; 5*7; 2+9;
= 5
> = 35
> = 11
>

The basic problem is that we didn’t think of multiple expressions on a line when
we started out (at least we pretended not to). What we want is

> 2+3; 5*7; 2+9;
= 5
= 35
= 11
>

This looks right, but unfortunately there is no really obvious way of achieving it.
We first looked at main(). Is there a way to write out > only if it is not immediately
followed by a =? We cannot know! We need to write > before the get(), but we do
not know if get() actually reads new characters or simply gives us a Token from
characters that it had already read from the keyboard. In other words, we would
have to mess with Token_stream to make this final improvement.

For now, we decide that what we have is good enough. If we find that we
have to modify Token_stream, we’ll revisit this decision. However, it is unwise
to make major structural changes to gain a minor advantage, and we haven’t yet
thoroughly tested the calculator.

7.3 Error handling
The first thing to do once you have a program that “basically works” is to try to
break it; that is, we try to feed it input in the hope of getting it to misbehave. We
say “hope” because the challenge here is to find as many errors as possible, so

Stroustrup_book.indb 224Stroustrup_book.indb 224 4/22/14 9:42 AM4/22/14 9:42 AM

7.3 ERROR HANDLING 225

that you can fix them before anybody else finds them. If you go into this exercise
with the attitude that “my program works and I don’t make errors!” you won’t
find many bugs and you’ll feel bad when you do find one. You’d be playing head
games with yourself! The right attitude when testing is “I’ll break it! I’m smarter
than any program — even my own!” So, we feed the calculator a mix of correct
and incorrect expressions. For example:

1+2+3+4+5+6+7+8
1–2–3–4
!+2
;;;
(1+3;
(1+);
1*2/3%4+5–6;
();
1+;
+1
1++;
1/0
1/0;
1++2;
–2;
–2;;;;
1234567890123456;
'a';
q
1+q
1+2; q

TRY THIS

Feed a few such “problematic” expressions to the calculator and try to fig-
ure out in how many ways you can get it to misbehave. Can you get it to
crash, that is, to get it past our error handling and give a machine error? We
don’t think you can. Can you get it to exit without a useful error message?
You can.

Technically, this is known as testing. There are people who do this — break pro-
grams — for a living. Testing is a very important part of software development and
can actually be fun. Chapter 26 examines testing in some detail. One big question

T

Stroustrup_book.indb 225Stroustrup_book.indb 225 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM226

is: “Can we test the program systematically, so that we find all of the errors?”
There is no general answer to this question; that is, there is no answer that holds
for all programs. However, you can do rather well for many programs when you
approach testing seriously. You try to create test cases systematically, and just in
case your strategy for selecting tests isn’t complete, you do some “unreasonable”
tests, such as

Mary had a little lamb
srtvrqtiewcbet7rewaewre–wqcntrretewru754389652743nvcqnwq;
!@#$%^&*()~:;

Once, when testing compilers, I got into the habit of feeding email that reported
compiler errors straight to the compiler — mail headers, user’s explanation, and
all. That wasn’t “sensible” because “nobody would do that.” However, a program
ideally catches all errors, not just the sensible ones, and soon that compiler was
very resilient against “strange input.”

The first really annoying thing we noticed when testing the calculator was
that the window closed immediately after inputs such as

+1;
()
!+2

A little thought (or some tracing of the program’s execution) shows that the prob-
lem is that the window is closed immediately after the error message has been
written. This happens because our mechanism for keeping a window alive was to
wait for you to enter a character. However, in all three cases above, the program
detected an error before it had read all of the characters, so that there was a char-
acter left on the input line. The program can’t tell such “leftover” characters from
a character entered in response to the Enter a character to close window prompt.
That “leftover” character then closed the window.

We could deal with that by modifying main() (see §5.6.3):

catch (runtime_error& e) {
 cerr << e.what() << '\n';
 // keep_window_open():
 cout << "Please enter the character ~ to close the window\n";
 for (char ch; cin >> ch;) // keep reading until we find a ~
 if (ch=='~') return 1;
 return 1;
}

Stroustrup_book.indb 226Stroustrup_book.indb 226 4/22/14 9:42 AM4/22/14 9:42 AM

7.3 ERROR HANDLING 227

Basically, we replaced keep_window_open() with our own code. Note that we still
have our problem if a ~ happens to be a character to be read after an error, but
that’s rather unlikely.

When we encountered this problem we wrote a version of keep_window_
open() that takes a string as its argument and closes the window only when you
enter that string after getting the prompt, so a simpler solution is

catch (runtime_error& e) {
 cerr << e.what() << '\n';
 keep_window_open("~~");
 return 1;
}

Now examples such as

+1
!1~~
()

will cause the calculator to give the proper error messages, then say

Please enter ~~ to exit

and not exit until you enter the string ~~.
The calculator takes input from the keyboard. That makes testing tedious:

each time we make an improvement, we have to type in a lot of test cases (yet
again!) to make sure we haven’t broken anything. It would be much better if we
could store our test cases somewhere and run them with a single command. Some
operating systems (notably Unix) make it trivial to get cin to read from a file with-
out modifying the program, and similarly to divert the output from cout to a file.
If that’s not convenient, we must modify the program to use a file (see Chapter 10).

Now consider:

1+2; q

and

1+2 q

We would like both to print the result (3) and then exit the program. Curiously
enough,

1+2 q

Stroustrup_book.indb 227Stroustrup_book.indb 227 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM228

does that, but the apparently cleaner

1+2; q

elicits a Primary expected error. Where would we look for this error? In main()
where ; and q are handled, of course. We added those “print” and “quit” com-
mands rather quickly to get the calculator to work (§6.7). Now we are paying for
that haste. Consider again:

double val = 0;
while (cin) {
 cout << "> ";
 Token t = ts.get();
 if (t.kind == 'q') break;
 if (t.kind == ';')
 cout << "= " << val << '\n';
 else
 ts.putback(t);
 val = expression();
}

If we find a semicolon, we straightaway proceed to call expression() without
checking for q. The first thing that expression() does is to call term(), which first
calls primary(), which finds q. The letter q isn’t a Primary so we get our error
message. So, we should test for q after testing for a semicolon. While we were at
it, we felt the need to simplify the logic a bit, so the complete main() reads

int main()
try
{
 while (cin) {
 cout << "> ";
 Token t = ts.get();
 while (t.kind == ';') t=ts.get(); // eat ‘;’
 if (t.kind == 'q') {
 keep_window_open();
 return 0;
 }
 ts.putback(t);
 cout << "= " << expression() << '\n';
 }
 keep_window_open();
 return 0;
}

Stroustrup_book.indb 228Stroustrup_book.indb 228 4/22/14 9:42 AM4/22/14 9:42 AM

7.4 NEGATIVE NUMBERS 229

catch (exception& e) {
 cerr << e.what() << '\n';
 keep_window_open("~~");
 return 1;
}
catch (...) {
 cerr << "exception \n";
 keep_window_open("~~");
 return 2;
}

This makes for reasonably robust error handling. So we can start considering
what else we can do to improve the calculator.

7.4 Negative numbers
If you tested the calculator, you found that it couldn’t handle negative numbers
elegantly. For example, this is an error:

–1/2

We have to write

(0–1)/2

That’s not acceptable.
Finding such problems during late debugging and testing is common. Only

now do we have the opportunity to see what our design really does and get the
feedback that allows us to refine our ideas. When planning a project, it is wise
to try to preserve time and flexibility to benefit from the lessons we learn here.
All too often, “release 1.0” is shipped without needed refinements because a tight
schedule or a rigid project management strategy prevents “late” changes to the
specification; “late” addition of “features” is especially dreaded. In reality, when
a program is good enough for simple use by its designers but not yet ready to
ship, it isn’t “late” in the development sequence; it’s the earliest time when we can
benefit from solid experience with the program. A realistic schedule takes that
into account.

In this case, we basically need to modify the grammar to allow unary minus.
The simplest change seems to be in Primary. We have

Primary:
 Number
 "(" Expression ")"

Stroustrup_book.indb 229Stroustrup_book.indb 229 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM230

and we need something like

Primary:
 Number
 "(" Expression ")"
 "–" Primary
 "+" Primary

We added unary plus because that’s what C++ does. When we have unary mi-
nus, someone always tries unary plus and it’s easier just to implement that than to
explain why it is useless. The code that implements Primary becomes

double primary()
{
 Token t = ts.get();
 switch (t.kind) {
 case '(': // handle ‘(’ expression ‘)’
 {
 double d = expression();
 t = ts.get();
 if (t.kind != ')') error("')' expected");
 return d;
 }
 case '8': // we use ‘8’ to represent a number
 return t.value; // return the number’s value
 case '–':
 return – primary();
 case '+':
 return primary();
default:
 error("primary expected");
 }
}

That’s so simple that it actually worked the first time.

7.5 Remainder: %
When we first analyzed the ideals for a calculator, we wanted the remainder
(modulo) operator: %. However, % is not defined for floating-point numbers, so
we backed off. Now we can consider it again. It should be simple:

 1. We add % as a Token.
 2. We define a meaning for %.

Stroustrup_book.indb 230Stroustrup_book.indb 230 4/22/14 9:42 AM4/22/14 9:42 AM

7.5 REMAINDER: % 231

We know the meaning of % for integer operands. For example:

> 2%3;
= 2
> 3%2;
= 1
> 5%3;
= 2

But how should we handle operands that are not integers? Consider:

> 6.7%3.3;

What should be the resulting value? There is no perfect technical answer. How-
ever, modulo is often defined for floating-point operands. In particular, x%y can
be defined as x–y=x–y*int(x/y), so that 6.7%3.3==6.7–3.3*int(6.7/3.3), that is, 0.1.
This is easily done using the standard library function fmod() (floating-point mod-
ulo) from <cmath> (§24.8). We modify term() to include

case '%':
{ double d = primary();
 if (d == 0) error("divide by zero");
 left = fmod(left,d);
 t = ts.get();
 break;
}

The <cmath> library is where we find all of the standard mathematical functions,
such as sqrt(x) (square root of x), abs(x) (absolute value of x), log(x) (natural log-
arithm of x), and pow(x,e) (x to the power of y).

Alternatively, we can prohibit the use of % on a floating-point argument. We
check if the floating-point operands have fractional parts and give an error mes-
sage if they do. The problem of ensuring int operands for % is a variant of the
narrowing problem (§3.9.2 and §5.6.4), so we could solve it using narrow_cast:

case '%':
{ int i1 = narrow_cast<int>(left);
 int i2 = narrow_cast<int>(primary());
 if (i2 == 0) error("%: divide by zero");
 left = i1%i2;
 t = ts.get();
 break;
}

For a simple calculator, either solution will do.

Stroustrup_book.indb 231Stroustrup_book.indb 231 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM232

7.6 Cleaning up the code
We have made several changes to the code. They are, we think, all improvements,
but the code is beginning to look a bit messy. Now is a good time to review the code
to see if we can make it clearer and shorter, add and improve comments, etc. In
other words, we are not finished with the program until we have it in a state suitable
for someone else to take over maintenance. Except for the almost total absence of
comments, the calculator code really isn’t that bad, but let’s do a bit of cleanup.

7.6.1 Symbolic constants
Looking back, we find the use of '8' to indicate a Token containing a numeric
value odd. It doesn’t really matter what value is used to indicate a number Token
as long as the value is distinct from all other values indicating different kinds of
Tokens. However, the code looks a bit odd and we had to keep reminding our-
selves in comments:

case '8': // we use '8' to represent a number
 return t.value; // return the number’s value
case '–':
 return – primary();

To be honest, we also made a few mistakes, typing '0' rather than '8', because we
forgot which value we had chosen to use. In other words, using '8' directly in the
code manipulating Tokens was sloppy, hard to remember, and error-prone; '8'
is one of those “magic constants” we warned against in §4.3.1. What we should
have done was to introduce a symbolic name for the constant we used to repre-
sent a number:

const char number = '8'; // t.kind==number means that t is a number Token

The const modifier simply tells the compiler that we are defining an object that is
not supposed to change: for example, an assignment number='0' would cause the
compiler to give an error message. Given that definition of number, we don’t have
to use '8' explicitly anymore. The code fragment from primary above now becomes

case number:
 return t.value; // return the number’s value
case '–':
 return – primary();

This requires no comment. We should not say in comments what can be clearly
and directly said in code. Repeated comments explaining something are often an
indication that the code should be improved.

Stroustrup_book.indb 232Stroustrup_book.indb 232 4/22/14 9:42 AM4/22/14 9:42 AM

7.6 CLEANING UP THE CODE 233

Similarly, the code in Token_stream::get() that recognizes numbers becomes

case '.':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
 { cin.putback(ch); // put digit back into the input stream
 double val;
 cin >> val; // read a floating-point number
 return Token(number,val);
 }

We could consider symbolic names for all tokens, but that seems overkill. After
all, '(' and '+' are about as obvious a notation for (and + as anyone could come up
with. Looking through the tokens, only ';' for “print” (or “terminate expression”)
and 'q' for “quit” seem arbitrary. Why not 'p' and 'e'? In a larger program, it is
only a matter of time before such obscure and arbitrary notation becomes a cause
of a problem, so we introduce

const char quit = 'q'; // t.kind==quit means that t is a quit Token
const char print = ';'; // t.kind==print means that t is a print Token

Now we can write main()’s loop like this:

while (cin) {
 cout << "> ";
 Token t = ts.get();
 while (t.kind == print) t=ts.get();
 if (t.kind == quit) {
 keep_window_open();
 return 0;
 }
 ts.putback(t);
 cout << "= " << expression() << '\n';
}

Introducing symbolic names for “print” and “quit” makes the code easier to read.
In addition, it doesn’t encourage someone reading main() to make assumptions
about how “print” and “quit” are represented on input. For example, it should
come as no surprise if we decide to change the representation of “quit” to 'e' (for
“exit”). That would now require no change in main().

Now the strings "> " and "= " stand out. Why do we have these “magical”
literals in the code? How would a new programmer reading main() guess their

Stroustrup_book.indb 233Stroustrup_book.indb 233 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM234

purpose? Maybe we should add a comment? Adding a comment might be a good
idea, but introducing a symbolic name is more effective:

const string prompt = "> ";
const string result = "= "; // used to indicate that what follows is a result

Should we want to change the prompt or the result indicator, we can just modify
those consts. The loop now reads

while (cin) {
 cout << prompt;
 Token t = ts.get();
 while (t.kind ==print) t=ts.get();
 if (t.kind == quit) {
 keep_window_open();
 return 0;
 }
 ts.putback(t);
 cout << result << expression() << '\n';
}

7.6.2 Use of functions
The functions we use should reflect the structure of our program, and the names
of the functions should identify the logically separate parts of our code. Basically,
our program so far is rather good in this respect: expression(), term(), and pri-
mary() directly reflect our understanding of the expression grammar, and get()
handles the input and token recognition. Looking at main(), though, we notice
that it does two logically separate things:

 1. main() provides general “scaffolding”: start the program, end the pro-
gram, and handle “fatal” errors.

 2. main() handles the calculation loop.

Ideally, a function performs a single logical action (§4.5.1). Having main() per-
form both of these actions obscures the structure of the program. The obvious
solution is to make the calculation loop into a separate function calculate():

void calculate() // expression evaluation loop
{
 while (cin) {
 cout << prompt;
 Token t = ts.get();
 while (t.kind == print) t=ts.get(); // first discard all “prints”

Stroustrup_book.indb 234Stroustrup_book.indb 234 4/22/14 9:42 AM4/22/14 9:42 AM

7.6 CLEANING UP THE CODE 235

 if (t.kind == quit) return;
 ts.putback(t);
 cout << result << expression() << '\n';
 }
}

int main()
try {
 calculate();
 keep_window_open(); // cope with Windows console mode
 return 0;
}
catch (runtime_error& e) {
 cerr << e.what() << '\n';
 keep_window_open("~~");
 return 1;
}
catch (. . .) {
 cerr << "exception \n";
 keep_window_open("~~");
 return 2;
}

This reflects the structure much more directly and is therefore easier to understand.

7.6.3 Code layout
Looking through the code for ugly code, we find

switch (ch) {
case 'q': case ';': case '%': case '(': case ')': case '+': case'–': case '*': case '/':
 return Token{ch}; // let each character represent itself

This wasn’t too bad before we added 'q', ';', and '%', but now it’s beginning to
become obscure. Code that is hard to read is where bugs can more easily hide.
And yes, a potential bug lurks here! Using one line per case and adding a couple
of comments help. So, Token_stream’s get() becomes

Token Token_stream::get()
 // read characters from cin and compose a Token
{
 if (full) { // check if we already have a Token ready
 full = false;
 return buffer;
 }

Stroustrup_book.indb 235Stroustrup_book.indb 235 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM236

 char ch;
 cin >> ch; // note that >> skips whitespace (space, newline, tab, etc.)

 switch (ch) {
 case quit:
 case print:
 case '(':
 case ')':
 case '+':
 case '–':
 case '*':
 case '/':
 case '%':
 return Token{ch}; // let each character represent itself
 case '.': // a floating-point-literal can start with a dot
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9': // numeric literal
 { cin.putback(ch); // put digit back into the input stream
 double val;
 cin >> val; // read a floating-point number
 return Token{number,val};
 }
 default:
 error("Bad token");
 }
}

We could of course have put each digit case on a separate line also, but that didn’t
seem to buy us any clarity. Also, doing so would prevent get() from being viewed
in its entirety on a screen at once. Our ideal is for each function to fit on the
screen; one obvious place for a bug to hide is in the code that we can’t see because
it’s off the screen horizontally or vertically. Code layout matters.

Note also that we changed the plain 'q' to the symbolic name quit. This im-
proves readability and also guarantees a compile-time error if we should make the
mistake of choosing a value for quit that clashes with another token name.

When we clean up code, we might accidentally introduce errors. Always re-
test the program after cleanup. Better still, do a bit of testing after each set of
minor improvements so that if something went wrong you can still remember
exactly what you did. Remember: Test early and often.

Stroustrup_book.indb 236Stroustrup_book.indb 236 4/22/14 9:42 AM4/22/14 9:42 AM

7.6 CLEANING UP THE CODE 237

7.6.4 Commenting
We added a few comments as we went along. Good comments are an important
part of writing code. We tend to forget about comments in the heat of program-
ming. When you go back to the code to clean it up is an excellent time to look at
each part of the program to see if the comments you originally wrote are

 1. Still valid (you might have changed the code since you wrote the comment)
 2. Adequate for a reader (they usually are not)
 3. Not so verbose that they distract from the code

To emphasize that last concern: what is best said in code should be said in code.
Avoid comments that explain something that’s perfectly clear to someone who
knows the programming language. For example:

x = b+c; // add b and c and assign the result to x

You’ll find such comments in this book, but only when we are trying to explain
the use of a language feature that might not yet be familiar to you.

Comments are for things that code expresses poorly. An example is intent:
code says what it does, not what it was intended to do (§5.9.1). Look at the cal-
culator code. There is something missing: the functions show how we process
expressions and tokens, but there is no indication (except the code) of what we
meant expressions and tokens to be. The grammar is a good candidate for some-
thing to put in comments or into some documentation of the calculator.

/*
Simple calculator

Revision history:

Revised by Bjarne Stroustrup November 2013
Revised by Bjarne Stroustrup May 2007
Revised by Bjarne Stroustrup August 2006
Revised by Bjarne Stroustrup August 2004
Originally written by Bjarne Stroustrup

 (bs@cs.tamu.edu) Spring 2004.

This program implements a basic expression calculator.
Input from cin; output to cout.
The grammar for input is:

Stroustrup_book.indb 237Stroustrup_book.indb 237 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM238

 Statement:
 Expression
 Print
 Quit

 Print:
 ;

 Quit:
 q

 Expression:
 Term
 Expression + Term
 Expression – Term
 Term:
 Primary
 Term * Primary
 Term / Primary
 Term % Primary
 Primary:
 Number
 (Expression)
 – Primary
 + Primary
 Number:
 floating-point-literal

 Input comes from cin through the Token_stream called ts.
*/

Here we used the block comment, which starts with a /* and continues until a */.
In a real program, the revision history would contain indications of what correc-
tions and improvements were made.

Note that the comments are not the code. In fact, this grammar simplifies a
bit: compare the rule for Statement with what really happens (e.g., have a peek
at the code in the following section). The comment fails to explain the loop in
calculate() that allows us to do several calculations in a single run of the program.
We’ll return to that problem in §7.8.1.

Stroustrup_book.indb 238Stroustrup_book.indb 238 4/22/14 9:42 AM4/22/14 9:42 AM

7.7 RECOVERING FROM ERRORS 239

7.7 Recovering from errors
Why do we exit when we find an error? That seemed simple and obvious at the
time, but why? Couldn’t we just write an error message and carry on? After all,
we often make little typing errors and such an error doesn’t mean that we have
decided not to do a calculation. So let’s try to recover from an error. That basically
means that we have to catch exceptions and continue after we have cleaned up
any messes that were left behind.

Until now, all errors have been represented as exceptions and handled by
main(). If we want to recover from errors, calculate() must catch exceptions and
try to clean up the mess before trying to evaluate the next expression:

void calculate()
{
 while (cin)
 try {
 cout << prompt;
 Token t = ts.get();
 while (t.kind == print) t=ts.get(); // first discard all “prints”
 if (t.kind == quit) return;
 ts.putback(t);
 cout << result << expression() << '\n';
 }
 catch (exception& e) {
 cerr << e.what() << '\n'; // write error message
 clean_up_mess();
 }
}

We simply made the while-loop’s block into a try-block that writes an error mes-
sage and cleans up the mess. Once that’s done, we carry on as always.

What would “clean up the mess” entail? Basically, getting ready to compute
again after an error has been handled means making sure that all our data is in
a good and predictable state. In the calculator, the only data we keep outside an
individual function is the Token_stream. So what we need to do is to ensure that
we don’t have tokens related to the aborted calculation sitting around to confuse
the next calculation. For example,

1++2*3; 4+5;

Stroustrup_book.indb 239Stroustrup_book.indb 239 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM240

will cause an error, and 2*3; 4+5 will be left in the Token_stream’s and cin’s buf-
fers after the second + has triggered an exception. We have two choices:

 1. Purge all tokens from the Token_stream.
 2. Purge all tokens from the current calculation from the Token_stream.

The first choice discards all (including 4+5;), whereas the second choice just dis-
cards 2*3;, leaving 4+5 to be evaluated. Either could be a reasonable choice and
either could surprise a user. As it happens, both are about equally simple to imple-
ment. We chose the second alternative because it simplifies testing.

So we need to read input until we find a semicolon. This seems simple. We
have get() to do our reading for us so we can write a clean_up_mess() like this:

void clean_up_mess() // naive
{
 while (true) { // skip until we find a print
 Token t = ts.get();
 if (t.kind == print) return;
 }
}

Unfortunately, that doesn’t work all that well. Why not? Consider this input:

1@z; 1+3;

The @ gets us into the catch-clause for the while-loop. Then, we call clean_up_
mess() to find the next semicolon. Then, clean_up_mess() calls get() and reads
the z. That gives another error (because z is not a token) and we find ourselves in
main()’s catch(…) handler, and the program exits. Oops! We don’t get a chance to
evaluate 1+3. Back to the drawing board!

We could try more elaborate trys and catches, but basically we are heading
into an even bigger mess. Errors are hard to handle, and errors during error han-
dling are even worse than other errors. So, let’s try to devise some way to flush
characters out of a Token_stream that couldn’t possibly throw an exception. The
only way of getting input into our calculator is get(), and that can — as we just
discovered the hard way — throw an exception. So we need a new operation. The
obvious place to put that is in Token_stream:

class Token_stream {
public:
 Token get(); // get a Token
 void putback(Token t); // put a Token back
 void ignore(char c); // discard characters up to and including a c

Stroustrup_book.indb 240Stroustrup_book.indb 240 4/22/14 9:42 AM4/22/14 9:42 AM

7.7 RECOVERING FROM ERRORS 241

private:
 bool full {false}; // is there a Token in the buffer?
 Token buffer; // here is where we keep a Token put back using
 // putback()
};

This ignore() function needs to be a member of Token_stream because it needs
to look at Token_stream’s buffer. We chose to make “the thing to look for” an
argument to ignore() — after all, the Token_stream doesn’t have to know what
the calculator considers a good character to use for error recovery. We decided
that argument should be a character because we don’t want to risk composing
Tokens — we saw what happened when we tried that. So we get

void Token_stream::ignore(char c)
 // c represents the kind of Token
{
 // first look in buffer:
 if (full && c==buffer.kind) {
 full = false;
 return;
 }
 full = false;

 // now search input:
 char ch = 0;
 while (cin>>ch)
 if (ch==c) return;
}

This code first looks at the buffer. If there is a c there, we are finished after dis-
carding that c; otherwise, we need to read characters from cin until we find a c.

We can now write clean_up_mess() rather simply:

void clean_up_mess()
{
 ts.ignore(print);
}

Dealing with errors is always tricky. It requires much experimentation and testing
because it is extremely hard to imagine what errors can occur. Trying to make
a program foolproof is always a very technical activity; amateurs typically don’t
care. Quality error handling is one mark of a professional.

Stroustrup_book.indb 241Stroustrup_book.indb 241 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM242

7.8 Variables
Having worked on style and error handling, we can return to looking for im-
provements in the calculator functionality. We now have a program that works
quite well; how can we improve it? The first wish list for the calculator included
variables. Having variables gives us better ways of expressing longer calculations.
Similarly, for scientific calculations, we’d like built-in named values, such as pi and
e, just as we have on scientific calculators.

Adding variables and constants is a major extension to the calculator. It will
touch most parts of the code. This is the kind of extension that we should not
embark on without good reason and sufficient time. Here, we add variables and
constants because it gives us a chance to look over the code again and try out
some more programming techniques.

7.8.1 Variables and defi nitions
Obviously, the key to both variables and built-in constants is for the calculator
program to keep (name,value) pairs so that we can access the value given the name.
We can define a Variable like this:

class Variable {
public:
 string name;
 double value;
};

We will use the name member to identify a Variable and the value member to
store the value corresponding to that name.

How can we store Variables so that we can search for a Variable with a given
name string to find its value or to give it a new value? Looking back over the
programming tools we have encountered so far, we find only one good answer: a
vector of Variables:

vector<Variable> var_table;

We can put as many Variables as we like into the vector var_table and search for
a given name by looking at the vector elements one after another. We can write
a get_value() function that looks for a given name string and returns its corre-
sponding value:

double get_value(string s)
 // return the value of the Variable named s
{

Stroustrup_book.indb 242Stroustrup_book.indb 242 4/22/14 9:42 AM4/22/14 9:42 AM

7.8 VARIABLES 243

 for (const Variable& v : var_table)
 if (v.name == s) return v.value;
 error("get: undefined variable ", s);
}

The code really is quite simple: go through every Variable in var_table (starting
with the first element and continuing until the last) and see if its name matches
the argument string s. If that is the case, return its value.

Similarly, we can define a set_value() function to give a Variable a new value:

void set_value(string s, double d)
 // set the Variable named s to d
{
 for (Variable& v : var_table)
 if (v.name == s) {
 v.value = d;
 return;
 }
 error("set: undefined variable ", s);
}

We can now read and write “variables” represented as Variables in var_table.
How do we get a new Variable into var_table? What does a user of our calculator
have to write to define a new variable and later to get its value? We could consider
C++’s notation

double var = 7.2;

That would work, but all variables in this calculator hold double values, so saying
“double” would be redundant. Could we make do with

var = 7.2;

Possibly, but then we would be unable to tell the difference between the declara-
tion of a new variable and a spelling mistake:

var1 = 7.2; // define a new variable called var1
var1 = 3.2; // define a new variable called var2

Oops! Clearly, we meant var2 = 3.2; but we didn’t say so (except in the comment).
We could live with this, but we’ll follow the tradition in languages, such as C++,
that distinguish declarations (with initializations) from assignments. We could use
double, but for a calculator we’d like something short, so — drawing on another
old tradition — we choose the keyword let:

let var = 7.2;

Stroustrup_book.indb 243Stroustrup_book.indb 243 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM244

The grammar would be

Calculation:
 Statement
 Print
 Quit
 Calculation Statement

Statement:
 Declaration
 Expression

Declaration:
 "let" Name "=" Expression

Calculation is the new top production (rule) of the grammar. It expresses the loop
(in calculate()) that allows us to do several calculations in a run of the calculator
program. It relies on the Statement production to handle expressions and declara-
tions. We can handle a statement like this:

double statement()
{
 Token t = ts.get();
 switch (t.kind) {
 case let:
 return declaration();
 default:
 ts.putback(t);
 return expression();
 }
}

We can now use statement() instead of expression() in calculate():

void calculate()
{
 while (cin)
 try {
 cout << prompt;
 Token t = ts.get();
 while (t.kind == print) t=ts.get(); // first discard all “prints”
 if (t.kind == quit) return; // quit

Stroustrup_book.indb 244Stroustrup_book.indb 244 4/22/14 9:42 AM4/22/14 9:42 AM

7.8 VARIABLES 245

 ts.putback(t);
 cout << result << statement() << '\n';
 }
 catch (exception& e) {
 cerr << e.what() << '\n'; // write error message
 clean_up_mess();
 }
}

We now have to write declaration(). What should it do? It should make sure
that what comes after a let is a Name followed by a = followed by an Expression.
That’s what our grammar says. What should it do with the name? We should
add a Variable with that name string and the value of the expression to our vec-
tor<Variable> called var_table. Once that’s done we can retrieve the value using
get_value() and change it using set_value(). However, before writing this, we have
to decide what should happen if we define a variable twice. For example:

let v1 = 7;
let v1 = 8;

We chose to consider such a redefinition an error. Typically, it is simply a spelling
mistake. Instead of what we wrote, we probably meant

let v1 = 7;
let v2 = 8;

There are logically two parts to defining a Variable with the name var with the
value val:

 1. Check whether there already is a Variable called var in var_table.
 2. Add (var,val) to var_table.

We have no use for uninitialized variables. We defined the functions is_declared()
and define_name() to represent those two logically separate operations:

bool is_declared(string var)
 // is var already in var_table?
{
 for (const Variable& v : var_table)
 if (v.name == var) return true;
 return false;
}

Stroustrup_book.indb 245Stroustrup_book.indb 245 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM246

double define_name(string var, double val)
 // add (var,val) to var_table
{
 if (is_declared(var)) error(var," declared twice");
 var_table.push_back(Variable(var,val));
 return val;
}

Adding a new Variable to a vector<Variable> is easy; that’s what vector’s push_
back() member function does:

var_table.push_back(Variable(var,val));

The Variable(var,val) makes the appropriate Variable and push_back(), then adds
that Variable to the end of var_table. Given that, and assuming that we can handle
let and name tokens, declaration() is straightforward to write:

double declaration()
 // assume we have seen "let”
 // handle: name = expression
 // declare a variable called "name” with the initial value "expression”
{
 Token t = ts.get();
 if (t.kind != name) error ("name expected in declaration");
 string var_name = t.name;

 Token t2 = ts.get();
 if (t2.kind != '=') error("= missing in declaration of ", var_name);

 double d = expression();
 define_name(var_name,d);
 return d;
}

Note that we returned the value stored in the new variable. That’s useful when
the initializing expression is nontrivial. For example:

let v = d/(t2–t1);

This declaration will define v and also print its value. Additionally, printing
the value of a declared variable simplifies the code in calculate() because every
 statement() returns a value. General rules tend to keep code simple, whereas spe-
cial cases tend to lead to complications.

Stroustrup_book.indb 246Stroustrup_book.indb 246 4/22/14 9:42 AM4/22/14 9:42 AM

7.8 VARIABLES 247

This mechanism for keeping track of Variables is what is often called a sym-
bol table and could be radically simplified by the use of a standard library map;
see §21.6.1.

7.8.2 Introducing names
This is all very good, but unfortunately, it doesn’t quite work. By now, that
shouldn’t come as a surprise. Our first cut never — well, hardly ever — works.
Here, we haven’t even finished the program — it doesn’t yet compile. We have
no '=' token, but that’s easily handled by adding a case to Token_stream::get()
(§7.6.3). But how do we represent let and name as tokens? Obviously, we need to
modify get() to recognize these tokens. How? Here is one way:

const char name = 'a'; // name token
const char let = 'L'; // declaration token
const string declkey = "let"; // declaration keyword

Token Token_stream::get()
{
 if (full) {
 full = false;
 return buffer;
 }
 char ch;
 cin >> ch;
 switch (ch) {
 // as before
 default:
 if (isalpha(ch)) {
 cin.putback(ch);
 string s;
 cin>>s;
 if (s == declkey) return Token(let); // declaration keyword
 return Token{name,s};
 }
 error("Bad token");
 }
}

Note first of all the call isalpha(ch). This call answers the question “Is ch a let-
ter?”; isalpha() is part of the standard library that we get from std_lib_facilities.h.
For more character classification functions, see §11.6. The logic for recognizing
names is the same as that for recognizing numbers: find a first character of the

Stroustrup_book.indb 247Stroustrup_book.indb 247 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM248

right kind (here, a letter), then put it back using putback() and read in the whole
name using >>.

Unfortunately, this doesn’t compile; we have no Token that can hold a string,
so the compiler rejects Token{name,s}. To handle that, we must modify the defi-
nition of Token to hold either a string or a double, and handle three forms of
initializers, such as

• Just a kind; for example, Token{'*'}

• A kind and a number; for example, Token{number,4.321}

• A kind and a name; for example, Token{name,"pi"}

We handle that by introducing three initialization functions, known as construc-
tors because they construct objects:

class Token {
public:
 char kind;
 double value;
 string name;
 Token(char ch) :kind{ch} { } // initialize kind with ch
 Token(char ch, double val) :kind{ch}, value{val} { } // initialize kind
 // and value
 Token(char ch, string n) :kind{ch}, name{n} { } // initialize kind
 // and name
};

Constructors add an important degree of control and flexibility to initialization.
We will examine constructors in detail in Chapter 9 (§9.4.2, §9.7).

We chose 'L' as the representation of the let token and the string let as our key-
word. Obviously, it would be trivial to change that keyword to double, var, #, or
whatever by changing the string declkey that we compare s to.

Now we try the program again. If you type this, you’ll see that it all works:

let x = 3.4;
let y = 2;
x + y * 2;

However, this doesn’t work:

let x = 3.4;
let y = 2;
x+y*2;

Stroustrup_book.indb 248Stroustrup_book.indb 248 4/22/14 9:42 AM4/22/14 9:42 AM

7.8 VARIABLES 249

What’s the difference between those two examples? Have a look to see what
happens.

The problem is that we were sloppy with our definition of Name. We even
“forgot” to define our Name production in the grammar (§7.8.1). What characters
can be part of a name? Letters? Certainly. Digits? Certainly, as long as they are
not the starting character. Underscores? Eh? The + character? Well? Eh? Look
at the code again. After the initial letter we read into a string using >>. That ac-
cepts every character until it sees whitespace. So, for example, x+y*2; is a single
name — even the trailing semicolon is read as part of the name. That’s unintended
and unacceptable.

What must we do instead? First we must specify precisely what we want a
name to be, and then we must modify get() to do that. Here is a workable spec-
ification of a name: a sequence of letters and digits starting with a letter. Given
this definition,

a
ab
a1
Z12
asdsddsfdfdasfdsa434RTHTD12345dfdsa8fsd888fadsf

are names and

1a
as_s
#
as*
a car

are not. Except for leaving out the underscore, this is C++’s rule. We can imple-
ment that in the default case of get():

default:
 if (isalpha(ch)) {
 string s;
 s += ch;
 while (cin.get(ch) && (isalpha(ch) || isdigit(ch))) s+=ch;
 cin.putback(ch);
 if (s == declkey) return Token{let}; // declaration keyword
 return Token{name,s};
 }
 error("Bad token");

Stroustrup_book.indb 249Stroustrup_book.indb 249 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM250

Instead of reading directly into the string s, we read characters and put those into
s as long as they are letters or digits. The s+=ch statement adds (appends) the
character ch to the end of the string s. The curious statement

while (cin.get(ch) && (isalpha(ch) || isdigit(ch))) s+=ch;

reads a character into ch (using cin’s member function get()) and checks if it is a
letter or a digit. If so, it adds ch to s and reads again. The get() member function
works just like >> except that it doesn’t by default skip whitespace.

7.8.3 Predefi ned names
Now that we have names, we can easily predefine a few common ones. For exam-
ple, if we imagine that our calculator will be used for scientific calculations, we’d
want pi and e. Where in the code would we define those? In main() before the call
of calculate() or in calculate() before the loop. We’ll put them in main() because
those definitions really aren’t part of any calculation:

int main()
try {
 // predefine names:
 define_name("pi",3.1415926535);
 define_name("e",2.7182818284);

 calculate();

 keep_window_open(); // cope with Windows console mode
 return 0;
}
catch (exception& e) {
 cerr << e.what() << '\n';
 keep_window_open("~~");
 return 1;
}
catch (...) {
 cerr << "exception \n";
 keep_window_open("~~");
 return 2;
}

7.8.4 Are we there yet?
Not really. We have made so many changes that we need to test everything again,
clean up the code, and review the comments. Also, we could do more definitions.
For example, we “forgot” to provide an assignment operator (see exercise 2), and

Stroustrup_book.indb 250Stroustrup_book.indb 250 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 DRILL 251

if we have an assignment we might want to distinguish between variables and
constants (exercise 3).

Initially, we backed off from having named variables in our calculator. Look-
ing back over the code that implements them, we may have two possible reactions:

 1. Implementing variables wasn’t all that bad; it took only about three dozen
lines of code.

 2. Implementing variables was a major extension. It touched just about ev-
ery function and added a completely new concept to the calculator. It
increased the size of the calculator by 45% and we haven’t even imple-
mented assignment!

In the context of a first program of significant complexity, the second reaction is
the correct one. More generally, it’s the right reaction to any suggestion that adds
something like 50% to a program in terms of both size and complexity. When that
has to be done, it is more like writing a new program based on a previous one
than anything else, and it should be treated that way. In particular, if you can build
a program in stages as we did with the calculator, and test it at each stage, you are
far better off doing so than trying to do the whole program all at once.

Drill

 1. Starting from the file calculator08buggy.cpp, get the calculator to compile.
 2. Go through the entire program and add appropriate comments.
 3. As you commented, you found errors (deviously inserted especially for

you to find). Fix them; they are not in the text of the book.
 4. Testing: prepare a set of inputs and use them to test the calculator. Is your

list pretty complete? What should you look for? Include negative values,
0, very small, very large, and “silly” inputs.

 5. Do the testing and fix any bugs that you missed when you commented.
 6. Add a predefined name k meaning 1000.
 7. Give the user a square root function sqrt(), for example, sqrt(2+6.7). Nat-

urally, the value of sqrt(x) is the square root of x; for example, sqrt(9) is
3. Use the standard library sqrt() function that is available through the
header std_lib_facilities.h. Remember to update the comments, including
the grammar.

 8. Catch attempts to take the square root of a negative number and print an
appropriate error message.

 9. Allow the user to use pow(x,i) to mean “Multiply x with itself i times”; for
example, pow(2.5,3) is 2.5*2.5*2.5. Require i to be an integer using the
technique we used for %.

Stroustrup_book.indb 251Stroustrup_book.indb 251 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM252

 10. Change the “declaration keyword” from let to #.
 11. Change the “quit keyword” from quit to exit. That will involve defining

a string for quit just as we did for let in §7.8.2.

Review
 1. What is the purpose of working on the program after the first version

works? Give a list of reasons.
 2. Why does 1+2; q typed into the calculator not quit after it receives an

error?
 3. Why did we choose to make a constant character called number?
 4. We split main() into two separate functions. What does the new function

do and why did we split main()?
 5. Why do we split code into multiple functions? State principles.
 6. What is the purpose of commenting and how should it be done?
 7. What does narrow_cast do?
 8. What is the use of symbolic constants?
 9. Why do we care about code layout?
 10. How do we handle % (remainder) of floating-point numbers?
 11. What does is_declared() do and how does it work?
 12. The input representation for let is more than one character. How is it

accepted as a single token in the modified code?
 13. What are the rules for what names can and cannot be in the calculator

program?
 14. Why is it a good idea to build a program incrementally?
 15. When do you start to test?
 16. When do you retest?
 17. How do you decide what should be a separate function?
 18. How do you choose names for variables and functions? List possible

reasons.
 19. Why do you add comments?
 20. What should be in comments and what should not?
 21. When do we consider a program finished?

Terms
code layout maintenance scaffolding
commenting recovery symbolic constant
error handling revision history testing
feature creep

Stroustrup_book.indb 252Stroustrup_book.indb 252 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 EXERCISES 253

Exercises
 1. Allow underscores in the calculator’s variable names.
 2. Provide an assignment operator, =, so that you can change the value of a

variable after you introduce it using let. Discuss why that can be useful
and how it can be a source of problems.

 3. Provide named constants that you really can’t change the value of. Hint:
You have to add a member to Variable that distinguishes between con-
stants and variables and check for it in set_value(). If you want to let
the user define constants (rather than just having pi and e defined as
constants), you’ll have to add a notation to let the user express that, for
example, const pi = 3.14;.

 4. The get_value(), set_value(), is_declared(), and define_name() functions
all operate on the variable var_table. Define a class called Symbol_table
with a member var_table of type vector<Variable> and member functions
get(), set(), is_declared(), and declare(). Rewrite the calculator to use a
variable of type Symbol_table.

 5. Modify Token_stream::get() to return Token(print) when it sees a new-
line. This implies looking for whitespace characters and treating newline
('\n') specially. You might find the standard library function isspace(ch),
which returns true if ch is a whitespace character, useful.

 6. Part of what every program should do is to provide some way of helping
its user. Have the calculator print out some instructions for how to use the
calculator if the user presses the H key (both upper- and lowercase).

 7. Change the q and h commands to be quit and help, respectively.
 8. The grammar in §7.6.4 is incomplete (we did warn you against overre-

liance on comments); it does not define sequences of statements, such
as 4+4; 5–6;, and it does not incorporate the grammar changes outlined
in §7.8. Fix that grammar. Also add whatever you feel is needed to that
comment as the first comment of the calculator program and its over-
all comment.

 9. Suggest three improvements (not mentioned in this chapter) to the calcu-
lator. Implement one of them.

 10. Modify the calculator to operate on ints (only); give errors for overflow
and underflow. Hint: Use narrow_cast (§7.5).

 11. Revisit two programs you wrote for the exercises in Chapter 4 or 5. Clean
up that code according to the rules outlined in this chapter. See if you find
any bugs in the process.

Stroustrup_book.indb 253Stroustrup_book.indb 253 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 7 • COMPLETING A PROGRAM254

Postscript
As it happens, we have now seen a simple example of how a compiler works. The
calculator analyzes input broken down into toke ns and understood according to
a grammar. That’s exactly what a compiler does. After analyzing its input, a com-
piler then produces a representation (object code) that we can later execute. The
calculator immediately executes the expressions it has analyzed; programs that do
this are called interpreters rather than compilers.

Stroustrup_book.indb 254Stroustrup_book.indb 254 4/22/14 9:42 AM4/22/14 9:42 AM

255

8

Technicalities:
Functions, etc.

“No amount of genius can overcome
obsession with detail.”

—Traditional

In this chapter and the next, we change our focus from pro-

gramming to our main tool for programming: the C++ pro-

gramming language. We present language-technical details to

give a slightly broader view of C++’s basic facilities and to pro-

vide a more systematic view of those facilities. These chapters also

act as a review of many of the programming notions presented so

far and provide an opportunity to explore our tool without add-

ing new programming techniques or concepts.

Stroustrup_book.indb 255Stroustrup_book.indb 255 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.256

8.1 Technicalities
Given a choice, we’d much rather talk about programming than about program-
ming language features; that is, we consider how to express ideas as code far more
interesting than the technical details of the programming language that we use to
express those ideas. To pick an analogy from natural languages: we’d much rather
discuss the ideas in a good novel and the way those ideas are expressed than study
the grammar and vocabulary of English. What matters are ideas and how those
ideas can be expressed in code, not the individual language features.

However, we don’t always have a choice. When you start programming, your
programming language is a foreign language for which you need to look at “gram-
mar and vocabulary.” This is what we will do in this chapter and the next, but
please don’t forget:

• Our primary study is programming.
• Our output is programs/systems.
• A programming language is (only) a tool.

Keeping this in mind appears to be amazingly difficult. Many programmers come
to care passionately about apparently minor details of language syntax and se-
mantics. In particular, too many get the mistaken belief that the way things are
done in their first programming language is “the one true way.” Please don’t fall
into that trap. C++ is in many ways a very nice language, but it is not perfect;
neither is any other programming language.

Most design and programming concepts are universal, and many such con-
cepts are widely supported by popular programming languages. That means that
the fundamental ideas and techniques we learn in a good programming course
carry over from language to language. They can be applied — with varying de-
grees of ease — in all languages. The language technicalities, however, are specific

8.1 Technicalities

8.2 Declarations and defi nitions
8.2.1 Kinds of declarations
8.2.2 Variable and constant declarations
8.2.3 Default initialization

8.3 Header fi les

8.4 Scope

8.5 Function call and return
8.5.1 Declaring arguments and

return type
8.5.2 Returning a value
8.5.3 Pass-by-value

8.5.4 Pass-by-const-reference
8.5.5 Pass-by-reference
8.5.6 Pass-by-value vs. pass-by-reference
8.5.7 Argument checking and conversion
8.5.8 Function call implementation
8.5.9 constexpr functions

8.6 Order of evaluation
8.6.1 Expression evaluation
8.6.2 Global initialization

8.7 Namespaces
8.7.1 using declarations and using

directives

Stroustrup_book.indb 256Stroustrup_book.indb 256 4/22/14 9:42 AM4/22/14 9:42 AM

8.2 DECLARATIONS AND DEFINITIONS 257

to a given language. Fortunately, programming languages do not develop in a vac-
uum, so much of what you learn here will have reasonably obvious counterparts
in other languages. In particular, C++ belongs to a group of languages that also
includes C (Chapter 27), Java, and C#, so quite a few technicalities are shared
with those languages.

Note that when we are discussing language-technical issues, we deliberately
use nondescriptive names, such as f, g, X, and y. We do that to emphasize the
technical nature of such examples, to keep those examples very short, and to try
to avoid confusing you by mixing language technicalities and genuine program
logic. When you see nondescriptive names (such as should never be used in real
code), please focus on the language-technical aspects of the code. Technical exam-
ples typically contain code that simply illustrates language rules. If you compiled
and ran them, you’d get many “variable not used” warnings, and few such tech-
nical program fragments would do anything sensible.

Please note that what we write here is not a complete description of C++’s
syntax and semantics — not even for the facilities we describe. The ISO C++
standard is 1300+ pages of dense technical language and The C++ Programming
Language by Stroustrup is 1300+ pages of text aimed at experienced programmers
(both covering both the C++ language and its standard library). We do not try
to compete with those in completeness and comprehensiveness; we compete with
them in comprehensibility and value for time spent reading.

8.2 Declarations and defi nitions
A declaration is a statement that introduces a name into a scope (§8.4)

• Specifying a type for what is named (e.g., a variable or a function)
• Optionally, specifying an initializer (e.g., an initializer value or a function

body)

For example:

int a = 7; // an int variable
const double cd = 8.7; // a double-precision floating-point constant
double sqrt(double); // a function taking a double argument
 // and returning a double result
vector<Token> v; // a vector-of-Tokens variable

Before a name can be used in a C++ program, it must be declared. Consider:

int main()
{
 cout << f(i) << '\n';
}

Stroustrup_book.indb 257Stroustrup_book.indb 257 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.258

The compiler will give at least three “undeclared identifier” errors for this: cout,
f, and i are not declared anywhere in this program fragment. We can get cout de-
clared by including the header std_lib_facilities.h, which contains its declaration:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int main()
{
 cout << f(i) << '\n';
}

Now, we get only two “undefined” errors. As you write real-word programs,
you’ll find that most declarations are found in headers. That’s where we define
interfaces to useful facilities defined “elsewhere.” Basically, a declaration defines
how something can be used; it defines the interface of a function, variable, or
class. Please note one obvious but invisible advantage of this use of declarations:
we didn’t have to look at the details of how cout and its << operators were de-
fined; we just #included their declarations. We didn’t even have to look at their
declarations; from textbooks, manuals, code examples, or other sources, we just
know how cout is supposed to be used. The compiler reads the declarations in the
header that it needs to “understand” our code.

However, we still have to declare f and i. We could do that like this:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int f(int); // declaration of f

int main()
{
 int i = 7; // declaration of i
 cout << f(i) << '\n';
}

This will compile because every name has been declared, but it will not link
(§2.4) because we have not defined f(); that is, nowhere have we specified what
f() actually does.

A declaration that (also) fully specifies the entity declared is called a definition.
For example:

int a = 7;
vector<double> v;
double sqrt(double d) { /* . . . */ }

Stroustrup_book.indb 258Stroustrup_book.indb 258 4/22/14 9:42 AM4/22/14 9:42 AM

8.2 DECLARATIONS AND DEFINITIONS 259

Every definition is (by definition ☺) also a declaration, but only some declara-
tions are also definitions. Here are some examples of declarations that are not
definitions; if the entity it refers to is used, each must be matched by a definition
elsewhere in the code:

double sqrt(double); // no function body here
extern int a; // “extern plus no initializer” means “not definition”

When we contrast definitions and declarations, we follow convention and use dec-
larations to mean “declarations that are not definitions” even though that’s slightly
sloppy terminology.

A definition specifies exactly what a name refers to. In particular, a definition
of a variable sets aside memory for that variable. Consequently, you can’t define
something twice. For example:

double sqrt(double d) { /* . . . */ } // definition
double sqrt(double d) { /* . . . */ } // error: double definition

int a; // definition
int a; // error: double definition

In contrast, a declaration that isn’t also a definition simply tells how you can use
a name; it is just an interface and doesn’t allocate memory or specify a function
body. Consequently, you can declare something as often as you like as long as
you do so consistently:

int x = 7; // definition
extern int x; // declaration
extern int x; // another declaration

double sqrt(double); // declaration
double sqrt(double d) { /* . . . */ } // definition
double sqrt(double); // another declaration of sqrt
double sqrt(double); // yet another declaration of sqrt

int sqrt(double); // error: inconsistent declarations of sqrt

Why is that last declaration an error? Because there cannot be two functions
called sqrt taking an argument of type double and returning different types (int
and double).

The extern keyword used in the second declaration of x simply states that this
declaration of x isn’t a definition. It is rarely useful. We recommend that you don’t

Stroustrup_book.indb 259Stroustrup_book.indb 259 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.260

use it, but you’ll see it in other people’s code, especially code that uses too many
global variables (see §8.4 and §8.6.2).

double sqrt(double d)
{
 // calculate the
 // square root of d
}

Definitions:
double sqrt(double d)

double sqrt(double d)

Declarations:

int x = 7;

extern int x;

extern int x;

Why does C++ offer both declarations and definitions? The declaration/
definition distinction reflects the fundamental distinction between what we need
to use something (an interface) and what we need for that something to do what
it is supposed to (an implementation). For a variable, a declaration supplies the
type but only the definition supplies the object (the memory). For a function, a
declaration again provides the type (argument types plus return type) but only the
definition supplies the function body (the executable statements). Note that func-
tion bodies are stored in memory as part of the program, so it is fair to say that
function and variable definitions consume memory, whereas declarations don’t.

The declaration/definition distinction allows us to separate a program into
many parts that can be compiled separately. The declarations allow each part of
a program to maintain a view of the rest of the program without bothering with
the definitions in other parts. As all declarations (including the one definition)
must be consistent, the use of names in the whole program will be consistent.
We’ll discuss that further in §8.3. Here, we’ll just remind you of the expression
parser from Chapter 6: expression() calls term() which calls primary() which calls
expression(). Since every name in a C++ program has to be declared before it is
used, there is no way we could just define those three functions:

double expression(); // just a declaration, not a definition

double primary()
{
 // . . .
 expression();
 // . . .
}

double term()
{
 // . . .

Stroustrup_book.indb 260Stroustrup_book.indb 260 4/22/14 9:42 AM4/22/14 9:42 AM

8.2 DECLARATIONS AND DEFINITIONS 261

 primary();
 // . . .
}

double expression()
{
 // . . .
 term();
 // . . .
}

We can order those four functions any way we like; there will always be one call
to a function defined below it. Somewhere, we need a “forward” declaration.
Therefore, we declared expression() before the definition of primary() and all is
well. Such cyclic calling patterns are very common.

Why does a name have to be declared before it is used? Couldn’t we just
require the language implementation to read the program (just as we do) and find
the definition to see how a function must be called? We could, but that would lead
to “interesting” technical problems, so we decided against that. The C++ defini-
tion requires declaration before use (except for class members; see §9.4.4). After
all, this is already the convention for ordinary (non-program) writing: when you
read a textbook, you expect the author to define terminology before using it; oth-
erwise, you have to guess or go to the index all the time. The “declaration before
use” rule simplifies reading for both humans and compilers. In a program, there is
a second reason that “declare before use” is important. In a program of thousands
of lines (maybe hundreds of thousands of lines), most of the functions we want to
call will be defined “elsewhere.” That “elsewhere” is often a place we don’t really
want to know about. Having to know the declarations only of what we use saves
us (and the compiler) from looking through huge amounts of program text.

8.2.1 Kinds of declarations
There are many kinds of entities that a programmer can define in C++. The most
interesting are

• Variables
• Constants
• Functions (see §8.5)
• Namespaces (see §8.7)
• Types (classes and enumerations; see Chapter 9)
• Templates (see Chapter 19)

Stroustrup_book.indb 261Stroustrup_book.indb 261 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.262

8.2.2 Variable and constant declarations
The declaration of a variable or a constant specifies a name, a type, and optionally
an initializer. For example:

int a; // no initializer
double d = 7; // initializer using the = syntax
vector<int> vi(10); // initializer using the () syntax
vector<int> vi2 {1,2,3,4}; // initializer using the { } syntax

You can find the complete grammar in the ISO C++ standard.
Constants have the same declaration syntax as variables. They differ in hav-

ing const as part of their type and requiring an initializer:

const int x = 7; // initializer using the = syntax
const int x2 {9}; // initializer using the {} syntax
const int y; // error: no initializer

The reason for requiring an initializer for a const is obvious: how could a const
be a constant if it didn’t have a value? It is almost always a good idea to initialize
variables also; an unini tialized variable is a recipe for obscure bugs. For example:

void f(int z)
{
 int x; // uninitialized
 // . . . no assignment to x here . . .
 x = 7; // give x a value
 // . . .
}

This looks innocent enough, but what if the first . . . included a use of x? For
example:

void f(int z)
{
 int x; // uninitialized
 // . . . no assignment to x here . . .
 if (z>x) {
 // . . .
 }
 // . . .

Stroustrup_book.indb 262Stroustrup_book.indb 262 4/22/14 9:42 AM4/22/14 9:42 AM

8.2 DECLARATIONS AND DEFINITIONS 263

 x = 7; // give x a value
 // . . .
}

Because x is uninitialized, executing z>x would be undefined behavior. The com-
parison z>x could give different results on different machines and different results
in different runs of the program on the same machine. In principle, z>x might
cause the program to terminate with a hardware error, but most often that doesn’t
happen. Instead we get unpredictable results.

Naturally, we wouldn’t do something like that deliberately, but if we don’t
consistently initialize variables it will eventually happen by mistake. Remember,
most “silly mistakes” (such as using an uninitialized variable before it has been
assigned to) happen when you are busy or tired. Compilers try to warn, but in
complicated code — where such errors are most likely to occur — compilers are not
smart enough to catch all such errors. There are people who are not in the habit
of initializing their variables, often because they learned to program in languages
that didn’t allow or encourage consistent initialization; so you’ll see examples in
other people’s code. Please just don’t add to the problem by forgetting to initialize
the variables you define yourself.

We have a preference for the { } initializer syntax. It is the most general and
it most explicitly says “initializer.” We tend to use it except for very simple initial-
izations, where we sometimes use = out of old habits, and () for specifying the
number of elements of a vector (see §17.4.4).

8.2.3 Default initialization
You might have noticed that we often don’t provide an initializer for strings,
 vectors, etc. For example:

vector<string> v;
string s;
while (cin>>s) v.push_back(s);

This is not an exception to the rule that variables must be initialized before use.
What is going on here is that string and vector are defined so that variables of
those types are initialized with a default value whenever we don’t supply one ex-
plicitly. Thus, v is empty (it has no elements) and s is the empty string ("") before
we reach the loop. The mechanism for guaranteeing default initialization is called
a default constructor; see §9.7.3.

Unfortunately, the language doesn’t allow us to make such guarantees for
built-in types. A global variable (§8.4) is default initialized to 0, but you should
minimize the use of global values. The most useful variables, local variables and

Stroustrup_book.indb 263Stroustrup_book.indb 263 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.264

class members, are uninitialized unless you provide an initializer (or a default
constructor). You have been warned!

8.3 Header fi les
How do we manage our declarations and definitions? After all, they have to be
consistent, and in real-world programs there can be tens of thousands of decla-
rations; programs with hundreds of thousands of declarations are not rare. Typi-
cally, when we write a program, most of the definitions we use are not written by
us. For example, the implementations of cout and sqrt() were written by someone
else many years ago. We just use them.

The key to managing declarations of facilities defined “elsewhere” in C++
is the header. Basically, a header is a collection of declarations, typically defined
in a file, so a header is also called a header file. Such headers are then #included
in our source files. For example, we might decide to improve the organization of
the source code for our calculator (Chapters 6 and 7) by separating out the to-
ken management. We could define a header file token.h containing declarations
needed to use Token and Token_stream:

// declarations:
class Token { /* … */ };
class Token_stream { /* … */ };

token.h:

#include "token.h"
//definitions:
void Token_stream::putback(Token t)
{
 buffer = t;
 full = true;
}
…

token.cpp:

 #include "token.h"
// uses:
…
Token_stream ts;
…
Token t = ts.get();
…
ts.putback(t);
…

calculator.cpp:

The declarations of Token and Token_stream are in the header token.h. Their
definitions are in token.cpp. The .h suffix is the most common for C++ headers,
and the .cpp suffix is the most common for C++ source files. Actually, the C++
language doesn’t care about file suffixes, but some compilers and most program

Stroustrup_book.indb 264Stroustrup_book.indb 264 4/22/14 9:42 AM4/22/14 9:42 AM

8.3 HEADER FILES 265

development environments insist, so please use this convention for your source
code.

In principle, #include "file.h" simply copies the declarations from file.h into
your file at the point of the #include. For example, we could write a header f.h:

// f.h
int f(int);

and include it in our file user.cpp:

// user.cpp
#include "f.h"
int g(int i)
{
 return f(i);
}

When compiling user.cpp the compiler would do the #include and compile

int f(int);
int g(int i)
{
 return f(i);
}

Since #includes logically happen before anything else a compiler does, handling
#includes is part of what is called preprocessing (§A.17).

To ease consistency checking, we #include a header both in source files that
use its declarations and in source files that provide definitions for those declara-
tions. That way, the compiler catches errors as soon as possible. For example,
imagine that the implementer of Token_stream::putback() made mistakes:

Token Token_stream::putback(Token t)
{
 buffer.push_back(t);
 return t;
}

This looks innocent enough. Fortunately, the compiler catches the mistakes be-
cause it sees the (#included) declaration of Token_stream::putback(). Comparing
that declaration with our definition, the compiler finds that putback() should not
return a Token and that buffer is a Token, rather than a vector<Token>, so we

Stroustrup_book.indb 265Stroustrup_book.indb 265 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.266

can’t use push_back(). Such mistakes occur when we work on our code to im-
prove it, but don’t quite get a change consistent throughout a program.

Similarly, consider these mistakes:

Token t = ts.gett(); // error: no member gett
// . . .
ts.putback(); // error: argument missing

The compiler would immediately give errors; the header token.h gives it all the
information it needs for checking.

Our std_lib_facilities.h header contains declarations for the standard library
facilities we use, such as cout, vector, and sqrt(), together with a couple of simple
utility functions, such as error(), that are not part of the standard library. In §12.8
we show how to use the standard library headers directly.

A header will typically be included in many source files. That means that a
header should only contain declarations that can be duplicated in several files (such
as function declarations, class definitions, and definitions of numeric constants).

8.4 Scope
A scope is a region of program text. A name is declared in a scope and is valid (is
“in scope”) from the point of its declaration until the end of the scope in which it
was declared. For example:

void f()
{
 g(); // error: g() isn’t (yet) in scope
}

void g()
{
 f(); // OK: f() is in scope
}

void h()
{
 int x = y; // error: y isn’t (yet) in scope
 int y = x; // OK: x is in scope
 g(); // OK: g() is in scope
}

Stroustrup_book.indb 266Stroustrup_book.indb 266 4/22/14 9:42 AM4/22/14 9:42 AM

8.4 SCOPE 267

Names in a scope can be seen from within scopes nested within it. For example,
the call of f() is within the scope of g() which is “nested” in the global scope. The
global scope is the scope that’s not nested in any other. The rule that a name must
be declared before it can be used still holds, so f() cannot call g().

There are several kinds of scopes that we use to control where our names can
be used:

• The global scope: the area of text outside any other scope
• A namespace scope: a named scope nested in the global scope or in another

namespace; see §8.7
• A class scope: the area of text within a class; see §9.2
• A local scope: between { . . . } braces of a block or in a function argument list
• A statement scope: e.g., in a for-statement

The main purpose of a scope is to keep names local, so that they won’t interfere
with names declared elsewhere. For example:

void f(int x) // f is global; x is local to f
{
 int z = x+7; // z is local
}

int g(int x) // g is global; x is local to g
{
 int f = x+2; // f is local
 return 2*f;
}

Or graphically:

x
z

f:

x
f

g:

Global scope:

Here f()’s x is different from g()’s x. They don’t “clash” because they are not
in the same scope: f()’s x is local to f and g()’s x is local to g. Two incompatible

Stroustrup_book.indb 267Stroustrup_book.indb 267 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.268

declarations in the same scope are often referred to as a clash. Similarly, the f de-
fined and used within g() is (obviously) not the function f().

Here is a logically equivalent but more realistic example of the use of local
scope:

int max(int a, int b) // max is global; a and b are local
{
 return (a>=b) ? a : b;
}

int abs(int a) // not max()’s a
{
 return (a<0) ? –a : a;
}

You find max() and abs() in the standard library, so you don’t have to write them
yourself. The ?: construct is called an arithmetic if or a conditional expression. The
value of (a>=b)?a:b is a if a>=b and b otherwise. A conditional expression saves
us from writing long-winded code like this:

int max(int a, int b) // max is global; a and b are local
{
 int m; // m is local
 if (a>=b)
 m = a;
 else
 m = b;
 return m;
}

So, with the notable exception of the global scope, a scope keeps names local. For
most purposes, locality is good, so keep names as local as possible. When I de-
clare my variables, functions, etc. within functions, classes, namespaces, etc., they
won’t interfere with yours. Remember: Real programs have many thousands of
named entities. To keep such programs manageable, most names have to be local.

Here is a larger technical example illustrating how names go out of scope at
the end of statements and blocks (including function bodies):

// no r, i, or v here
class My_vector {
 vector<int> v; // v is in class scope

Stroustrup_book.indb 268Stroustrup_book.indb 268 4/22/14 9:42 AM4/22/14 9:42 AM

8.4 SCOPE 269

public:
 int largest()
 {
 int r = 0; // r is local (smallest nonnegative int)
 for (int i = 0; i<v.size(); ++i)
 r = max(r,abs(v[i])); // i is in the for’s statement scope
 // no I here
 return r;
 }
 // no r here
};
// no v here

int x; // global variable — avoid those where you can
int y;

int f()
{
 int x; // local variable, hides the global x
 x = 7; // the local x
 {
 int x = y; // local x initialized by global y, hides the previous local x
 ++x; // the x from the previous line
 }
 ++x; // the x from the first line of f()
 return x;
}

Whenever you can, avoid such complicated nesting and hiding. Remember:
“Keep it simple!”

The larger the scope of a name is, the longer and more descriptive its name
should be: x, y, and f are horrible as global names. The main reason that you
don’t want global variables in your program is that it is hard to know which func-
tions modify them. In large programs, it is basically impossible to know which
functions modify a global variable. Imagine that you are trying to debug a pro-
gram and you find that a global variable has an unexpected value. Who gave it
that value? Why? What functions write to that value? How would you know?
The function that wrote a bad value to that variable may be in a source file you
have never seen! A good program will have only very few (say, one or two), if any,
global variables. For example, the calculator in Chapters 6 and 7 had two global
variables: the token stream, ts, and the symbol table, names.

Stroustrup_book.indb 269Stroustrup_book.indb 269 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.270

Note that most C++ constructs that define scopes nest:

• Functions within classes: member functions (see §9.4.2)

class C {
public:
 void f();
 void g() // a member function can be defi ned within its class
 {
 // . . .
 }
 // . . .
};

void C::f() // a member defi nition can be outside its class
{
 // . . .
}

This is the most common and useful case.
• Classes within classes: member classes (also called nested classes)

class C {
public:
 struct M {
 // . . .
 };
 // . . .
};

This tends to be useful only in complicated classes; remember that the
ideal is to keep classes small and simple.

• Classes within functions: local classes

void f()
{
 class L {
 // . . .
 };
 // . . .
}

Avoid this; if you feel the need for a local class, your function is probably
far too long.

Stroustrup_book.indb 270Stroustrup_book.indb 270 4/22/14 9:42 AM4/22/14 9:42 AM

8.4 SCOPE 271

• Functions within functions: local functions (also called nested functions)

void f()
{
 void g() // illegal
 {
 // . . .
 }
 // . . .
}

This is not legal in C++; don’t do it. The compiler will reject it.
• Blocks within functions and other blocks: nested blocks

void f(int x, int y)
{
 if (x>y) {
 // . . .
 }
 else {
 // . . .
 {
 // . . .
 }
 // . . .
 }
}

Nested blocks are unavoidable, but be suspicious of complicated nesting:
it can easily hide errors.

C++ also provides a language feature, namespace, exclusively for expressing
scoping; see §8.7.

Note our consistent indentation to indicate nesting. Without consistent inden-
tation, nested constructs become unreadable. For example:

// dangerously ugly code
struct X {
void f(int x) {
struct Y {
int f() { return 1; } int m; };
int m;
m=x; Y m2;

Stroustrup_book.indb 271Stroustrup_book.indb 271 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.272

return f(m2.f()); }
int m; void g(int m) {
if (m) f(m+2); else {
g(m+2); }}
X() { } void m3() {
}

void main() {
X a; a.f(2);}
};

Hard-to-read code usually hides bugs. When you use an IDE, it tries to automat-
ically make your code properly indented (according to some definition of “prop-
erly”), and there exist “code beautifiers” that will reformat a source code file for
you (often offering you a choice of formats). However, the ultimate responsibility
for your code being readable rests with you.

8.5 Function call and return
Functions are the way we represent actions and computations. Whenever we want
to do something that is worthy of a name, we write a function. The C++ language
gives us operators (such as + and *) with which we can produce new values from
operands in expressions, and statements (such as for and if) with which we can
control the order of execution. To organize code made out of these primitives, we
have functions.

To do its job, a function usually needs arguments, and many functions return
a result. This section focuses on how arguments are specified and passed.

8.5.1 Declaring arguments and return type
Functions are what we use in C++ to name and represent computations and
actions. A function declaration consists of a return type followed by the name of
the function followed by a list of formal arguments in parentheses. For example:

double fct(int a, double d); // declaration of fct (no body)
double fct(int a, double d) { return a*d; } // definition of fct

A definition contains the function body (the statements to be executed by a call),
whereas a declaration that isn’t a definition just has a semicolon. Formal argu-
ments are often called parameters. If you don’t want a function to take arguments,
just leave out the formal arguments. For example:

int current_power(); // current_power doesn’t take an argument

Stroustrup_book.indb 272Stroustrup_book.indb 272 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 273

If you don’t want to return a value from a function, give void as its return type.
For example:

void increase_power(int level); // increase_power doesn’t return a value

Here, void means “doesn’t return a value” or “return nothing.”
You can name a parameter or not as it suits you in both declarations and

definitions. For example:

// search for s in vs;
// vs[hint] might be a good place to start the search
// return the index of a match; –1 indicates “not found”
int my_find(vector<string> vs, string s, int hint); // naming arguments

int my_find(vector<string>, string, int); // not naming arguments

In declarations, formal argument names are not logically necessary, just very use-
ful for writing good comments. From a compiler’s point of view, the second decla-
ration of my_find() is just as good as the first: it has all the information necessary
to call my_find().

Usually, we name all the arguments in the definition. For example:

int my_find(vector<string> vs, string s, int hint)
// search for s in vs starting at hint
{
 if (hint<0 || vs.size()<=hint) hint = 0;
 for (int i = hint; i<vs.size(); ++i) // search starting from hint
 if (vs[i]==s) return i;
 if (0<hint) { // if we didn’t find s search before hint

for (int i = 0; i<hint; ++i)
 if (vs[i]==s) return i;
 }
 return –1;
}

The hint complicates the code quite a bit, but the hint was provided under the
assumption that users could use it to good effect by knowing roughly where in
the vector a string will be found. However, imagine that we had used my_find()
for a while and then discovered that callers rarely used hint well, so that it ac-
tually hurt performance. Now we don’t need hint anymore, but there is lots of
code “out there” that calls my_find() with a hint. We don’t want to rewrite that
code (or can’t because it is someone else’s code), so we don’t want to change the

Stroustrup_book.indb 273Stroustrup_book.indb 273 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.274

declaration(s) of my_find(). Instead, we just don’t use the last argument. Since we
don’t use it we can leave it unnamed:

int my_find(vector<string> vs, string s, int) // 3rd argument unused
{
 for (int i = 0; i<vs.size(); ++i)
 if (vs[i]==s) return i;
 return –1;
}

You can find the complete grammar for function definitions in the ISO C++
standard.

8.5.2 Returning a value
We return a value from a function using a return-statement:

T f() // f() returns a T
{
 V v;
 // . . .
 return v;
}

T x = f();

Here, the value returned is exactly the value we would have gotten by initializing
a variable of type T with a value of type V:

V v;
// . . .
T t(v); // initialize t with v

That is, value return is a form of initialization.
A function declared to return a value must return a value. In particular, it is

an error to “fall through the end of the function”:

double my_abs(int x) // warning: buggy code
{
 if (x < 0)
 return –x;
 else if (x > 0)
 return x;
} // error: no value returned if x is 0

Stroustrup_book.indb 274Stroustrup_book.indb 274 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 275

Actually, the compiler probably won’t notice that we “forgot” the case x==0. In
principle it could, but few compilers are that smart. For complicated functions,
it can be impossible for a compiler to know whether or not you return a value,
so be careful. Here, “being careful” means to make really sure that you have a
return-statement or an error() for every possible way out of the function.

For historical reasons, main() is a special case. Falling through the bottom of
main() is equivalent to returning the value 0, meaning “successful completion” of
the program.

In a function that does not return a value, we can use return without a value
to cause a return from the function. For example:

void print_until_s(vector<string> v, string quit)
{
 for(int s : v) {
 if (s==quit) return;
 cout << s << '\n';
 }
}

As you can see, it is acceptable to “drop through the bottom” of a void function.
This is equivalent to a return;.

8.5.3 Pass-by-value
The simplest way of passing an argument to a function is to give the function a
copy of the value you use as the argument. An argument of a function f() is a local
variable in f() that’s initialized each time f() is called. For example:

// pass-by-value (give the function a copy of the value passed)
int f(int x)
{
 x = x+1; // give the local x a new value
 return x;
}

int main()
{
 int xx = 0;
 cout << f(xx) << '\n'; // write: 1
 cout << xx << '\n'; // write: 0; f() doesn’t change xx

Stroustrup_book.indb 275Stroustrup_book.indb 275 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.276

 int yy = 7;
 cout << f(yy) << '\n'; // write: 8
 cout << yy << '\n'; // write: 7; f() doesn’t change yy
}

Since a copy is passed, the x=x+1 in f() does not change the values xx and yy passed
in the two calls. We can illustrate a pass-by-value argument passing like this:

0 0

7 7

1st call:

xx: x:

Copy the value

2nd call:

yy: x:

Copy the value

Pass-by-value is pretty straightforward and its cost is the cost of copying the value.

8.5.4 Pass-by-const-reference
Pass-by-value is simple, straightforward, and efficient when we pass small values,
such as an int, a double, or a Token (§6.3.2). But what if a value is large, such
as an image (often, several million bits), a large table of values (say, thousands of
integers), or a long string (say, hundreds of characters)? Then, copying can be
costly. We should not be obsessed by cost, but doing unnecessary work can be
embarrassing because it is an indication that we didn’t directly express our idea of
what we wanted. For example, we could write a function to print out a vector of
floating-point numbers like this:

void print(vector<double> v) // pass-by-value; appropriate?
{
 cout << "{ ";
 for (int i = 0; i<v.size(); ++i) {
 cout << v[i];
 if (i!=v.size()–1) cout << ", ";
 }
 cout << " }\n";
}

We could use this print() for vectors of all sizes. For example:

void f(int x)
{
 vector<double> vd1(10); // small vector
 vector<double> vd2(1000000); // large vector

Stroustrup_book.indb 276Stroustrup_book.indb 276 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 277

 vector<double> vd3(x); // vector of some unknown size
 // . . . fill vd1, vd2, vd3 with values . . .
 print(vd1);
 print(vd2);
 print(vd3);
}

This code works, but the first call of print() has to copy ten doubles (probably 80
bytes), the second call has to copy a million doubles (probably 8 megabytes), and
we don’t know how much the third call has to copy. The question we must ask
ourselves here is: “Why are we copying anything at all?” We just wanted to print
the vectors, not to make copies of their elements. Obviously, there has to be a way
for us to pass a variable to a function without copying it. As an analogy, if you
were given the task to make a list of books in a library, the librarians wouldn’t ship
you a copy of the library building and all its contents; they would send you the ad-
dress of the library, so that you could go and look at the books. So, we need a way
of giving our print() function “the address” of the vector to print() rather than
the copy of the vector. Such an “address” is called a reference and is used like this:

void print(const vector<double>& v) // pass-by-const-reference
{
 cout << "{ ";
 for (int i = 0; i<v.size(); ++i) {
 cout << v[i];
 if (i!=v.size()–1) cout << ", ";
 }
 cout << " }\n";
}

The & means “reference” and the const is there to stop print() modifying its ar-
gument by accident. Apart from the change to the argument declaration, all is the
same as before; the only change is that instead of operating on a copy, print() now
refers back to the argument through the reference. Note the phrase “refer back”;
such arguments are called references because they “refer” to objects defined else-
where. We can call this print() exactly as before:

void f(int x)
{
 vector<double> vd1(10); // small vector
 vector<double> vd2(1000000); // large vector
 vector<double> vd3(x); // vector of some unknown size
 // . . . fill vd1, vd2, vd3 with values . . .

Stroustrup_book.indb 277Stroustrup_book.indb 277 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.278

 print(vd1);
 print(vd2);
 print(vd3);
}

We can illustrate that graphically:

v:

vd1:

vd2:

Refer to vd1 in 1st call

Refer to vd2 in 2nd call

A const reference has the useful property that we can’t accidentally modify the
object passed. For example, if we made a silly error and tried to assign to an ele-
ment from within print(), the compiler would catch it:

void print(const vector<double>& v) // pass-by-const-reference
{
 // . . .
 v[i] = 7; // error: v is a const (is not mutable)
 // . . .
}

Pass-by-const-reference is a useful and popular mechanism. Consider again
the my_find() function (§8.5.1) that searches for a string in a vector of strings.
Pass-by-value could be unnecessarily costly:

int my_find(vector<string> vs, string s); // pass-by-value: copy

If the vector contained thousands of strings, you might notice the time spent even
on a fast computer. So, we could improve my_find() by making it take its argu-
ments by const reference:

// pass-by-const-reference: no copy, read-only access
int my_find(const vector<string>& vs, const string& s);

Stroustrup_book.indb 278Stroustrup_book.indb 278 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 279

8.5.5 Pass-by-reference
But what if we did want a function to modify its arguments? Sometimes, that’s a
perfectly reasonable thing to wish for. For example, we might want an init() func-
tion that assigns values to vector elements:

void init(vector<double>& v) // pass-by-reference
{
 for (int i = 0; i<v.size(); ++i) v[i] = i;
}

void g(int x)
{
 vector<double> vd1(10); // small vector
 vector<double> vd2(1000000); // large vector
 vector<double> vd3(x); // vector of some unknown size

 init(vd1);
 init(vd2);
 init(vd3);
}

Here, we wanted init() to modify the argument vector, so we did not copy (did
not use pass-by-value) or declare the reference const (did not use pass-by-const-
reference) but simply passed a “plain reference” to the vector.

Let us consider references from a more technical point of view. A reference is
a construct that allows a user to declare a new name for an object. For example,
int& is a reference to an int, so we can write

int i = 7;

int& r = i; // r is a reference to i 7
i:

r

r = 9; // i becomes 9
i = 10;
cout << r << ' ' << i << '\n'; // write: 10 10

That is, any use of r is really a use of i.
References can be useful as shorthand. For example, we might have a

vector< vector<double> > v; // vector of vector of double

Stroustrup_book.indb 279Stroustrup_book.indb 279 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.280

and we need to refer to some element v[f(x)][g(y)] several times. Clearly, v[f(x)]
[g(y)] is a complicated expression that we don’t want to repeat more often than we
have to. If we just need its value, we could write

double val = v[f(x)][g(y)]; // val is the value of v[f(x)][g(y)]

and use val repeatedly. But what if we need to both read from v[f(x)][g(y)] and
write to v[f(x)][g(y)]? Then, a reference comes in handy:

double& var = v[f(x)][g(y)]; // var is a reference to v[f(x)][g(y)]

Now we can read and write v[f(x)][g(y)] through var. For example:

var = var/2+sqrt(var);

This key property of references, that a reference can be a convenient shorthand
for some object, is what makes them useful as arguments. For example:

// pass-by-reference (let the function refer back to the variable passed)
int f(int& x)
{
 x = x+1;
 return x;
}
int main()
{
 int xx = 0;
 cout << f(xx) << '\n'; // write: 1
 cout << xx << '\n'; // write: 1; f() changed the value of xx

 int yy = 7;
 cout << f(yy) << '\n'; // write: 8
 cout << yy << '\n'; // write: 8; f() changed the value of yy
}

We can illustrate a pass-by-reference argument passing like this:

x:
xx:

0

yy:
7

1st call (x refers to xx)

2nd call (x refers to yy)

Stroustrup_book.indb 280Stroustrup_book.indb 280 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 281

Compare this to the similar example in §8.5.3.
Pass-by-reference is clearly a very powerful mechanism: we can have a func-

tion operate directly on any object to which we pass a reference. For example,
swapping two values is an immensely important operation in many algorithms,
such as sorting. Using references, we can write a function that swaps doubles
like this:

void swap(double& d1, double& d2)
{
 double temp = d1; // copy d1’s value to temp
 d1 = d2; // copy d2’s value to d1
 d2 = temp; // copy d1’s old value to d2
}

int main()
{
 double x = 1;
 double y = 2;
 cout << "x == " << x << " y== " << y << '\n'; // write: x==1 y==2
 swap(x,y);
 cout << "x == " << x << " y== " << y << '\n'; // write: x==2 y==1
}

The standard library provides a swap() for every type that you can copy, so you
don’t have to write swap() yourself for each type.

8.5.6 Pass-by-value vs. pass-by-reference
When should you use pass-by-value, pass-by-reference, and pass-by-const-refer-
ence? Consider first a technical example:

void f(int a, int& r, const int& cr)
{
 ++a; // change the local a
 ++r; // change the object referred to by r
 ++cr; // error: cr is const
}

Stroustrup_book.indb 281Stroustrup_book.indb 281 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.282

If you want to change the value of the object passed, you must use a non-const ref-
erence: pass-by-value gives you a copy and pass-by-const-reference prevents you
from changing the value of the object passed. So we can try

void g(int a, int& r, const int& cr)
{
 ++a; // change the local a
 ++r; // change the object referred to by r
 int x = cr; // read the object referred to by cr
}

int main()
{
 int x = 0;
 int y = 0;
 int z = 0;

 g(x,y,z); // x==0; y==1; z==0
 g(1,2,3); // error: reference argument r needs a variable to refer to
 g(1,y,3); // OK: since cr is const we can pass a literal
}

So, if you want to change the value of an object passed by reference, you have to
pass an object. Technically, the integer literal 2 is just a value (an rvalue), rather
than an object holding a value. What you need for g()’s argument r is an lvalue,
that is, something that could appear on the left-hand side of an assignment.

Note that a const reference doesn’t need an lvalue. It can perform conver-
sions exactly as initialization or pass-by-value. Basically, what happens in that last
call, g(1,y,3), is that the compiler sets aside an int for g()’s argument cr to refer to:

g(1,y,3); // means: int __compiler_generated = 3; g(1,y,__compiler_generated)

Such a compiler-generated object is called a temporary object or just a temporary.
Our rule of thumb is:

 1. Use pass-by-value to pass very small objects.
 2. Use pass-by-const-reference to pass large objects that you don’t need to

modify.
 3. Return a result rather than modifying an object through a reference

argument.
 4. Use pass-by-reference only when you have to.

Stroustrup_book.indb 282Stroustrup_book.indb 282 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 283

These rules lead to the simplest, least error-prone, and most efficient code. By
“very small” we mean one or two ints, one or two doubles, or something like
that. If we see an argument passed by non-const reference, we must assume that
the called function will modify that argument.

That third rule reflects that you have a choice when you want to use a func-
tion to change the value of a variable. Consider:

int incr1(int a) { return a+1; } // return the new value as the result
void incr2(int& a) { ++a; } // modify object passed as reference

int x = 7;
x = incr1(x); // pretty obvious
incr2(x); // pretty obscure

Why do we ever use non-const-reference arguments? Occasionally, they are
essential

• For manipulating containers (e.g., vector) and other large objects
• For functions that change several objects (we can have only one return

value)

For example:

void larger(vector<int>& v1, vector<int>& v2)
 // make each element in v1 the larger of the corresponding
 // elements in v1 and v2;
 // similarly, make each element of v2 the smaller
{
 if (v1.size()!=v2.size()) error("larger(): different sizes");
 for (int i=0; i<v1.size(); ++i)
 if (v1[i]<v2[i])
 swap(v1[i],v2[i]);
}
void f()
{
 vector<int> vx;
 vector<int> vy;
 // read vx and vy from input
 larger(vx,vy);
 // . . .
}

Using pass-by-reference arguments is the only reasonable choice for a function
like larger().

Stroustrup_book.indb 283Stroustrup_book.indb 283 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.284

It is usually best to avoid functions that modify several objects. In theory,
there are always alternatives, such as returning a class object holding several val-
ues. However, there are a lot of programs “out there” expressed in terms of func-
tions that modify one or more arguments, so you are likely to encounter them.
For example, in Fortran — the major programming language used for numerical
calculation for about 50 years — all arguments are traditionally passed by refer-
ence. Many numeric programmers copy Fortran designs and call functions writ-
ten in Fortran. Such code often uses pass-by-reference or pass-by-const-reference.

If we use a reference simply to avoid copying, we use a const reference.
Consequently, when we see a non-const-reference argument, we assume
that the function changes the value of its argument; that is, when we see a
pass-by-non-const-reference we assume that not only can that function modify the
argument passed, but it will, so that we have to look extra carefully at the call to
make sure that it does what we expect it to.

8.5.7 Argument checking and conversion
Passing an argument is the initialization of the function’s formal argument with
the actual argument specified in the call. Consider:

void f(T x);
f(y);
T x = y; // initialize x with y (see §8.2.2)

The call f(y) is legal whenever the initialization T x=y; is, and when it is legal both
xs get the same value. For example:

void f(double x);

void g(int y)
{
 f(y);
 double x = y; // initialize x with y (see §8.2.2)
}

Note that to initialize x with y, we have to convert an int to a double. The same
happens in the call of f(). The double value received by f() is the same as the one
stored in x.

Conversions are often useful, but occasionally they give surprising results
(see §3.9.2). Consequently, we have to be careful with them. Passing a double as
an argument to a function that requires an int is rarely a good idea:

Stroustrup_book.indb 284Stroustrup_book.indb 284 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 285

void ff(int x);

void gg(double y)
{
 ff(y); // how would you know if this makes sense?
 int x = y; // how would you know if this makes sense?

}

If you really mean to truncate a double value to an int, say so explicitly:

void ggg(double x)
{
 int x1 = x; // truncate x
 int x2 = int(x);
 int x3 = static_cast<int>(x); // very explicit conversion (§17.8)

 ff(x1);
 ff(x2);
 ff(x3);

 ff(x); // truncate x
 ff(int(x));
 ff(static_cast<int>(x)); // very explicit conversion (§17.8)

}

That way, the next programmer to look at this code can see that you thought
about the problem.

8.5.8 Function call implementation
But how does a computer really do a function call? The expression(), term(), and
primary() functions from Chapters 6 and 7 are perfect for illustrating this except
for one detail: they don’t take any arguments, so we can’t use them to explain
how arguments are passed. But wait! They must take some input; if they didn’t,
they couldn’t do anything useful. They do take an implicit argument: they use
a Token_stream called ts to get their input; ts is a global variable. That’s a bit
sneaky. We can improve these functions by letting them take a Token_stream&
argument. Here they are with a Token_stream& parameter added and everything
that doesn’t concern function call implementation removed.

Stroustrup_book.indb 285Stroustrup_book.indb 285 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.286

First, expression() is completely straightforward; it has one argument (ts) and
two local variables (left and t):

double expression(Token_stream& ts)
{
 double left = term(ts);
 Token t = ts.get();
 // . . .
}

Second, term() is much like expression(), except that it has an additional local
variable (d) that it uses to hold the result of a divisor for '/':

double term(Token_stream& ts)
{
 double left = primary(ts);
 Token t = ts.get();
 // . . .
 case '/':
 {
 double d = primary(ts);
 // . . .
 }
 // . . .
}

Third, primary() is much like term() except that it doesn’t have a local variable
left:

double primary(Token_stream& ts)
{
 Token t = ts.get();
 switch (t.kind) {
 case '(':
 { double d = expression(ts);
 // . . .
 }
 // . . .
 }
}

Now they don’t use any “sneaky global variables” and are perfect for our illustra-
tion: they have an argument, they have local variables, and they call each other.

Stroustrup_book.indb 286Stroustrup_book.indb 286 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 287

You may want to take the opportunity to refresh your memory of what the com-
plete expression(), term(), and primary() look like, but the salient features as far
as function call is concerned are presented here.

When a function is called, the language implementation sets aside a data
structure containing a copy of all its parameters and local variables. For example,
when expression() is first called, the compiler ensures that a structure like this is
created:

Implementation
stuff

t
left
tsCall of expression():

The “implementation stuff” varies from implementation to implementation, but
that’s basically the information that the function needs to return to its caller and
to return a value to its caller. Such a data structure is called a function activation
record, and each function has its own detailed layout of its activation record.
Note that from the implementation’s point of view, a parameter is just another
local variable.

So far, so good, and now expression() calls term(), so the compiler ensures
that an activation record for this call of term() is generated:

Implementation
stuff

t
left
ts

Implementation
stuff

t
d

left
ts

Call of expression():

Call of term():
Direction of
stack growth

Note that term() has an extra variable d that needs to be stored, so we set aside
space for that in the call even though the code may never get around to using
it. That’s OK. For reasonable functions (such as every function we directly or
indirectly use in this book), the run-time cost of laying down a function activation
record doesn’t depend on how big it is. The local variable d will be initialized only
if we execute its case '/'.

Stroustrup_book.indb 287Stroustrup_book.indb 287 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.288

Now term() calls primary() and we get

Implementation
stuff

t
left
ts

Implementation
stuff

t
d

left
ts

Call of expression():

Call of term():

Implementation
stuff

t
d

tsCall of primary():

Direction of
stack growth

This is starting to get a bit repetitive, but now primary() calls expression():

Implementation
stuff

t
left
ts

Implementation
stuff

t
d

left
ts

Call of expression():

Implementation
stuff

t
left
tsCall of expression():

Call of term():

Implementation
stuff

t
d

tsCall of primary():

Direction of
stack growth

Stroustrup_book.indb 288Stroustrup_book.indb 288 4/22/14 9:42 AM4/22/14 9:42 AM

8.5 FUNCTION CALL AND RETURN 289

So this call of expression() gets its own activation record, different from the
first call of expression(). That’s good or else we’d be in a terrible mess, since
left and t will be different in the two calls. A function that directly or (as here)
indirectly calls itself is called recursive. As you see, recursive functions follow
naturally from the implementation technique we use for function call and return
(and vice versa).

So, each time we call a function the stack of activation records, usually just called
the stack, grows by one record. Conversely, when the function returns, its record
is no longer used. For example, when that last call of expression() returns to
primary(), the stack will revert to this:

Implementation
stuff

t
left
ts

Implementation
stuff

t
d

left
ts

Call of expression():

Call of term():

Implementation
stuff

t
d

tsCall of primary():

Direction of
stack growth

And when that call of primary() returns to term(), we get back to

Implementation
stuff

t
left
ts

Implementation
stuff

t
d

left
ts

Call of expression():

Call of term():
Direction of
stack growth

Stroustrup_book.indb 289Stroustrup_book.indb 289 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.290

And so on. The stack, also called the call stack, is a data structure that grows and
shrinks at one end according to the rule “Last in, first out.”

Please remember that the details of how a call stack is implemented and used
vary from C++ implementation to C++ implementation, but the basics are as
outlined here. Do you need to know how function calls are implemented to use
them? Of course not; you have done well enough before this implementation
subsection, but many programmers like to know and many use phrases like “acti-
vation record” and “call stack,” so it’s better to know what they mean.

8.5.9 constexpr functions
A function represents a calculation, and sometimes we want to do a calculation at
compile time. The reason to want a calculation to be evaluated by the compiler is
usually to avoid having the same calculation done millions of times at run time.
We use functions to make our calculations comprehensible, so naturally we some-
times want to use a function in a constant expression. We convey our intent to
have a function evaluated by the compiler by declaring the function constexpr. A
constexpr function can be evaluated by the compiler if it is given constant expres-
sions as arguments. For example:

constexpr double xscale = 10; // scaling factors
constexpr double yscale = 0.8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };

Assume that Point is a simple struct with members x and y representing 2D co-
ordinates. Now, when we give scale() a Point argument, it returns a Point with
coordinates scaled according to the factors xscale and yscale. For example:

void user(Point p1)
{
 Point p2 {10,10};

 Point p3 = scale(p1); // OK: p3 == {100,8}; run-time evaluation is fine
 Point p4 = scale(p2); // p4 == {100,8}

 constexpr Point p5 = scale(p1); // error: scale (p1) is not a constant
 // expression

 constexpr Point p6 = scale(p2); // p6 == {100,8}

 // . . .
}

Stroustrup_book.indb 290Stroustrup_book.indb 290 4/22/14 9:42 AM4/22/14 9:42 AM

8.6 ORDER OF EVALUATION 291

A constexpr function behaves just like an ordinary function until you use it where
a constant is needed. Then, it is calculated at compile time provided its arguments
are constant expressions (e.g., p2) and gives an error if they are not (e.g., p1).
To enable that, a constexpr function must be so simple that the compiler (ev-
ery standard-conforming compiler) can evaluate it. In C++11, that means that a
constexpr function must have a body consisting of a single return-statement (like
scale()); in C++14, we can also write simple loops. A constexpr function may not
have side effects; that is, it may not change the value of variables outside its own
body, except those it is assigned to or uses to initialize.

Here is an example of a function that violates those rules for simplicity:

int gob = 9;

constexpr void bad(int & arg) // error: no return value
{
 ++arg; // error: modifies caller through argument
 glob = 7; // error: modifies nonlocal variable
}

If a compiler cannot determine that a constexpr function is “simple enough” (ac-
cording to detailed rules in the standard), the function is considered an error.

8.6 Order of evaluation
The evaluation of a program — also called the execution of a program — pro-
ceeds through the statements according to the language rules. When this “thread
of execution” reaches the definition of a variable, the variable is constructed;
that is, memory is set aside for the object and the object is initialized. When the
variable goes out of scope, the variable is destroyed; that is, the object it refers
to is in principle removed and the compiler can use its memory for something
else. For example:

string program_name = "silly";
vector<string> v; // v is global

void f()
{
 string s; // s is local to f
 while (cin>>s && s!="quit") {
 string stripped; // stripped is local to the loop
 string not_letters;

Stroustrup_book.indb 291Stroustrup_book.indb 291 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.292

 for (int i=0; i<s.size(); ++i) // i has statement scope
 if (isalpha(s[i]))
 stripped += s[i];
 else
 not_letters += s[i];
 v.push_back(stripped);
 // . . .
 }
 // . . .
}

Global variables, such as program_name and v, are initialized before the first
statement of main() is executed. They “live” until the program terminates, and
then they are destroyed. They are constructed in the order in which they are de-
fined (that is, program_name before v) and destroyed in the reverse order (that is,
v before program_name).

When someone calls f(), first s is constructed; that is, s is initialized to the
empty string. It will live until we return from f().

Each time we enter the block that is the body of the while-statement, stripped
and not_letters are constructed. Since stripped is defined before not_letters,
stripped is constructed before not_letters. They live until the end of the loop,
where they are destroyed in the reverse order of construction (that is, not_letters
before stripped) before the condition is reevaluated. So, if ten strings are seen
before we encounter the string quit, stripped and not_letters will each be con-
structed and destroyed ten times.

Each time we reach the for-statement, i is constructed. Each time we exit the
for-statement, i is destroyed before we reach the v.push_back(stripped); statement.

Please note that compilers (and linkers) are clever beasts and they are allowed
to — and do — optimize code as long as the results are equivalent to what we have
described here. In particular, compilers are clever at not allocating and deallocat-
ing memory more often than is really necessary.

8.6.1 Expression evaluation
The order of evaluation of sub-expressions is governed by rules designed to please
an optimizer rather than to make life simple for the programmer. That’s unfortu-
nate, but you should avoid complicated expressions anyway, and there is a simple
rule that can keep you out of trouble: if you change the value of a variable in an
expression, don’t read or write it twice in that same expression. For example:

v[i] = ++i; // don’t: undefined order of evaluation
v[++i] = i; // don’t: undefined order of evaluation

Stroustrup_book.indb 292Stroustrup_book.indb 292 4/22/14 9:42 AM4/22/14 9:42 AM

8.6 ORDER OF EVALUATION 293

int x = ++i + ++i; // don’t: undefined order of evaluation
cout << ++i << ' ' << i << '\n'; // don’t: undefined order of evaluation
f(++i,++i); // don’t: undefined order of evaluation

Unfortunately, not all compilers warn if you write such bad code; it’s bad because
you can’t rely on the results being the same if you move your code to another
computer, use a different compiler, or use a different optimizer setting. Compilers
really differ for such code; just don’t do it.

Note in particular that = (assignment) is considered just another operator in
an expression, so there is no guarantee that the left-hand side of an assignment is
evaluated before the right-hand side. That’s why v[++i] = i is undefined.

8.6.2 Global initialization
Global variables (and namespace variables; see §8.7) in a single translation unit
are initialized in the order in which they appear. For example:

// file f1.cpp
int x1 = 1;
int y1 = x1+2; // y1 becomes 3

This initialization logically takes place “before the code in main() is executed.”
Using a global variable in anything but the most limited circumstances is usu-

ally not a good idea. We have mentioned the problem of the programmer having
no really effective way of knowing which parts of a large program read and/or
write a global variable (§8.4). Another problem is that the order of initialization of
global variables in different translation units is not defined. For example:

// file f2.cpp
extern int y1;
int y2 = y1+2; // y2 becomes 2 or 5

Such code is to be avoided for several reasons: it uses global variables, it gives the
global variables short names, and it uses complicated initialization of the global
variables. If the globals in file f1.cpp are initialized before the globals in f2.cpp,
y2 will be initialized to 5 (as a programmer might naively and reasonably expect).
However, if the globals in file f2.cpp are initialized before the globals in f1.cpp, y2
will be initialized to 2 (because the memory used for global variables is initialized
to 0 before complicated initialization is attempted). Avoid such code, and be very
suspicious when you see global variables with nontrivial initializers; consider any
initializer that isn’t a constant expression complicated.

Stroustrup_book.indb 293Stroustrup_book.indb 293 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.294

But what do you do if you really need a global variable (or constant) with a
complicated initializer? A plausible example would be that we wanted a default
value for a Date type we were providing for a library supporting business
transactions:

const Date default_date(1970,1,1); // the default date is January 1, 1970

How would we know that default_date was never used before it was initialized?
Basically, we can’t know, so we shouldn’t write that definition. The technique that
we use most often is to call a function that returns the value. For example:

const Date default_date() // return the default date
{
 return Date(1970,1,1);
}

This constructs the Date every time we call default_date(). That is often fine, but
if default_date() is called often and it is expensive to construct Date, we’d like to
construct the Date once only. That is done like this:

const Date& default_date()
{
 static const Date dd(1970,1,1); // initialize dd first time we get here
 return dd;
}

The static local variable is initialized (constructed) only the first time its function
is called. Note that we returned a reference to eliminate unnecessary copying and,
in particular, we returned a const reference to prevent the calling function from
accidentally changing the value. The arguments about how to pass an argument
(§8.5.6) also apply to returning values.

8.7 Namespaces
We use blocks to organize code within a function (§8.4). We use classes to orga-
nize functions, data, and types into a type (Chapter 9). A function and a class both
do two things for us:

• They allow us to defi ne a number of “entities” without worrying that
their names clash with other names in our program.

• They give us a name to refer to what we have defi ned.

Stroustrup_book.indb 294Stroustrup_book.indb 294 4/22/14 9:42 AM4/22/14 9:42 AM

8.7 NAMESPACES 295

What we lack so far is something to organize classes, functions, data, and types
into an identifiable and named part of a program without defining a type. The lan-
guage mechanism for such grouping of declarations is a namespace. For example,
we might like to provide a graphics library with classes called Color, Shape, Line,
Function, and Text (see Chapter 13):

namespace Graph_lib {
 struct Color { /* . . . */ };
 struct Shape { /* . . . */ };
 struct Line : Shape { /* . . . */ };
 struct Function : Shape { /* . . . */ };
 struct Text : Shape { /* . . . */ };
 // . . .
 int gui_main() { /* . . . */ }
}

Most likely somebody else in the world has used those names, but now that
doesn’t matter. You might define something called Text, but our Text doesn’t in-
terfere. Graph_lib::Text is one of our classes and your Text is not. We have a
problem only if you have a class or a namespace called Graph_lib with Text as its
member. Graph_lib is a slightly ugly name; we chose it because the “pretty and
obvious” name Graphics had a greater chance of already being used somewhere.

Let’s say that your Text was part of a text manipulation library. The same
logic that made us put our graphics facilities into namespace Graph_lib should
make you put your text manipulation facilities into a namespace called something
like TextLib:

namespace TextLib {
 class Text { /* . . . */ };
 class Glyph { /* . . . */ };
 class Line { /* . . . */ };
 // . . .
}

Had we both used the global namespace, we could have been in real trouble. Some-
one trying to use both of our libraries would have had really bad name clashes
for Text and Line. Worse, if we both had users for our libraries we would not
have been able to change our names, such as Line and Text, to avoid clashes. We
avoided that problem by using namespaces; that is, our Text is Graph_lib::Text and
yours is TextLib::Text. A name composed of a namespace name (or a class name)
and a member name combined by :: is called a fully qualified name.

Stroustrup_book.indb 295Stroustrup_book.indb 295 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.296

8.7.1 using declarations and using directives
Writing fully qualified names can be tedious. For example, the facilities of the
C++ standard library are defined in namespace std and can be used like this:

#include<string> // get the string library
#include<iostream> // get the iostream library

int main()
{
 std::string name;
 std::cout << "Please enter your first name\n";
 std::cin >> name;
 std::cout << "Hello, " << name << '\n';
}

Having seen the standard library string and cout thousands of times, we don’t
really want to have to refer to them by their “proper” fully qualified names
 std::string and std::cout all the time. A solution is to say that “by string, I mean
std::string,” “by cout, I mean std::cout,” etc.:

using std::string; // string means std::string
using std::cout; // cout means std::cout
// . . .

That construct is called a using declaration; it is the programming equivalent to
using plain “Greg” to refer to Greg Hansen, when there are no other Gregs in the
room.

Sometimes, we prefer an even stronger “shorthand” for the use of names
from a namespace: “If you don’t find a declaration for a name in this scope, look
in std.” The way to say that is to use a using directive:

using namespace std; // make names from std directly accessible

So we get this common style:

#include<string> // get the string library
#include<iostream> // get the iostream library
using namespace std; // make names from std directly accessible

int main()
{
 string name;
 cout << "Please enter your first name\n";

Stroustrup_book.indb 296Stroustrup_book.indb 296 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 DRILL 297

 cin >> name;
 cout << "Hello, " << name << '\n';
}

The cin is std::cin, the string is std::string, etc. As long as you use std_lib_
facilities.h, you don’t need to worry about standard headers and the std namespace.

It is usually a good idea to avoid using directives for any namespace except
for a namespace, such as std, that’s extremely well known in an application area.
The problem with overuse of using directives is that you lose track of which
names come from where, so that you again start to get name clashes. Explicit qual-
ification with namespace names and using declarations doesn’t suffer from that
problem. So, putting a using directive in a header file (so that users can’t avoid
it) is a very bad habit. However, to simplify our initial code we did place a using
directive for std in std_lib_facilities.h. That allowed us to write

#include "std_lib_facilities.h"

int main()
{
 string name;
 cout << "Please enter your first name\n";
 cin >> name;
 cout << "Hello, " << name << '\n';
}

We promise never to do that for any namespace except std.

Drill
 1. Create three files: my.h, my.cpp, and use.cpp. The header file my.h contains

extern int foo;
void print_foo();
void print(int);

The source code file my.cpp #includes my.h and std_lib_facilities.h, de-
fines print_foo() to print the value of foo using cout, and print(int i) to
print the value of i using cout.

The source code file use.cpp #includes my.h, defines main() to
set the value of foo to 7 and print it using print_foo(), and to print the

Stroustrup_book.indb 297Stroustrup_book.indb 297 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.298

value of 99 using print(). Note that use.cpp does not #include std_lib_
facilities.h as it doesn’t directly use any of those facilities.

Get these files compiled and run. On Windows, you need to have
both use.cpp and my.cpp in a project and use { char cc; cin>>cc; } in use.
cpp to be able to see your output. Hint: You need to #include <iostream>
to use cin.

 2. Write three functions swap_v(int,int), swap_r(int&,int&), and swap_
cr(const int&, const int&). Each should have the body

{ int temp; temp = a, a=b; b=temp; }

where a and b are the names of the arguments.
Try calling each swap like this

int x = 7;
int y =9;
swap_?(x,y); // replace ? by v, r, or cr
swap_?(7,9);
const int cx = 7;
const int cy = 9;
swap_?(cx,cy);
swap_?(7.7,9.9);
double dx = 7.7;
double dy = 9.9;
swap_?(dx,dy);
swap_?(7.7,9.9);

Which functions and calls compiled, and why? After each swap that com-
piled, print the value of the arguments after the call to see if they were
actually swapped. If you are surprised by a result, consult §8.6.

 3. Write a program using a single file containing three namespaces X, Y, and
Z so that the following main() works correctly:

int main()
{
 X::var = 7;
 X::print(); // print X’s var
 using namespace Y;
 var = 9;
 print(); // print Y’s var
 { using Z::var;
 using Z::print;
 var = 11;
 print(); // print Z’s var
 }

Stroustrup_book.indb 298Stroustrup_book.indb 298 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 REVIEW 299

 print(); // print Y’s var
 X::print(); // print X’s var
}

Each namespace needs to define a variable called var and a function called
print() that outputs the appropriate var using cout.

Review
 1. What is the difference between a declaration and a definition?
 2. How do we syntactically distinguish between a function declaration and

a function definition?
 3. How do we syntactically distinguish between a variable declaration and a

variable definition?
 4. Why can’t you use the functions in the calculator program from Chapter

6 without declaring them first?
 5. Is int a; a definition or just a declaration?
 6. Why is it a good idea to initialize variables as they are declared?
 7. What can a function declaration consist of?
 8. What good does indentation do?
 9. What are header files used for?
 10. What is the scope of a declaration?
 11. What kinds of scope are there? Give an example of each.
 12. What is the difference between a class scope and local scope?
 13. Why should a programmer minimize the number of global variables?
 14. What is the difference between pass-by-value and pass-by-reference?
 15. What is the difference between pass-by-reference and pass-by-const-

reference?
 16. What is a swap()?
 17. Would you ever define a function with a vector<double>-by-value

parameter?
 18. Give an example of undefined order of evaluation. Why can undefined

order of evaluation be a problem?
 19. What do x&&y and x||y, respectively, mean?
 20. Which of the following is standard-conforming C++: functions within

functions, functions within classes, classes within classes, classes within
functions?

 21. What goes into an activation record?
 22. What is a call stack and why do we need one?
 23. What is the purpose of a namespace?
 24. How does a namespace differ from a class?
 25. What is a using declaration?

Stroustrup_book.indb 299Stroustrup_book.indb 299 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.300

 26. Why should you avoid using directives in a header?
 27. What is namespace std?

Terms
activation record function pass-by-reference
argument function defi nition pass-by-value
argument passing global scope recursion
call stack header fi le return
class scope initializer return value
const local scope scope
constexpr namespace statement scope
declaration namespace scope technicalities
defi nition nested block undeclared identifi er
extern parameter using declaration
forward declaration pass-by-const-reference using directive

Exercises
 1. Modify the calculator program from Chapter 7 to make the input stream

an explicit parameter (as shown in §8.5.8), rather than simply using cin.
Also give the Token_stream constructor (§7.8.2) an istream& parameter
so that when we figure out how to make our own istreams (e.g., attached
to files), we can use the calculator for those. Hint: Don’t try to copy an
istream.

 2. Write a function print() that prints a vector of ints to cout. Give it two
arguments: a string for “labeling” the output and a vector.

 3. Create a vector of Fibonacci numbers and print them using the function
from exercise 2. To create the vector, write a function, fibonacci(x,y,v,n),
where integers x and y are ints, v is an empty vector<int>, and n is the
number of elements to put into v; v[0] will be x and v[1] will be y. A Fibo-
nacci number is one that is part of a sequence where each element is the
sum of the two previous ones. For example, starting with 1 and 2, we get
1, 2, 3, 5, 8, 13, 21, Your fibonacci() function should make such a
sequence starting with its x and y arguments.

 4. An int can hold integers only up to a maximum number. Find an approx-
imation of that maximum number by using fibonacci().

 5. Write two functions that reverse the order of elements in a vector<int>.
For example, 1, 3, 5, 7, 9 becomes 9, 7, 5, 3, 1. The first reverse function
should produce a new vector with the reversed sequence, leaving its orig-
inal vector unchanged. The other reverse function should reverse the
elements of its vector without using any other vectors (hint: swap).

Stroustrup_book.indb 300Stroustrup_book.indb 300 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 8 POSTSCRIPT 301

 6. Write versions of the functions from exercise 5, but with a vector<string>.
 7. Read five names into a vector<string> name, then prompt the user for

the ages of the people named and store the ages in a vector<double> age.
Then print out the five (name[i],age[i]) pairs. Sort the names (sort(name
.begin(),name.end())) and print out the (name[i],age[i]) pairs. The tricky
part here is to get the age vector in the correct order to match the sorted
name vector. Hint: Before sorting name, take a copy and use that to
make a copy of age in the right order after sorting name. Then, do that
exercise again but allowing an arbitrary number of names.

 9. Write a function that given two vector<double>s price and weight com-
putes a value (an “index”) that is the sum of all price[i]*weight[i]. Make
sure to have weight.size()==price.size().

 10. Write a function maxv() that returns the largest element of a vector
argument.

 11. Write a function that finds the smallest and the largest element of a vector
argument and also computes the mean and the median. Do not use global
variables. Either return a struct containing the results or pass them back
through reference arguments. Which of the two ways of returning several
result values do you prefer and why?

 12. Improve print_until_s() from §8.5.2. Test it. What makes a good set of
test cases? Give reasons. Then, write a print_until_ss() that prints until it
sees a second occurrence of its quit argument.

 13. Write a function that takes a vector<string> argument and returns a
 vector<int> containing the number of characters in each string. Also
find the longest and the shortest string and the lexicographically first and
last string. How many separate functions would you use for these tasks?
Why?

 14. Can we declare a non-reference function argument const (e.g., void
f(const int);)? What might that mean? Why might we want to do that?
Why don’t people do that often? Try it; write a couple of small programs
to see what works.

Postscript
We could have put much of this chapter (and much of the next) into an ap-
pendix. However, you’ll need most of the facilities described here in Part II of
this book. You’ll also encounter most of the problems that these facilities were
 invented to help solve very soon. Most simple programming projects that you
might undertake will require you to solve such problems. So, to save time and
minimize confusion, a somewhat systematic approach is called for, rather than a
series of “random” visits to manuals and appendices.

Stroustrup_book.indb 301Stroustrup_book.indb 301 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 302Stroustrup_book.indb 302 4/22/14 9:42 AM4/22/14 9:42 AM

303

9

Technicalities: Classes, etc.

“Remember, things take time.”

—Piet Hein

In this chapter, we keep our focus on our main tool for pro-

gramming: the C++ programming language. We present

language technicalities, mostly related to user-defined types, that

is, to classes and enumerations. Much of the presentation of lan-

guage features takes the form of the gradual improvement of a

Date type. That way, we also get a chance to demonstrate some

useful class design techniques.

Stroustrup_book.indb 303Stroustrup_book.indb 303 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.304

9.1 User-defi ned types
The C++ language provides you with some built-in types, such as char, int, and
double (§A.8). A type is called built-in if the compiler knows how to represent ob-
jects of the type and which operations can be done on it (such as + and *) without
being told by declarations supplied by a programmer in source code.

Types that are not built-in are called user-defined types (UDTs). They can be
standard library types — available to all C++ programmers as part of every ISO
standard C++ implementation — such as string, vector, and ostream (Chapter
10), or types that we build for ourselves, such as Token and Token_stream (§6.5
and §6.6). As soon as we get the necessary technicalities under our belt, we’ll build
graphics types such as Shape, Line, and Text (Chapter 13). The standard library
types are as much a part of the language as the built-in types, but we still consider
them user-defined because they are built from the same primitives and with the
same techniques as the types we built ourselves; the standard library builders
have no special privileges or facilities that you don’t have. Like the built-in types,
most user-defined types provide operations. For example, vector has [] and size()
(§4.6.1, §B.4.8), ostream has <<, Token_stream has get() (§6.8), and Shape has
add(Point) and set_color() (§14.2).

Why do we build types? The compiler does not know all the types we might
like to use in our programs. It couldn’t, because there are far too many useful
types — no language designer or compiler implementer could know them all. We
invent new ones every day. Why? What are types good for? Types are good for
directly representing ideas in code. When we write code, the ideal is to represent
our ideas directly in our code so that we, our colleagues, and the compiler can
understand what we wrote. When we want to do integer arithmetic, int is a great
help; when we want to manipulate text, string is a great help; when we want to
manipulate calculator input, Token and Token_stream are a great help. The help
comes in two forms:

9.1 User-defi ned types

9.2 Classes and members

9.3 Interface and implementation

9.4 Evolving a class
9.4.1 struct and functions
9.4.2 Member functions and
constructors
9.4.3 Keep details private
9.4.4 Defi ning member functions
9.4.5 Referring to the current object
9.4.6 Reporting errors

9.5 Enumerations
9.5.1 “Plain” enumerations

9.6 Operator overloading

9.7 Class interfaces
9.7.1 Argument types
9.7.2 Copying
9.7.3 Default constructors
9.7.4 const member functions
9.7.5 Members and “helper functions”

9.8 The Date class

Stroustrup_book.indb 304Stroustrup_book.indb 304 4/22/14 9:42 AM4/22/14 9:42 AM

9.2 CLASSES AND MEMBERS 305

• Representation: A type “knows” how to represent the data needed in an
object.

• Operations: A type “knows” what operations can be applied to objects.

Many ideas follow this pattern: “something” has data to represent its current
value — sometimes called the current state — and a set of operations that can be
applied. Think of a computer file, a web page, a toaster, a music player, a coffee
cup, a car engine, a cell phone, a telephone directory; all can be characterized by
some data and all have a more or less fixed set of standard operations that you
can perform. In each case, the result of the operation depends on the data — the
“current state” — of an object.

So, we want to represent such an “idea” or “concept” in code as a data struc-
ture plus a set of functions. The question is: “Exactly how?” This chapter presents
the technicalities of the basic ways of doing that in C++.

C++ provides two kinds of user-defined types: classes and enumerations.
The class is by far the most general and important, so we first focus on classes. A
class directly represents a concept in a program. A class is a (user-defined) type that
specifies how objects of its type are represented, how those objects can be created,
how they are used, and how they can be destroyed (see §17.5). If you think of
something as a separate entity, it is likely that you should define a class to rep-
resent that “thing” in your program. Examples are vector, matrix, input stream,
string, FFT (fast Fourier transform), valve controller, robot arm, device driver,
picture on screen, dialog box, graph, window, temperature reading, and clock.

In C++ (as in most modern languages), a class is the key building block for
large programs — and very useful for small ones as well, as we saw for our calcu-
lator (Chapters 6 and 7).

9.2 Classes and members
A class is a user-defined type. It is composed of built-in types, other user-
defined types, and functions. The parts used to define the class are called members.
A class has zero or more members. For example:

class X {
public:
 int m; // data member
 int mf(int v) { int old = m; m=v; return old; } // function member
};

Members can be of various types. Most are either data members, which define
the representation of an object of the class, or function members, which provide

Stroustrup_book.indb 305Stroustrup_book.indb 305 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.306

operations on such objects. We access members using the object.member notation.
For example:

X var; // var is a variable of type X
var.m = 7; // assign to var’s data member m
int x = var.mf(9); // call var’s member function mf()

You can read var.m as var’s m. Most people pronounce it “var dot m” or “var’s m.”
The type of a member determines what operations we can do on it. We can read
and write an int member, call a function member, etc.

A member function, such as X’s mf(), does not need to use the var.m notation.
It can use the plain member name (m in this example). Within a member func-
tion, a member name refers to the member of that name in the object for which
the member function was called. Thus, in the call var.mf(9), the m in the definition
of mf() refers to var.m.

9.3 Interface and implementation
Usually, we think of a class as having an interface plus an implementation. The
interface is the part of the class’s declaration that its users access directly. The
implementation is that part of the class’s declaration that its users access only indi-
rectly through the interface. The public interface is identified by the label public:
and the implementation by the label private:. You can think of a class declaration
like this:

class X { // this class’s name is X
public:
 // public members:
 // – the interface to users (accessible by all)
 // functions
 // types
 // data (often best kept private)
private:
 // private members:
 // – the implementation details (used by members of this class only)
 // functions
 // types
 // data
};

Class members are private by default; that is,

Stroustrup_book.indb 306Stroustrup_book.indb 306 4/22/14 9:42 AM4/22/14 9:42 AM

9.3 INTERFACE AND IMPLEMENTATION 307

class X {
 int mf(int);
 // . . .
};

means

class X {
private:
 int mf(int);
 // . . .
};

so that

X x; // variable x of type X
int y = x.mf(); // error: mf is private (i.e., inaccessible)

A user cannot directly refer to a private member. Instead, we have to go through
a public function that can use it. For example:

class X {
 int m;
 int mf(int);
public:
 int f(int i) { m=i; return mf(i); }
};

X x;
int y = x.f(2);

We use private and public to represent the important distinction between an inter-
face (the user’s view of the class) and implementation details (the implementer’s
view of the class). We explain that and give lots of examples as we go along.
Here we’ll just mention that for something that’s just data, this distinction doesn’t
make sense. So, there is a useful simplified notation for a class that has no private
implementation details. A struct is a class where members are public by default:

struct X {
 int m;
 // . . .
};

Stroustrup_book.indb 307Stroustrup_book.indb 307 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.308

means

class X {
public:
 int m;
 // . . .
};

structs are primarily used for data structures where the members can take any
value; that is, we can’t define any meaningful invariant (§9.4.3).

9.4 Evolving a class
Let’s illustrate the language facilities supporting classes and the basic techniques
for using them by showing how — and why — we might evolve a simple data struc-
ture into a class with private implementation details and supporting operations.
We use the apparently trivial problem of how to represent a date (such as August
14, 1954) in a program. The need for dates in many programs is obvious (com-
mercial transactions, weather data, calendar programs, work records, inventory
management, etc.). The only question is how we might represent them.

9.4.1 struct and functions
How would we represent a date? When asked, most people answer, “Well, how
about the year, the month, and the day of the month?” That’s not the only answer
and not always the best answer, but it’s good enough for our uses, so that’s what
we’ll do. Our first attempt is a simple struct:

// simple Date (too simple?)
struct Date {
 int y; // year
 int m; // month in year
 int d; // day of month
};

Date today; // a Date variable (a named object)

A Date object, such as today, will simply be three ints:

2005y:
Date:

12m:
24d:

Stroustrup_book.indb 308Stroustrup_book.indb 308 4/22/14 9:42 AM4/22/14 9:42 AM

9.4 EVOLVING A CLASS 309

There is no “magic” relying on hidden data structures anywhere related to a
Date — and that will be the case for every version of Date in this chapter.

So, we now have Dates; what can we do with them? We can do everything in
the sense that we can access the members of today (and any other Date) and read
and write them as we like. The snag is that nothing is really convenient. Just about
anything that we want to do with a Date has to be written in terms of reads and
writes of those members. For example:

// set today to December 24, 2005
today.y = 2005;
today.m = 24;
today.d = 12;

This is tedious and error-prone. Did you spot the error? Everything that’s tedious
is error-prone! For example, does this make sense?

Date x;
x.y = –3;
x.m = 13;
x.d = 32;

Probably not, and nobody would write that — or would they? How about

Date y;
y.y = 2000;
y.m = 2;
y.d = 29;

Was year 2000 a leap year? Are you sure?
What we do then is to provide some helper functions to do the most common

operations for us. That way, we don’t have to repeat the same code over and over
again and we won’t make, find, and fix the same mistakes over and over again.
For just about every type, initialization and assignment are among the most com-
mon operations. For Date, increasing the value of the Date is another common
operation, so we write

// helper functions:

void init_day(Date& dd, int y, int m, int d)
{
 // check that (y,m,d) is a valid date
 // if it is, use it to initialize dd
}

Stroustrup_book.indb 309Stroustrup_book.indb 309 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.310

void add_day(Date& dd, int n)
{
 // increase dd by n days
}

We can now try to use Date:

void f()
{
 Date today;
 init_day(today, 12, 24, 2005); // oops! (no day 2005 in year 12)
 add_day(today,1);
}

First we note the usefulness of such “operations” — here implemented as helper
functions. Checking that a date is valid is sufficiently difficult and tedious that if
we didn’t write a checking function once and for all, we’d skip the check occasion-
ally and get buggy programs. Whenever we define a type, we want some opera-
tions for it. Exactly how many operations we want and of which kind will vary.
Exactly how we provide them (as functions, member functions, or operators) will
also vary, but whenever we decide to provide a type, we ask ourselves, “Which
operations would we like for this type?”

9.4.2 Member functions and constructors
We provided an initialization function for Dates, one that provided an important
check on the validity of Dates. However, checking functions are of little use if we
fail to use them. For example, assume that we have defined the output operator
<< for a Date (§9.8):

void f()
{
 Date today;
 // . . .
 cout << today << '\n'; // use today
 // . . .
 init_day(today,2008,3,30);
 // . . .
 Date tomorrow;
 tomorrow.y = today.y;
 tomorrow.m = today.m;
 tomorrow.d = today.d+1; // add 1 to today
 cout << tomorrow << '\n'; // use tomorrow
}

Stroustrup_book.indb 310Stroustrup_book.indb 310 4/22/14 9:42 AM4/22/14 9:42 AM

9.4 EVOLVING A CLASS 311

Here, we “forgot” to immediately initialize today and “someone” used it before
we got around to calling init_day(). “Someone else” decided that it was a waste of
time to call add_day() — or maybe hadn’t heard of it — and constructed tomorrow
by hand. As it happens, this is bad code — very bad code. Sometimes, probably
most of the time, it works, but small changes lead to serious errors. For example,
writing out an uninitialized Date will produce garbage output, and incrementing
a day by simply adding 1 to its member d is a time bomb: when today is the last
day of the month, the increment yields an invalid date. The worst aspect of this
“very bad code” is that it doesn’t look bad.

This kind of thinking leads to a demand for an initialization function that
can’t be forgotten and for operations that are less likely to be overlooked. The
basic tool for that is member functions, that is, functions declared as members of the
class within the class body. For example:

// simple Date
// guarantee initialization with constructor
// provide some notational convenience
struct Date {
 int y, m, d; // year, month, day
 Date(int y, int m, int d); // check for valid date and initialize
 void add_day(int n); // increase the Date by n days
};

A member function with the same name as its class is special. It is called a construc-
tor and will be used for initialization (“construction”) of objects of the class. It is an
error — caught by the compiler — to forget to initialize an object of a class that has
a constructor that requires an argument, and there is a special convenient syntax
for doing such initialization:

Date my_birthday; // error: my_birthday not initialized
Date today {12,24,2007}; // oops! run-time error
Date last {2000,12,31}; // OK (colloquial style)
Date next = {2014,2,14}; // also OK (slightly verbose)
Date christmas = Date{1976,12,24}; // also OK (verbose style)

The attempt to declare my_birthday fails because we didn’t specify the required
initial value. The attempt to declare today will pass the compiler, but the checking
code in the constructor will catch the illegal date at run time ({12,24,2007} — there
is no day 2007 of the 24th month of year 12).

The definition of last provides the initial value — the arguments required
by Date’s constructor — as a { } list immediately after the name of the variable.
That’s the most common style of initialization of variables of a class that has a

Stroustrup_book.indb 311Stroustrup_book.indb 311 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.312

constructor requiring arguments. We can also use the more verbose style where
we explicitly create an object (here, Date{1976,12,24}) and then use that to ini-
tialize the variable using the = initializer syntax. Unless you actually like typing,
you’ll soon tire of that.

We can now try to use our newly defined variables:

last.add_day(1);
add_day(2); // error: what date?

Note that the member function add_day() is called for a particular Date using
the dot member-access notation. We’ll show how to define member functions in
§9.4.4.

In C++98, people used parentheses to delimit the initializer list, so you will
see a lot of code like this:

Date last(2000,12,31); // OK (old colloquial style)

We prefer { } for initializer lists because that clearly indicates when initialization
(construction) is done, and also because that notation is more widely useful. The
notation can also be used for built-in types. For example:

int x {7}; // OK (modern initializer list style)

Optionally, we can use a = before the { } list:

Date next = {2014,2,14}; // also OK (slightly verbose)

Some find this combination of older and new style more readable.

9.4.3 Keep details private
We still have a problem: What if someone forgets to use the member function
add_day()? What if someone decides to change the month directly? After all, we
“forgot” to provide a facility for that:

Date birthday {1960,12,31}; // December 31, 1960
++birthday.d; // ouch! Invalid date
 // (birthday.d==32 makes today invalid)

Date today {1970,2,3};
today.m = 14; // ouch! Invalid date
 // (today.m==14 makes today invalid)

Stroustrup_book.indb 312Stroustrup_book.indb 312 4/22/14 9:42 AM4/22/14 9:42 AM

9.4 EVOLVING A CLASS 313

As long as we leave the representation of Date accessible to everybody, somebody
will — by accident or design — mess it up; that is, someone will do something that
produces an invalid value. In this case, we created a Date with a value that doesn’t
correspond to a day on the calendar. Such invalid objects are time bombs; it is
just a matter of time before someone innocently uses the invalid value and gets a
run-time error or — usually worse — produces a bad result.

Such concerns lead us to conclude that the representation of Date should be
inaccessible to users except through the public member functions that we supply.
Here is a first cut:

// simple Date (control access)
class Date {
 int y, m, d; // year, month, day
public:
 Date(int y, int m, int d); // check for valid date and initialize
 void add_day(int n); // increase the Date by n days
 int month() { return m; }
 int day() { return d; }
 int year() { return y; }
};

We can use it like this:

Date birthday {1970, 12, 30}; // OK
birthday.m = 14; // error: Date::m is private
cout << birthday.month() << '\n'; // we provided a way to read m

The notion of a “valid Date” is an important special case of the idea of a valid
value. We try to design our types so that values are guaranteed to be valid; that is,
we hide the representation, provide a constructor that creates only valid objects,
and design all member functions to expect valid values and leave only valid val-
ues behind when they return. The value of an object is often called its state, so the
idea of a valid value is often referred to as a valid state of an object.

The alternative is for us to check for validity every time we use an object, or
just hope that nobody left an invalid value lying around. Experience shows that
“hoping” can lead to “pretty good” programs. However, producing “pretty good”
programs that occasionally produce erroneous results and occasionally crash is no
way to win friends and respect as a professional. We prefer to write code that can
be demonstrated to be correct.

A rule for what constitutes a valid value is called an invariant. The invariant
for Date (“A Date must represent a day in the past, present, or future”) is unusually

Stroustrup_book.indb 313Stroustrup_book.indb 313 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.314

hard to state precisely: remember leap years, the Gregorian calendar, time zones,
etc. However, for simple realistic uses of Dates we can do it. For example, if we
are analyzing internet logs, we need not be bothered with the Gregorian, Julian,
or Mayan calendars. If we can’t think of a good invariant, we are probably dealing
with plain data. If so, use a struct.

9.4.4 Defi ning member functions
So far, we have looked at Date from the point of view of an interface designer and
a user. But sooner or later, we have to implement those member functions. First,
here is a subset of the Date class reorganized to suit the common style of provid-
ing the public interface first:

// simple Date (some people prefer implementation details last)
class Date {
public:
 Date(int y, int m, int d); // constructor: check for valid date and initialize
 void add_day(int n); // increase the Date by n days
 int month();
 // . . .
private:
 int y, m, d; // year, month, day
};

People put the public interface first because the interface is what most people are
interested in. In principle, a user need not look at the implementation details. In
reality, we are typically curious and have a quick look to see if the implementation
looks reasonable and if the implementer used some technique that we could learn
from. However, unless we are the implementers, we do tend to spend much more
time with the public interface. The compiler doesn’t care about the order of class
function and data members; it takes the declarations in any order you care to
present them.

When we define a member outside its class, we need to say which class it is a
member of. We do that using the class_name::member_name notation:

Date::Date(int yy, int mm, int dd) // constructor
 :y{yy}, m{mm}, d{dd} // note: member initializers
{
}

void Date::add_day(int n)
{
 // . . .
}

Stroustrup_book.indb 314Stroustrup_book.indb 314 4/22/14 9:42 AM4/22/14 9:42 AM

9.4 EVOLVING A CLASS 315

int month() // oops: we forgot Date::
{
 return m; // not the member function, can’t access m
}

The :y{yy}, m{mm}, d{dd} notation is how we initialize members. It is called a
(member) initializer list. We could have written

Date::Date(int yy, int mm, int dd) // constructor
{
 y = yy;
 m = mm;
 d = dd;
}

but then we would in principle first have default initialized the members and then
assigned values to them. We would then also open the possibility of accidentally
using a member before it was initialized. The :y{yy}, m{mm}, d{dd} notation more
directly expresses our intent. The distinction is exactly the same as the one between

int x; // first define the variable x
// . . .
x = 2; // later assign to x

and

int x {2}; // define and immediately initialize with 2

We can also define member functions right in the class definition:

// simple Date (some people prefer implementation details last)
class Date {
public:
 Date(int yy, int mm, int dd)
 :y{yy}, m{mm}, d{dd}
 {
 // . . .
 }

 void add_day(int n)
 {
 // . . .
 }

Stroustrup_book.indb 315Stroustrup_book.indb 315 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.316

 int month() { return m; }

 // . . .
private:
 int y, m, d; // year, month, day
};

The first thing we notice is that the class declaration became larger and “messier.”
In this example, the code for the constructor and add_day() could be a dozen or
more lines each. This makes the class declaration several times larger and makes
it harder to find the interface among the implementation details. Consequently,
we don’t define large functions within a class declaration.

However, look at the definition of month(). That’s straightforward and
shorter than the version that places Date::month() out of the class declaration.
For such short, simple functions, we might consider writing the definition right in
the class declaration.

Note that month() can refer to m even though m is defined after (below) month().
A member can refer to a function or data member of its class independently of
where in the class that other member is declared. The rule that a name must be
declared before it is used is relaxed within the limited scope of a class.

Writing the definition of a member function within the class definition has
three effects:

• The function will be inline; that is, the compiler will try to generate code
for the function at each point of call rather than using function-call in-
structions to use common code. This can be a signifi cant performance
advantage for functions, such as month(), that hardly do anything but
are used a lot.

• All uses of the class will have to be recompiled whenever we make a
change to the body of an inlined function. If the function body is out
of the class declaration, recompilation of users is needed only when the
class declaration is itself changed. Not recompiling when the body is
changed can be a huge advantage in large programs.

• The class defi nition gets larger. Consequently, it can be harder to fi nd
the members among the member function defi nitions.

The obvious rule of thumb is: Don’t put member function bodies in the class
declaration unless you know that you need the performance boost from inlining
tiny functions. Large functions, say five or more lines of code, don’t benefit from
inlining and make a class declaration harder to read. We rarely inline a function
that consists of more than one or two expressions.

Stroustrup_book.indb 316Stroustrup_book.indb 316 4/22/14 9:42 AM4/22/14 9:42 AM

9.4 EVOLVING A CLASS 317

9.4.5 Referring to the current object
Consider a simple use of the Date class so far:

class Date {
 // . . .
 int month() { return m; }
 // . . .
private:
 int y, m, d; // year, month, day
};

void f(Date d1, Date d2)
{
 cout << d1.month() << ' ' << d2.month() << '\n';
}

How does Date::month() know to return the value of d1.m in the first call and
d2.m in the second? Look again at Date::month(); its declaration specifies no
function argument! How does Date::month() know for which object it was called?
A class member function, such as Date::month(), has an implicit argument which
it uses to identify the object for which it is called. So in the first call, m correctly
refers to d1.m and in the second call it refers to d2.m. See §17.10 for more uses of
this implicit argument.

9.4.6 Reporting errors
What do we do when we find an invalid date? Where in the code do we look for
invalid dates? From §5.6, we know that the answer to the first question is “Throw
an exception,” and the obvious place to look is where we first construct a Date. If
we don’t create invalid Dates and also write our member functions correctly, we
will never have a Date with an invalid value. So, we’ll prevent users from ever
creating a Date with an invalid state:

// simple Date (prevent invalid dates)
class Date {
public:
 class Invalid { }; // to be used as exception
 Date(int y, int m, int d); // check for valid date and initialize
 // . . .
private:
 int y, m, d; // year, month, day
 bool is_valid(); // return true if date is valid
};

Stroustrup_book.indb 317Stroustrup_book.indb 317 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.318

We put the testing of validity into a separate is_valid() function because checking
for validity is logically distinct from initialization and because we might want to
have several constructors. As you can see, we can have private functions as well
as private data:

Date::Date(int yy, int mm, int dd)
 : y{yy}, m{mm}, d{dd} // initialize data members
{
 if (!is_valid()) throw Invalid{}; // check for validity
}

bool Date::is_valid() // return true if date is valid
{
 if (m<1 || 12<m) return false;
 // . . .
}

Given that definition of Date, we can write

void f(int x, int y)
try {
 Date dxy {2004,x,y};
 cout << dxy << '\n'; // see §9.8 for a declaration of <<
 dxy.add_day(2);
}
catch(Date::Invalid) {
 error("invalid date"); // error() defined in §5.6.3
}

We now know that << and add_day() will have a valid Date on which to operate.
Before completing the evolution of our Date class in §9.7, we’ll take a detour

to describe a couple of general language facilities that we’ll need to do that well:
enumerations and operator overloading.

9.5 Enumerations
An enum (an enumeration) is a very simple user-defined type, specifying its set of
values (its enumerators) as symbolic constants. For example:

enum class Month {
 jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
};

Stroustrup_book.indb 318Stroustrup_book.indb 318 4/22/14 9:42 AM4/22/14 9:42 AM

9.5 ENUMERATIONS 319

The “body” of an enumeration is simply a list of its enumerators. The class in
enum class means that the enumerators are in the scope of the enumeration. That
is, to refer to jan, we have to say Month::jan.

You can give a specific representation value for an enumerator, as we did for
jan here, or leave it to the compiler to pick a suitable value. If you leave it to the
compiler to pick, it’ll give each enumerator the value of the previous enumerator
plus one. Thus, our definition of Month gave the months consecutive values start-
ing with 1. We could equivalently have written

enum class Month {
 jan=1, feb=2, mar=3, apr=4, may=5, jun=6,
 jul=7, aug=8, sep=9, oct=10, nov=11, dec=12
};

However, that’s tedious and opens the opportunity for errors. In fact, we made
two typing errors before getting this latest version right; it is better to let the
compiler do simple, repetitive “mechanical” things. The compiler is better at such
tasks than we are, and it doesn’t get bored.

If we don’t initialize the first enumerator, the count starts with 0. For example:

enum class Day {
 monday, tuesday, wednesday, thursday, friday, saturday, sunday
};

Here monday is represented as 0 and sunday is represented as 6. In practice, start-
ing with 0 is often a good choice.

We can use our Month like this:

Month m = Month::feb;

Month m2 = feb; // error: feb is not in scope
m = 7; // error: can’t assign an int to a Month
int n = m; // error: can’t assign a Month to an int
Month mm = Month(7); // convert int to Month (unchecked)

Month is a separate type from its “underlying type” int. Every Month has an
equivalent integer value, but most ints do not have a Month equivalent. For ex-
ample, we really do want this initialization to fail:

Month bad = 9999; // error: can’t convert an int to a Month

If you insist on using the Month(9999) notation, on your head be it! In many
cases, C++ will not try to stop a programmer from doing something potentially

Stroustrup_book.indb 319Stroustrup_book.indb 319 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.320

silly when the programmer explicitly insists; after all, the programmer might ac-
tually know better. Note that you cannot use the Month{9999} notation because
that would allow only values that could be used in an initialization of a Month,
and ints cannot.

Unfortunately, we cannot define a constructor for an enumeration to check
initializer values, but it is trivial to write a simple checking function:

Month int_to_month(int x)
{
 if (x<int(Month::jan) || int(Month::dec)<x) error("bad month");
 return Month(x);
}

We use the int(Month::jan) notation to get the int representation of Month::jan.
Given that, we can write

void f(int m)
{
 Month mm = int_to_month(m);
 // . . .
}

What do we use enumerations for? Basically, an enumeration is useful when-
ever we need a set of related named integer constants. That happens all the time
when we try to represent sets of alternatives (up, down; yes, no, maybe; on, off;
n, ne, e, se, s, sw, w, nw) or distinctive values (red, blue, green, yellow, maroon,
crimson, black).

9.5.1 “Plain” enumerations
In addition to the enum classes, also known as scoped enumerations, there are “plain”
enumerations that differ from scoped enumerations by implicitly “exporting” their
enumerators to the scope of the enumeration and allowing implicit conversions
to int. For example:

enum Month { // note: no “class”
 jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
};

Month m = feb; // OK: feb in scope
Month m2 = Month::feb; // also OK
m = 7; // error: can’t assign an int to a Month

Stroustrup_book.indb 320Stroustrup_book.indb 320 4/22/14 9:42 AM4/22/14 9:42 AM

9.6 OPERATOR OVERLOADING 321

int n = m; // OK: we can assign a Month to an int
Month mm = Month(7); // convert int to Month (unchecked)

Obviously, “plain” enums are less strict than enum classes. Their enumerators
can “pollute” the scope in which their enumerator is defined. That can be a con-
venience, but it occasionally leads to surprises. For example, if you try to use this
Month together with the iostream formatting mechanisms (§11.2.1), you will find
that dec for December clashes with dec for decimal.

Similarly, having an enumeration value convert to int can be a convenience (it
saves us from being explicit when we want a conversion to int), but occasionally
it leads to surprises. For example:

void my_code(Month m)
{
 If (m==17) do_something(); // huh: 17th month?
 If (m==monday) do_something_else(); // huh: compare month to
 // Monday?
}

If Month is an enum class, neither condition will compile. If monday is an enu-
merator of a “plain” enum, rather than an enum class, the comparison of a month
to Monday would succeed, most likely with undesirable results.

Prefer the simpler and safer enum classes to “plain” enums, but expect to find
“plain” enums in older code: enum classes are new in C++11.

9.6 Operator overloading
You can define almost all C++ operators for class or enumeration operands.
That’s often called operator overloading. We use it when we want to provide conven-
tional notation for a type we design. For example:

enum class Month {
 Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
};

Month operator++(Month& m) // prefix increment operator
{
 m = (m==Dec) ? Jan : Month(int(m)+1); // “wrap around”
 return m;
}

Stroustrup_book.indb 321Stroustrup_book.indb 321 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.322

The ? : construct is an “arithmetic if”: m becomes Jan if (m==Dec) and
Month(int(m)+1) otherwise. It is a reasonably elegant way of expressing the fact
that months “wrap around” after December. The Month type can now be used
like this:

Month m = Sep;
++m; // m becomes Oct
++m; // m becomes Nov
++m; // m becomes Dec
++m; // m becomes Jan (“wrap around”)

You might not think that incrementing a Month is common enough to warrant
a special operator. That may be so, but how about an output operator? We can
define one like this:

vector<string> month_tbl;

ostream& operator<<(ostream& os, Month m)
{
 return os << month_tbl[int(m)];
}

This assumes that month_tbl has been initialized somewhere so that (for exam-
ple) month_tbl[int(Month::mar)] is "March" or some other suitable name for that
month; see §10.11.3.

You can define just about any operator provided by C++ for your own types,
but only existing operators, such as +, – , *, /, %, [], (), ̂ , !, &, <, <=, >, and >=. You
cannot define your own operators; you might like to have ** or $= as operators in
your program, but C++ won’t let you. You can define operators only with their
conventional number of operands; for example, you can define unary –, but not
unary <= (less than or equal), and binary +, but not binary ! (not). Basically, the
language allows you to use the existing syntax for the types you define, but not
to extend that syntax.

An overloaded operator must have at least one user-defined type as operand:

int operator+(int,int); // error: you can’t overload built-in +
Vector operator+(const Vector&, const Vector &); // OK
Vector operator+=(const Vector&, int); // OK

It is generally a good idea not to define operators for a type unless you are re-
ally certain that it makes a big positive change to your code. Also, define op-
erators only with their conventional meaning: + should be addition, binary *

Stroustrup_book.indb 322Stroustrup_book.indb 322 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 323

multiplication, [] access, () call, etc. This is just advice, not a language rule, but it
is good advice: conventional use of operators, such as + for addition, can signifi-
cantly help us understand a program. After all, such use is the result of hundreds
of years of experience with mathematical notation. Conversely, obscure opera-
tors and unconventional use of operators can be a significant distraction and a
source of errors. We will not elaborate on this point. Instead, in the following
chapters, we will simply use operator overloading in a few places where we con-
sider it appropriate.

Note that the most interesting operators to overload aren’t +, – , *, and / as
people often assume, but =, ==, !=, <, [] (subscript), and () (call).

9.7 Class interfaces
We have argued that the public interface and the implementation parts of a class
should be separated. As long as we leave open the possibility of using structs for
types that are “plain old data,” few professionals would disagree. However, how
do we design a good interface? What distinguishes a good public interface from
a mess? Part of that answer can be given only by example, but there are a few
general principles that we can list and that are given some support in C++:

• Keep interfaces complete.
• Keep interfaces minimal.
• Provide constructors.
• Support copying (or prohibit it) (see §14.2.4).
• Use types to provide good argument checking.
• Identify nonmodifying member functions (see §9.7.4).
• Free all resources in the destructor (see §17.5).

See also §5.5 (how to detect and report run-time errors).
The first two principles can be summarized as “Keep the interface as small

as possible, but no smaller.” We want our interface to be small because a small
interface is easy to learn and easy to remember, and the implementer doesn’t
waste a lot of time implementing unnecessary and rarely used facilities. A small
interface also means that when something is wrong, there are only a few functions
to check to find the problem. On average, the more public member functions are,
the harder it is to find bugs — and please don’t get us started on the complexities of
debugging classes with public data. But of course, we want a complete interface;
otherwise, it would be useless. We couldn’t use an interface that didn’t allow us
to do all we really needed.

Let’s look at the other — less abstract and more directly supported — ideals.

Stroustrup_book.indb 323Stroustrup_book.indb 323 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.324

9.7.1 Argument types
When we defined the constructor for Date in §9.4.3, we used three ints as the
arguments. That caused some problems:

Date d1 {4,5,2005}; // oops: year 4, day 2005
Date d2 {2005,4,5}; // April 5 or May 4?

The first problem (an illegal day of the month) is easily dealt with by a test in the
constructor. However, the second (a month vs. day-of-the-month confusion) can’t
be caught by code written by the user. The second problem is simply that the
conventions for writing month and day-in-month differ; for example, 4/5 is April
5 in the United States and May 4 in England. Since we can’t calculate our way out
of this, we must do something else. The obvious solution is to use a Month type:

 enum class Month {
 jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
 };

// simple Date (use Month type)
class Date {
public:
 Date(int y, Month m, int d); // check for valid date and initialize
 // . . .
private:
 int y; // year
 Month m;
 int d; // day
};

When we use a Month type, the compiler will catch us if we swap month and
day, and using an enumeration as the Month type also gives us symbolic names
to use. It is usually easier to read and write symbolic names than to play around
with numbers, and therefore less error-prone:

Date dx1 {1998, 4, 3}; // error: 2nd argument not a Month
Date dx2 {1998, 4, Month::mar}; // error: 2nd argument not a Month
Date dx2 {4, Month::mar, 1998}; // oops: run-time error: day 1998
Date dx2 {Month::mar, 4, 1998}; // error: 2nd argument not a Month
Date dx3 {1998, Month::mar, 30}; // OK

This takes care of most “accidents.” Note the use of the qualification of the enu-
merator mar with the enumeration name: Month::mar. We don’t say Month.mar

Stroustrup_book.indb 324Stroustrup_book.indb 324 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 325

because Month isn’t an object (it’s a type) and mar isn’t a data member (it’s an
enumerator — a symbolic constant). Use :: after the name of a class, enumeration,
or namespace (§8.7) and . (dot) after an object name.

When we have a choice, we catch errors at compile time rather than at run
time. We prefer for the compiler to find the error rather than for us to try to figure
out exactly where in the code a problem occurred. Also, errors caught at compile
time don’t require checking code to be written and executed.

Thinking like that, could we catch the swap of the day of the month and the
year also? We could, but the solution is not as simple or as elegant as for Month;
after all, there was a year 4 and you might want to represent it. Even if we re-
stricted ourselves to modern times there would probably be too many relevant
years for us to list them all in an enumeration.

Probably the best we could do (without knowing quite a lot about the in-
tended use of Date) would be something like this:

class Year { // year in [min:max) range
 static const int min = 1800;
 static const int max = 2200;
public:
 class Invalid { };
 Year(int x) : y{x} { if (x<min || max<=x) throw Invalid{}; }
 int year() { return y; }
private:
 int y;
};

class Date {
public:
 Date(Year y, Month m, int d); // check for valid date and initialize
 // . . .
private:
 Year y;
 Month m;
 int d; // day
};

Now we get

Date dx1 {Year{1998}, 4, 3}; // error: 2nd argument not a Month
Date dx2 {Year{1998}, 4, Month::mar}; // error: 2nd argument not a Month
Date dx2 {4, Month::mar, Year{1998}}; // error: 1st argument not a Year
Date dx2 {Month::mar, 4, Year{1998}}; // error: 2nd argument not a Month
Date dx3 {Year{1998}, Month::mar, 30}; // OK

Stroustrup_book.indb 325Stroustrup_book.indb 325 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.326

This weird and unlikely error would still not be caught until run time:

Date dx2 {Year{4}, Month::mar, 1998}; // run-time error: Year::Invalid

Is the extra work and notation to get years checked worthwhile? Naturally, that
depends on the constraints on the kind of problem you are solving using Date, but
in this case we doubt it and won’t use class Year as we go along.

When we program, we always have to ask ourselves what is good enough
for a given application. We usually don’t have the luxury of being able to search
“forever” for the perfect solution after we have already found one that is good
enough. Search further, and we might even come up with something that’s so
elaborate that it is worse than the simple early solution. This is one meaning of
the saying “The best is the enemy of the good” (Voltaire).

Note the use of static const in the definitions of min and max. This is the way
we define symbolic constants of integer types within classes. For a class member,
we use static to make sure that there is just one copy of the value in the program,
rather than one per object of the class. In this case, because the initializer is a con-
stant expression, we could have used constexpr instead of const.

9.7.2 Copying
We always have to create objects; that is, we must always consider initialization
and constructors. Arguably they are the most important members of a class: to
write them, you have to decide what it takes to initialize an object and what it
means for a value to be valid (what is the invariant?). Just thinking about initial-
ization will help you avoid errors.

The next thing to consider is often: Can we copy our objects? And if so, how
do we copy them?

For Date or Month, the answer is that we obviously want to copy objects
of that type and that the meaning of copy is trivial: just copy all of the members.
Actually, this is the default case. So as long as you don’t say anything else, the
compiler will do exactly that. For example, if you copy a Date as an initializer or
right-hand side of an assignment, all its members are copied:

Date holiday {1978, Month::jul, 4}; // initialization
Date d2 = holiday;
Date d3 = Date{1978, Month::jul, 4};
holiday = Date{1978, Month::dec, 24}; // assignment
d3 = holiday;

This will all work as expected. The Date{1978, Month::dec, 24} notation makes
the appropriate unnamed Date object, which you can then use appropriately.
For example:

cout << Date{1978, Month::dec, 24};

Stroustrup_book.indb 326Stroustrup_book.indb 326 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 327

This is a use of a constructor that acts much as a literal for a class type. It often
comes in as a handy alternative to first defining a variable or const and then using
it once.

What if we don’t want the default meaning of copying? We can either define our
own (see §18.3) or delete the copy constructor and copy assignment (see §14.2.4).

9.7.3 Default constructors
Uninitialized variables can be a serious source of errors. To counter that problem,
we have the notion of a constructor to guarantee that every object of a class is ini-
tialized. For example, we declared the constructor Date::Date(int,Month,int) to
ensure that every Date is properly initialized. In the case of Date, that means that
the programmer must supply three arguments of the right types. For example:

Date d0; // error: no initializer
Date d1 {}; // error: empty initializer
Date d2 {1998}; // error: too few arguments
Date d3 {1,2,3,4}; // error: too many arguments
Date d4 {1,"jan",2}; // error: wrong argument type
Date d5 {1,Month::jan,2}; // OK: use the three-argument constructor
Date d6 {d5}; // OK: use the copy constructor

Note that even though we defined a constructor for Date, we can still copy Dates.
Many classes have a good notion of a default value; that is, there is an obvious

answer to the question “What value should it have if I didn’t give it an initializer?”
For example:

string s1; // default value: the empty string " "
vector<string> v1; // default value: the empty vector; no elements

This looks reasonable. It even works the way the comments indicate. That is
achieved by giving vector and string default constructors that implicitly provide the
desired initialization.

For a type T, T{} is the notation for the default value, as defined by the default
constructor, so we could write

string s1 = string{}; // default value: the empty string " "
vector<string> v1 = vector<string>{}; // default value: the empty vector;
 // no elements

However, we prefer the equivalent and colloquial

string s1; // default value: the empty string " "
vector<string> v1; // default value: the empty vector; no elements

Stroustrup_book.indb 327Stroustrup_book.indb 327 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.328

For built-in types, such as int and double, the default constructor notation means
0, so int{} is a complicated way of saying 0, and double{} a long-winded way of
saying 0.0.

Using a default constructor is not just a matter of looks. Imagine that we
could have an uninitialized string or vector.

string s;
for (int i=0; i<s.size(); ++i) // oops: loop an undefined number of times
 s[i] = toupper(s[i]); // oops: read and write a random memory location

vector<string> v;
v.push_back("bad"); // oops: write to random address

If the values of s and v were genuinely undefined, s and v would have no notion
of how many elements they contained or (using the common implementation
techniques; see §17.5) where those elements were supposed to be stored. The
results would be use of random addresses — and that can lead to the worst kind
of errors. Basically, without a constructor, we cannot establish an invariant — we
cannot ensure that the values in those variables are valid (§9.4.3). We must insist
that such variables are initialized. We could insist on an initializer and then write

string s1 = "";
vector<string> v1 {};

But we don’t think that’s particularly pretty. For string, "" is rather obvious for
“empty string.” For vector, { } is pretty for a vector with no elements. However,
for many types, it is not easy to find a reasonable notation for a default value. For
many types, it is better to define a constructor that gives meaning to the creation
of an object without an explicit initializer. Such a constructor takes no arguments
and is called a default constructor.

There isn’t an obvious default value for dates. That’s why we haven’t defined
a default constructor for Date so far, but let’s provide one (just to show we can):

class Date {
public:
 // . . .
 Date(); // default constructor
 // . . .
private:
 int y;
 Month m;
 int d;
};

Stroustrup_book.indb 328Stroustrup_book.indb 328 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 329

We have to pick a default date. The first day of the 21st century might be a rea-
sonable choice:

Date::Date()
 :y{2001}, m{Month::jan}, d{1}
{
}

Instead of placing the default values for members in the constructor, we could
place them on the members themselves:

class Date {
public:
 // . . .
 Date(); // default constructor
 Date(year, Month, day);
 Date(int y); // January 1 of year y
 // . . .
private:
 int y {2001};
 Month m {Month::jan};
 int d {1};
};

That way, the default values are available to every constructor. For example:

Date::Date(int y) // January 1 of year y
 :y{yy}
{
 if (!is_valid()) throw Invalid{}; // check for validity
}

Because Date(int) does not explicitly initialize the month (m) or the day (d), the
specified initializers (Month::jan and 1) are implicitly used. An initializer for a class
member specified as part of the member declaration is called an in-class initializer.

If we didn’t like to build the default value right into the constructor code, we
could use a constant (or a variable). To avoid a global variable and its associated
initialization problems, we use the technique from §8.6.2:

const Date& default_date()
{
 static Date dd {2001,Month::jan,1};
 return dd;
}

Stroustrup_book.indb 329Stroustrup_book.indb 329 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.330

We used static to get a variable (dd) that is created only once, rather than each
time default_date() is called, and initialized the first time default_date() is called.
Given default_date(), it is trivial to define a default constructor for Date:

Date::Date()
 :y{default_date().year()},
 m{default_date().month()},
 d{default_date().day()}
{
}

Note that the default constructor does not need to check its value; the constructor
for default_date already did that. Given this default Date constructor, we can now
define nonempty vectors of Dates without listing element values:

vector<Date> birthdays(10); // ten elements with the default Date value,
 // Date{}

Without the default constructor, we would have had to be explicit:

vector<Date> birthdays(10,default_date()); // ten default Dates

vector<Date> birthdays2 = { // ten default Dates
 default_date(), default_date(), default_date(), default_date(), default_
 date(),
 default_date(), default_date(), default_date(), default_date(), default_
 date()
};

We use parentheses, (), when specifying the element counts for a vector, rather
than the { } initializer-list notation, to avoid confusion in the case of a vector<int>
(§18.2).

9.7.4 const member functions
Some variables are meant to be changed — that’s why we call them “variables” —
but some are not; that is, we have “variables” representing immutable values.
Those, we typically call constants or just consts. Consider:

void some_function(Date& d, const Date& start_of_term)
{
 int a = d.day(); // OK
 int b = start_of_term.day(); // should be OK (why?)

Stroustrup_book.indb 330Stroustrup_book.indb 330 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 331

 d.add_day(3); // fine
 start_of_term.add_day(3); // error
}

Here we intend d to be mutable, but start_of_term to be immutable; it is not ac-
ceptable for some_function() to change start_of_term. How would the compiler
know that? It knows because we told it by declaring start_of_term const. So far,
so good, but then why is it OK to read the day of start_of_term using day()? As
the definition of Date stands so far, start_of_term.day() is an error because the
compiler does not know that day() doesn’t change its Date. We never told it, so
the compiler assumes that day() may modify its Date and reports an error.

We can deal with this problem by classifying operations on a class as mod-
ifying and nonmodifying. That’s a pretty fundamental distinction that helps us
understand a class, but it also has a very practical importance: operations that do
not modify the object can be invoked for const objects. For example:

class Date {
public:
 // . . .
 int day() const; // const member: can’t modify the object
 Month month() const; // const member: can’t modify the object
 int year() const; // const member: can’t modify the object

 void add_day(int n); // non-const member: can modify the object
 void add_month(int n); // non-const member: can modify the object
 void add_year(int n); // non-const member: can modify the object
private:
 int y; // year
 Month m;
 int d; // day of month
};

Date d {2000, Month::jan, 20};
const Date cd {2001, Month::feb, 21};

cout << d.day() << " — " << cd.day() << '\n'; // OK
d.add_day(1); // OK
cd.add_day(1); // error: cd is a const

We use const right after the argument list in a member function declaration to
indicate that the member function can be called for a const object. Once we have

Stroustrup_book.indb 331Stroustrup_book.indb 331 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.332

declared a member function const, the compiler holds us to our promise not to
modify the object. For example:

int Date::day() const
{
 ++d; // error: attempt to change object from const member function
 return d;
}

Naturally, we don’t usually try to “cheat” in this way. What the compiler provides
for the class implementer is primarily protection against accident, which is partic-
ularly useful for more complex code.

9.7.5 Members and “helper functions”
When we design our interfaces to be minimal (though complete), we have to
leave out lots of operations that are merely useful. A function that can be simply,
elegantly, and efficiently implemented as a freestanding function (that is, as a non-
member function) should be implemented outside the class. That way, a bug in
that function cannot directly corrupt the data in a class object. Not accessing the
representation is important because the usual debug technique is “Round up the
usual suspects”; that is, when something goes wrong with a class, we first look at
the functions that directly access the representation: one of those almost certainly
did it. If there are a dozen such functions, we will be much happier than if there
were 50.

Fifty functions for a Date class! You must wonder if we are kidding. We are
not: a few years ago I surveyed a number of commercially used Date libraries
and found them full of functions like next_Sunday(), next_workday(), etc. Fifty is
not an unreasonable number for a class designed for the convenience of the users
rather than for ease of comprehension, implementation, and maintenance.

Note also that if the representation changes, only the functions that directly
access the representation need to be rewritten. That’s another strong practical
reason for keeping interfaces minimal. In our Date example, we might decide that
an integer representing the number of days since January 1, 1900, is a much better
representation for our uses than (year,month,day). Only the member functions
would have to be changed.

Here are some examples of helper functions:

Date next_Sunday(const Date& d)
{
 // access d using d.day(), d.month(), and d.year()
 // make new Date to return
}

Stroustrup_book.indb 332Stroustrup_book.indb 332 4/22/14 9:42 AM4/22/14 9:42 AM

9.7 CLASS INTERFACES 333

Date next_weekday(const Date& d) { /* . . . */ }

bool leapyear(int y) { /* . . . */ }

bool operator==(const Date& a, const Date& b)
{
 return a.year()==b.year()
 && a.month()==b.month()
 && a.day()==b.day();
}

bool operator!=(const Date& a, const Date& b)
{
 return !(a==b);
}

Helper functions are also called convenience functions, auxiliary functions, and many
other things. The distinction between these functions and other nonmember func-
tions is logical; that is, “helper function” is a design concept, not a programming
language concept. The helper functions often take arguments of the classes that
they are helpers of. There are exceptions, though: note leapyear(). Often, we use
namespaces to identify a group of helper functions; see §8.7:

namespace Chrono {
 enum class Month { /* … */ };
 class Date { /* . . . */ };
 bool is_date(int y, Month m, int d); // true for valid date
 Date next_Sunday(const Date& d) { /* . . . */ }
 Date next_weekday(const Date& d) { /* . . . */ }
 bool leapyear(int y) { /* . . . */ } // see exercise 10
 bool operator==(const Date& a, const Date& b) { /* . . . */ }
 // . . .
}

Note the == and != functions. They are typical helpers. For many classes, == and
!= make obvious sense, but since they don’t make sense for all classes, the compiler
can’t write them for you the way it writes the copy constructor and copy assignment.

Note also that we introduced a helper function is_date(). That function re-
places Date::is_valid() because checking whether a date is valid is largely inde-
pendent of the representation of a Date. For example, we don’t need to know how
Date objects are represented to know that “January 30, 2008” is a valid date and
“February 30, 2008” is not. There still may be aspects of a date that depend on

Stroustrup_book.indb 333Stroustrup_book.indb 333 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.334

the representation (e.g., can we represent “January 30, 1066”?), but (if necessary)
Date’s constructor can take care of that.

9.8 The Date class
So, let’s just put it all together and see what that Date class might look like when
we combine all of the ideas/concerns. Where a function’s body is just a . . . com-
ment, the actual implementation is tricky (please don’t try to write those just yet).
First we place the declarations in a header Chrono.h:

// file Chrono.h

namespace Chrono {

enum class Month {
 jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
};

class Date {
public:
 class Invalid { }; // to throw as exception

 Date(int y, Month m, int d); // check for valid date and initialize
 Date(); // default constructor
 // the default copy operations are fine

 // nonmodifying operations:
 int day() const { return d; }
 Month month() const { return m; }
 int year() const { return y; }

 // modifying operations:
 void add_day(int n);
 void add_month(int n);
 void add_year(int n);
private:
 int y;
 Month m;
 int d;
};

bool is_date(int y, Month m, int d); // true for valid date

Stroustrup_book.indb 334Stroustrup_book.indb 334 4/22/14 9:42 AM4/22/14 9:42 AM

9.8 THE DATE CLASS 335

bool leapyear(int y); // true if y is a leap year

bool operator==(const Date& a, const Date& b);
bool operator!=(const Date& a, const Date& b);

ostream& operator<<(ostream& os, const Date& d);

istream& operator>>(istream& is, Date& dd);

} // Chrono

The definitions go into Chrono.cpp:

// Chrono.cpp
#include "Chrono.h"

namespace Chrono {
// member function definitions:

Date::Date(int yy, Month mm, int dd)
 : y{yy}, m{mm}, d{dd}
{
 if (!is_date(yy,mm,dd)) throw Invalid{};
}

const Date& default_date()
{
 static Date dd {2001,Month::jan,1}; // start of 21st century
 return dd;
}

Date::Date()
 :y{default_date().year()},
 m{default_date().month()},
 d{default_date().day()}
{
}

void Date:: add_day(int n)
{
 // . . .
}

Stroustrup_book.indb 335Stroustrup_book.indb 335 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.336

void Date::add_month(int n)
{
 // . . .
}

void Date::add_year(int n)
{
 if (m==feb && d==29 && !leapyear(y+n)) { // beware of leap years!
 m = mar; // use March 1 instead of February 29
 d = 1;
 }
 y+=n;
}
// helper functions:

bool is_date(int y, Month m, int d)
{
 // assume that y is valid

 if (d<=0) return false; // d must be positive
 if (m<Month::jan || Month::dec<m) return false;

 int days_in_month = 31; // most months have 31 days

 switch (m) {
 case Month::feb: // the length of February varies
 days_in_month = (leapyear(y))?29:28;
 break;
 case Month::apr: case Month::jun: case Month::sep: case Month::nov:
 days_in_month = 30; // the rest have 30 days
 break;
 }

 if (days_in_month<d) return false;

 return true;
}

bool leapyear(int y)
{
 // see exercise 10
}

Stroustrup_book.indb 336Stroustrup_book.indb 336 4/22/14 9:42 AM4/22/14 9:42 AM

9.8 THE DATE CLASS 337

bool operator==(const Date& a, const Date& b)
{
 return a.year()==b.year()
 && a.month()==b.month()
 && a.day()==b.day();
}

bool operator!=(const Date& a, const Date& b)
{
 return !(a==b);
}
ostream& operator<<(ostream& os, const Date& d)
{
 return os << '(' << d.year()
 << ',' << d.month()
 << ',' << d.day() << ')';
}

istream& operator>>(istream& is, Date& dd)
{
 int y, m, d;
 char ch1, ch2, ch3, ch4;
 is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;
 if (!is) return is;
 if (ch1!= '(' || ch2!=',' || ch3!=',' || ch4!=')') { // oops: format error
 is.clear(ios_base::failbit); // set the fail bit
 return is;
 }

 dd = Date(y, Month(m),d); // update dd

 return is;
}

enum class Day {
 sunday, monday, tuesday, wednesday, thursday, friday, saturday
};

Day day_of_week(const Date& d)
{
 // . . .
}

Stroustrup_book.indb 337Stroustrup_book.indb 337 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.338

Date next_Sunday(const Date& d)
{
 // ...
}

Date next_weekday(const Date& d)
{
 // . . .
}

} // Chrono

The functions implementing >> and << for Date will be explained in detail in
§10.8 and §10.9.

Drill
This drill simply involves getting the sequence of versions of Date to work. For
each version defi ne a Date called today initialized to June 25, 1978. Then, defi ne a
Date called tomorrow and give it a value by copying today into it and increasing
its day by one using add_day(). Finally, output today and tomorrow using a <<
defi ned as in §9.8.

Your check for a valid date may be very simple. Feel free to ignore leap years.
However, don’t accept a month that is not in the [1,12] range or day of the month
that is not in the [1,31] range. Test each version with at least one invalid date (e.g.,
2004, 13, –5).

 1. The version from §9.4.1
 2. The version from §9.4.2
 3. The version from §9.4.3
 4. The version from §9.7.1
 5. The version from §9.7.4

Review
 1. What are the two parts of a class, as described in the chapter?
 2. What is the difference between the interface and the implementation in a

class?
 3. What are the limitations and problems of the original Date struct that is

created in the chapter?

Stroustrup_book.indb 338Stroustrup_book.indb 338 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 EXERCISES 339

 4. Why is a constructor used for the Date type instead of an init_day()
function?

 5. What is an invariant? Give examples.
 6. When should functions be put in the class definition, and when should

they be defined outside the class? Why?
 7. When should operator overloading be used in a program? Give a list of

operators that you might want to overload (each with a reason).
 8. Why should the public interface to a class be as small as possible?
 9. What does adding const to a member function do?
 10. Why are “helper functions” best placed outside the class definition?

Terms
built-in types enumerator representation
class helper function struct
const implementation structure
constructor in-class initializer user-defi ned types
destructor inlining valid state
enum interface
enumeration invariant

Exercises
 1. List sets of plausible operations for the examples of real-world objects in

§9.1 (such as toaster).
 2. Design and implement a Name_pairs class holding (name,age) pairs where

name is a string and age is a double. Represent that as a vector<string>
(called name) and a vector<double> (called age) member. Provide an in-
put operation read_names() that reads a series of names. Provide a read_
ages() operation that prompts the user for an age for each name. Provide
a print() operation that prints out the (name[i],age[i]) pairs (one per line)
in the order determined by the name vector. Provide a sort() operation
that sorts the name vector in alphabetical order and reorganizes the age
vector to match. Implement all “operations” as member functions. Test
the class (of course: test early and often).

 3. Replace Name_pair::print() with a (global) operator << and define ==
and != for Name_pairs.

 4. Look at the headache-inducing last example of §8.4. Indent it properly
and explain the meaning of each construct. Note that the example doesn’t
do anything meaningful; it is pure obfuscation.

 5. This exercise and the next few require you to design and implement a
Book class, such as you can imagine as part of software for a library. Class

Stroustrup_book.indb 339Stroustrup_book.indb 339 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.340

Book should have members for the ISBN, title, author, and copyright
date. Also store data on whether or not the book is checked out. Create
functions for returning those data values. Create functions for checking
a book in and out. Do simple validation of data entered into a Book; for
example, accept ISBNs only of the form n-n-n-x where n is an integer and
x is a digit or a letter. Store an ISBN as a string.

 6. Add operators for the Book class. Have the == operator check whether
the ISBN numbers are the same for two books. Have != also compare
the ISBN numbers. Have a << print out the title, author, and ISBN on
separate lines.

 7. Create an enumerated type for the Book class called Genre. Have the
types be fiction, nonfiction, periodical, biography, and children. Give
each book a Genre and make appropriate changes to the Book construc-
tor and member functions.

 8. Create a Patron class for the library. The class will have a user’s name,
library card number, and library fees (if owed). Have functions that access
this data, as well as a function to set the fee of the user. Have a helper
function that returns a Boolean (bool) depending on whether or not the
user owes a fee.

 9. Create a Library class. Include vectors of Books and Patrons. Include a
struct called Transaction. Have it include a Book, a Patron, and a Date
from the chapter. Make a vector of Transactions. Create functions to add
books to the library, add patrons to the library, and check out books.
Whenever a user checks out a book, have the library make sure that both
the user and the book are in the library. If they aren’t, report an error.
Then check to make sure that the user owes no fees. If the user does,
report an error. If not, create a Transaction, and place it in the vector of
Transactions. Also write a function that will return a vector that contains
the names of all Patrons who owe fees.

 10. Implement leapyear() from §9.8.
 11. Design and implement a set of useful helper functions for the Date class

with functions such as next_workday() (assume that any day that is not
a Saturday or a Sunday is a workday) and week_of_year() (assume that
week 1 is the week with January 1 in it and that the first day of a week is
a Sunday).

 12. Change the representation of a Date to be the number of days since January
1, 1970 (known as day 0), represented as a long int, and re-implement the
functions from §9.8. Be sure to reject dates outside the range we can
represent that way (feel free to reject days before day 0, i.e., no negative
days).

 13. Design and implement a rational number class, Rational. A rational
number has two parts: a numerator and a denominator, for example, 5/6

Stroustrup_book.indb 340Stroustrup_book.indb 340 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 9 EXERCISES 341

(five-sixths, also known as approximately .83333). Look up the definition
if you need to. Provide assignment, addition, subtraction, multiplication,
division, and equality operators. Also, provide a conversion to double.
Why would people want to use a Rational class?

 14. Design and implement a Money class for calculations involving dollars
and cents where arithmetic has to be accurate to the last cent using the
4/5 rounding rule (.5 of a cent rounds up; anything less than .5 rounds
down). Represent a monetary amount as a number of cents in a long int,
but input and output as dollars and cents, e.g., $123.45. Do not worry
about amounts that don’t fit into a long int.

 15. Refine the Money class by adding a currency (given as a constructor ar-
gument). Accept a floating-point initializer as long as it can be exactly
represented as a long int. Don’t accept illegal operations. For example,
Money*Money doesn’t make sense, and USD1.23+DKK5.00 makes sense
only if you provide a conversion table defining the conversion factor be-
tween U.S. dollars (USD) and Danish kroner (DKK).

 16. Define an input operator (>>) that reads monetary amounts with cur-
rency denominations, such as USD1.23 and DKK5.00, into a Money vari-
able. Also define a corresponding output operator (>>).

 17. Give an example of a calculation where a Rational gives a mathematically
better result than Money.

 18. Give an example of a calculation where a Rational gives a mathematically
better result than double.

Postscript
There is a lot to user-defi ned types, much more than we have presented here.
User-defi ned types, especially classes, are the heart of C++ and the key to many
of the most effective design techniques. Most of the rest of the book is about the
design and use of classes. A class — or a set of classes — is the mechanism through
which we represent our concepts in code. Here we primarily introduced the lan-
guage-technical aspects of classes; elsewhere we focus on how to elegantly express
useful ideas as classes.

Stroustrup_book.indb 341Stroustrup_book.indb 341 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 342Stroustrup_book.indb 342 4/22/14 9:42 AM4/22/14 9:42 AM

Part II
Input and Output

Stroustrup_book.indb 343Stroustrup_book.indb 343 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 344Stroustrup_book.indb 344 4/22/14 9:42 AM4/22/14 9:42 AM

345

10

Input and Output Streams

 “Science is what we have learned about
how to keep from fooling ourselves.”

—Richard P. Feynman

In this chapter and the next, we present the C++ standard li-

brary facilities for handling input and output from a variety of

sources: I/O streams. We show how to read and write files, how

to deal with errors, how to deal with formatted input, and how

to provide and use I/O operators for user-defined types. This

chapter focuses on the basic model: how to read and write indi-

vidual values, and how to open, read, and write whole files. The

final example illustrates the kinds of considerations that go into

a larger piece of code. The next chapter addresses details.

Stroustrup_book.indb 345Stroustrup_book.indb 345 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS346

10.1 Input and output
Without data, computing is pointless. We need to get data into our program to do
interesting computations and we need to get the results out again. In §4.1, we men-
tioned the bewildering variety of data sources and targets for output. If we don’t
watch out, we’ll end up writing programs that can receive input only from a specific
source and deliver output only to a specific output device. That may be acceptable
(and sometimes even necessary) for specialized applications, such as a digital cam-
era or a sensor for an engine fuel injector, but for more common tasks, we need a
way to separate the way our program reads and writes from the actual input and
output devices used. If we had to directly address each kind of device, we’d have to
change our program each time a new screen or disk came on the market, or limit
our users to the screens and disks we happen to like. That would be absurd.

Most modern operating systems separate the detailed handling of I/O devices
into device drivers, and programs then access the device drivers through an I/O
library that makes I/O from/to different sources appear as similar as possible.
Generally, the device drivers are deep in the operating system where most users
don’t see them, and the I/O library provides an abstraction of I/O so that the pro-
grammer doesn’t have to think about devices and device drivers:

Input device

Data source:

Device driver Input library

Output library

Data destination:

Device driver Output device

Our program

 10.1 Input and output
 10.2 The I/O stream model
 10.3 Files
 10.4 Opening a file
 10.5 Reading and writing a file
 10.6 I/O error handling
 10.7 Reading a single value
 10.7.1 Breaking the problem into

manageable parts
 10.7.2 Separating dialog from

function

 10.8 User-defined output operators
 10.9 User-defined input operators
 10.10 A standard input loop
 10.11 Reading a structured fi le
 10.11.1 In-memory representation
 10.11.2 Reading structured values
 10.11.3 Changing representations

Stroustrup_book.indb 346Stroustrup_book.indb 346 4/22/14 9:42 AM4/22/14 9:42 AM

10.2 THE I/O STREAM MODEL 347

When a model like this is used, input and output can be seen as streams of bytes
(characters) handled by the input/output library. More complex forms of I/O re-
quire specialized expertise and are beyond the scope of this book. Our job as
programmers of an application then becomes

 1. To set up I/O streams to the appropriate data sources and destinations
 2. To read and write from/to those streams

The details of how our characters are actually transmitted to/from the devices are
dealt with by the I/O library and the device drivers. In this chapter and the next,
we’ll see how I/O consisting of streams of formatted data is done using the C++
standard library.

From the programmer’s point of view there are many different kinds of input
and output. One classification is

• Streams of (many) data items (usually to/from fi les, network connections,
recording devices, or display devices)

• Interactions with a user at a keyboard
• Interactions with a user through a graphical interface (outputting objects,

receiving mouse clicks, etc.)

This classification isn’t the only classification possible, and the distinction between
the three kinds of I/O isn’t as clear as it might appear. For example, if a stream
of output characters happens to be an HTTP document aimed at a browser, the
result looks remarkably like user interaction and can contain graphical elements.
Conversely, the results of interactions with a GUI (graphical user interface) may be
presented to a program as a sequence of characters. However, this classification fits
our tools: the first two kinds of I/O are provided by the C++ standard library I/O
streams and supported rather directly by most operating systems. We have been us-
ing the iostream library since Chapter 1 and will focus on that for this and the next
chapter. The graphical output and graphical user interactions are served by a vari-
ety of different libraries, and we will focus on that kind of I/O in Chapters 12 to 16.

10.2 The I/O stream model
The C++ standard library provides the type istream to deal with streams of input
and the type ostream to deal with streams of output. We have used the standard
istream called cin and the standard ostream called cout, so we know the basics of
how to use this part of the standard library (usually called the iostream library).

An ostream

• Turns values of various types into character sequences
• Sends those characters “somewhere” (such as to a console, a fi le, the main

memory, or another computer)

Stroustrup_book.indb 347Stroustrup_book.indb 347 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS348

We can represent an ostream graphically like this:

Values of various types Character sequences

“Somewhere”

'c'

(12,34)

123

ostream

Buffer

The buffer is a data structure that the ostream uses internally to store the data you
give it while communicating with the operating system. If you notice a “delay”
between your writing to an ostream and the characters appearing at their destina-
tion, it’s usually because they are still in the buffer. Buffering is important for per-
formance, and performance is important if you deal with large amounts of data.

An istream

• Turns character sequences into values of various types
• Gets those characters from somewhere (such as a console, a fi le, the main

memory, or another computer)

We can represent an istream graphically like this:

Values of various types Character sequences

“Somewhere”

'c'

(12,34)

123

istream

Buffer

As with an ostream, an istream uses a buffer to communicate with the operating
system. With an istream, the buffering can be quite visible to the user. When you
use an istream that is attached to a keyboard, what you type is left in the buffer
until you hit Enter (return/newline), and you can use the erase (Backspace) key
“to change your mind” (until you hit Enter).

Stroustrup_book.indb 348Stroustrup_book.indb 348 4/22/14 9:42 AM4/22/14 9:42 AM

10.3 FILES 349

One of the major uses of output is to produce data for humans to read.
Think of email messages, scholarly articles, web pages, billing records, business
reports, contact lists, tables of contents, equipment status readouts, etc. There-
fore, ostreams provide many features for formatting text to suit various tastes.
Similarly, much input is written by humans or is formatted to make it easy for
humans to read it. Therefore, istreams provide features for reading the kind of
output produced by ostreams. We’ll discuss formatting in §11.2 and how to read
non-character input in §11.3.2. Most of the complexity related to input has to do
with how to handle errors. To be able to give more realistic examples, we’ll start
by discussing how the iostream model relates to files of data.

10.3 Files
We typically have much more data than can fit in the main memory of our com-
puter, so we store most of it on disks or other large-capacity storage devices. Such
devices also have the desirable property that data doesn’t disappear when the
power is turned off — the data is persistent. At the most basic level, a file is simply
a sequence of bytes numbered from 0 upward:

0: 1: 2:

A file has a format; that is, it has a set of rules that determine what the bytes mean.
For example, if we have a text file, the first 4 bytes will be the first four characters.
On the other hand, if we have a file that uses a binary representation of integers,
those very same first 4 bytes will be taken to be the (binary) representation of
the first integer (see §11.3.2). The format serves the same role for files on disk as
types serve for objects in main memory. We can make sense of the bits in a file if
(and only if) we know its format (see §11.2–3).

For a file, an ostream converts objects in main memory into streams of bytes
and writes them to disk. An istream does the opposite; that is, it takes a stream of
bytes from disk and composes objects from them:

Files
(sequences of bytes)

iostreams Objects
(of various types)

Disk
Main

memoryI/O system

Most of the time, we assume that these “bytes on disk” are in fact characters in
our usual character set. That is not always so, but we can get an awfully long way

Stroustrup_book.indb 349Stroustrup_book.indb 349 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS350

with that assumption, and other representations are not that hard to deal with. We
also talk as if all files were on disks (that is, on rotating magnetic storage). Again,
that’s not always so (think of flash memory), but at this level of programming
the actual storage makes no difference. That’s one of the beauties of the file and
stream abstractions.

To read a file, we must

 1. Know its name
 2. Open it (for reading)
 3. Read in the characters
 4. Close it (though that is typically done implicitly)

To write a file, we must

 1. Name it
 2. Open it (for writing) or create a new file of that name
 3. Write out our objects
 4. Close it (though that is typically done implicitly)

We already know the basics of reading and writing because an ostream attached
to a file behaves exactly as cout for what we have done so far, and an istream at-
tached to a file behaves exactly as cin for what we have done so far. We’ll present
operations that can only be done for files later (§11.3.3), but for now we’ll just see
how to open files and then concentrate on operations and techniques that apply
to all ostreams and all istreams.

10.4 Opening a fi le
If you want to read from a file or write to a file you have to open a stream specif-
ically for that file. An ifstream is an istream for reading from a file, an ofstream
is an ostream for writing to a file, and an fstream is an iostream that can be used
for both reading and writing. Before a file stream can be used it must be attached
to a file. For example:

cout << "Please enter input file name: ";
string iname;
cin >> iname;
ifstream ist {iname}; // ist is an input stream for the file named name
if (!ist) error("can't open input file ",iname);

Defining an ifstream with a name string opens the file of that name for reading.
The test of !ist checks if the file was properly opened. After that, we can read from

Stroustrup_book.indb 350Stroustrup_book.indb 350 4/22/14 9:42 AM4/22/14 9:42 AM

10.4 OPENING A FILE 351

the file exactly as we would from any other istream. For example, assuming that
the input operator, >>, was defined for a type Point, we could write

vector<Point> points;
for (Point p; ist>>p;)
 points.push_back(p);

Output to files is handled in a similar fashion by ofstreams. For example:

cout << "Please enter name of output file: ";
string oname;
cin >> oname;
ofstream ost {oname}; // ost is an output stream for a file named oname
if (!ost) error("can't open output file ",oname);

Defining an ofstream with a name string opens the file with that name for writing.
The test of !ost checks if the file was properly opened. After that, we can write to
the file exactly as we would to any other ostream. For example:

for (int p : points)
 ost << '(' << p.x << ',' << p.y << ")\n";

When a file stream goes out of scope its associated file is closed. When a file is
closed its associated buffer is “flushed”; that is, the characters from the buffer are
written to the file.

It is usually best to open files early in a program before any serious computa-
tion has taken place. After all, it is a waste to do a lot of work just to find that we
can’t complete it because we don’t have anywhere to write our results.

Opening the file implicitly as part of the creation of an ostream or an istream
and relying on the scope of the stream to take care of closing the file is the ideal.
For example:

void fill_from_file(vector<Point>& points, string& name)
{
 ifstream ist {name}; // open file for reading
 if (!ist) error("can't open input file ",name);
 // . . . use ist . . .
 // the file is implicitly closed when we leave the function
}

Stroustrup_book.indb 351Stroustrup_book.indb 351 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS352

You can also perform explicit open() and close() operations (§B.7.1). However, re-
lying on scope minimizes the chances of someone trying to use a file stream before
it has been attached to a stream or after it was closed. For example:

ifstream ifs;
// . . .
ifs >> foo; // won’t succeed: no file opened for ifs
// . . .
ifs.open(name,ios_base::in); // open file named name for reading
// . . .
ifs.close(); // close file
// . . .
ifs >> bar; // won’t succeed: ifs’ file was closed
// . . .

In real-world code the problems would typically be much harder to spot. Fortunately,
you can’t open a file stream a second time without first closing it. For example:

fstream fs;
fs.open("foo", ios_base::in) ; // open for input
// close() missing
fs.open("foo", ios_base::out); // won’t succeed: fs is already open
if (!fs) error("impossible");

Don’t forget to test a stream after opening it.
Why would you use open() or close() explicitly? Well, occasionally the life-

time of a connection to a file isn’t conveniently limited by a scope so you have
to. But that’s rare enough for us not to have to worry about it here. More to the
point, you’ll find such use in code written by people using styles from languages
and libraries that don’t have the scoped idiom used by iostreams (and the rest of
the C++ standard library).

As we’ll see in Chapter 11, there is much more to files, but for now we
know enough to use them as a data source and a destination for data. That’ll
allow us to write programs that would be unrealistic if we assumed that a user
had to directly type in all the input. From a programmer’s point of view, a great
advantage of a file is that you can repeatedly read it during debugging until your
program works correctly.

10.5 Reading and writing a fi le
Consider how you might read a set of results of some measurements from a file
and represent them in memory. These might be the temperature readings from a
weather station:

Stroustrup_book.indb 352Stroustrup_book.indb 352 4/22/14 9:42 AM4/22/14 9:42 AM

10.5 READING AND WRITING A FILE 353

0 60.7
1 60.6
2 60.3
3 59.22
. . .

This data file contains a sequence of (hour,temperature) pairs. The hours are
numbered 0 to 23 and the temperatures are in Fahrenheit. No further formatting is
assumed; that is, the file does not contain any special header information (such as
where the reading was taken), units for the values, punctuation (such as parenthe-
ses around each pair of values), or termination indicator. This is the simplest case.

We could represent a temperature reading by a Reading type:

struct Reading { // a temperature reading
 int hour; // hour after midnight [0:23]
 double temperature; // in Fahrenheit
};

Given that, we could read like this:

vector<Reading> temps; // store the readings here
int hour;
double temperature;
while (ist >> hour >> temperature) {
 if (hour < 0 || 23 <hour) error("hour out of range");
 temps.push_back(Reading{hour,temperature});
}

This is a typical input loop. The istream called ist could be an input file stream
(ifstream) as shown in the previous section, (an alias for) the standard input stream
(cin), or any other kind of istream. For code like this, it doesn’t matter exactly
from where the istream gets its data. All that our program cares about is that ist is
an istream and that the data has the expected format. The next section addresses
the interesting question of how to detect errors in the input data and what we can
do after detecting a format error.

Writing to a file is usually simpler than reading from one. Again, once a
stream is initialized we don’t have to know exactly what kind of stream it is. In
particular, we can use the output file stream (ofstream) from the section above just
like any other ostream. For example, we might want to output the readings with
each pair of values in parentheses:

for (int i=0; i<temps.size(); ++i)
 ost << '(' << temps[i].hour << ',' << temps[i].temperature << ")\n";

Stroustrup_book.indb 353Stroustrup_book.indb 353 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS354

The resulting program would then be reading the original temperature reading
file and producing a new file with the data in (hour,temperature) format.

Because the file streams automatically close their files when they go out of
scope, the complete program becomes

#include "std_lib_facilities.h"

struct Reading { // a temperature reading
 int hour; // hour after midnight [0:23]
 double temperature; // in Fahrenheit
};

int main()
{
 cout << "Please enter input file name: ";
 string iname;
 cin >> iname;
 ifstream ist {iname}; // ist reads from the file named iname
 if (!ist) error("can't open input file ",iname);

 string oname;
 cout << "Please enter name of output file: ";
 cin >> oname;
 ofstream ost {oname}; // ost writes to a file named oname
 if (!ost) error("can't open output file ",oname);

 vector<Reading> temps; // store the readings here
 int hour;
 double temperature;
 while (ist >> hour >> temperature) {
 if (hour < 0 || 23 <hour) error("hour out of range");
 temps.push_back(Reading{hour,temperature});
 }

 for (int i=0; i<temps.size(); ++i)
 ost << '(' << temps[i].hour << ','
 << temps[i].temperature << ")\n";
}

10.6 I/O error handling
When dealing with input we must expect errors and deal with them. What kind of
errors? And how? Errors occur because humans make mistakes (misunderstand-

Stroustrup_book.indb 354Stroustrup_book.indb 354 4/22/14 9:42 AM4/22/14 9:42 AM

10.6 I /O ERROR HANDLING 355

ing instructions, mistyping, letting the cat walk on the keyboard, etc.), because
files fail to meet specifications, because we (as programmers) have the wrong ex-
pectations, etc. The possibilities for input errors are limitless! However, an istream
reduces all to four possible cases, called the stream state:

Stream states

good() The operations succeeded.

eof() We hit end of input (“end of file”).

fail() Something unexpected happened (e.g., we looked for a digit and found 'x').

bad() Something unexpected and serious happened (e.g., a disk read error).

Unfortunately, the distinction between fail() and bad() is not precisely defined and
subject to varying opinions among programmers defining I/O operations for new
types. However, the basic idea is simple: If an input operation encounters a sim-
ple format error, it lets the stream fail(), assuming that you (the user of our input
operation) might be able to recover. If, on the other hand, something really nasty,
such as a bad disk read, happens, the input operation lets the stream go bad(),
assuming that there is nothing much you can do except to abandon the attempt to
get data from that stream. A stream that is bad() is also fail(). This leaves us with
this general logic:

int i = 0;
cin >> i;
if (!cin) { // we get here (only) if an input operation failed
 if (cin.bad()) error("cin is bad"); // stream corrupted: let’s get out of here!
 if (cin.eof()) {
 // no more input
 // this is often how we want a sequence of input operations to end
 }
 if (cin.fail()) { // stream encountered something unexpected
 cin.clear(); // make ready for more input
 // somehow recover
 }
}

The !cin can be read as “cin is not good” or “Something went wrong with cin” or
“The state of cin is not good().” It is the opposite of “The operation succeeded.”
Note the cin.clear() where we handle fail(). When a stream has failed, we might
be able to recover. To try to recover, we explicitly take the stream out of the fail()
state, so that we can look at characters from it again; clear() does that — after
cin.clear() the state of cin is good().

Stroustrup_book.indb 355Stroustrup_book.indb 355 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS356

Here is an example of how we might use the stream state. Consider how to
read a sequence of integers that may be terminated by the character * or an “end
of file” (Ctrl+Z on Windows, Ctrl+D on Unix) into a vector. For example:

1 2 3 4 5 *

This could be done using a function like this:

void fill_vector(istream& ist, vector<int>& v, char terminator)
 // read integers from ist into v until we reach eof() or terminator
{
 for (int I; ist >> I;) v.push_back(i);
 if (ist.eof()) return; // fine: we found the end of file

 if (ist.bad()) error("ist is bad"); // stream corrupted; let’s get out of here!
 if (ist.fail()) { // clean up the mess as best we can and report the problem
 ist.clear(); // clear stream state,
 // so that we can look for terminator
 char c;
 ist>>c; // read a character, hopefully terminator
 if (c != terminator) { // unexpected character
 ist.unget(); // put that character back
 ist.clear(ios_base::failbit); // set the state to fail()
 }
 }
}

Note that when we didn’t find the terminator, we still returned. After all, we may
have collected some data and the caller of fill_vector() may be able to recover from
a fail(). Since we cleared the state to be able to examine the character, we have to
set the stream state back to fail(). We do that with ist.clear(ios_base::failbit). Note
this potentially confusing use of clear(): clear() with an argument actually sets
the iostream state flags (bits) mentioned and (only) clears flags not mentioned.
By setting the state to fail(), we indicate that we encountered a format error,
rather than something more serious. We put the character back into ist using
unget(); the caller of fill_vector() might have a use for it. The unget() function is
a shorter version of putback() (§6.8.2, §B.7.3) that relies on the stream remem-
bering which character it last produced, so that you don’t have to mention it.

If you called fill_vector() and want to know what terminated the read, you
can test for fail() and eof(). You could also catch the runtime_error exception
thrown by error(), but it is understood that getting more data from istream in the
bad() state is unlikely. Most callers won’t bother. This implies that in almost all

Stroustrup_book.indb 356Stroustrup_book.indb 356 4/22/14 9:42 AM4/22/14 9:42 AM

10.6 I /O ERROR HANDLING 357

cases the only thing we want to do if we encounter bad() is to throw an exception.
To make life easier, we can tell an istream to do that for us:

// make ist throw if it goes bad
ist.exceptions(ist.exceptions()|ios_base::badbit);

The notation may seem odd, but the effect is simply that from that statement
onward, ist will throw the standard library exception ios_base::failure if it goes
bad(). We need to execute that exceptions() call only once in a program. That’ll
allow us to simplify all input loops on ist by ignoring bad():

void fill_vector(istream& ist, vector<int>& v, char terminator)
 // read integers from ist into v until we reach eof() or terminator
{
 for (int I; ist >> I;) v.push_back(i);
 if (ist.eof()) return; // fine: we found the end of file

 // not good() and not bad() and not eof(), ist must be fail()
 ist.clear(); // clear stream state

 char c;
 ist>>c; // read a character, hopefully terminator

 if (c != terminator) { // ouch: not the terminator, so we must fail
 ist.unget(); // maybe my caller can use that character
 ist.clear(ios_base::failbit); // set the state to fail()
 }
}

The ios_base that appears here and there is the part of an iostream that holds
constants such as badbit, exceptions such as failure, and other useful stuff. You
refer to them using the :: operator, for example, ios_base::badbit (§B.7.2). We
don’t plan to go into the iostream library in that much detail; it could take a whole
course to explain all of iostreams. For example, iostreams can handle different
character sets, implement different buffering strategies, and also contain facilities
for formatting monetary amounts in various languages; we once had a bug report
relating to the formatting of Ukrainian currency. You can read up on whatever
bits you need to know about if you need to; see The C++ Programming Language by
Stroustrup and Standard C++ IOStreams and Locales by Langer.

You can test an ostream for exactly the same states as an istream: good(),
fail(), eof(), and bad(). However, for the kinds of programs we write here, errors
are much rarer for output than for input, so we don’t do it as often. For programs
where output devices have a more significant chance of being unavailable, filled,

Stroustrup_book.indb 357Stroustrup_book.indb 357 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS358

or broken, we would test after each output operation just as we test after each
input operation.

10.7 Reading a single value
So, we know how to read a series of values ending with the end of file or a ter-
minator. We’ll show more examples as we go along, but let’s just have a look at
the ever popular idea of repeatedly asking for a value until an acceptable one is
entered. This example will allow us to examine several common design choices.
We’ll discuss these alternatives through a series of alternative solutions to the sim-
ple problem of “how to get an acceptable value from the user.” We start with an
unpleasantly messy obvious “first try” and proceed through a series of improved
versions. Our fundamental assumption is that we are dealing with interactive in-
put where a human is typing input and reading the messages from the program.
Let’s ask for an integer in the range 1 to 10 (inclusive):

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;
while (cin>>n) { // read
 if (1<=n && n<=10) break; // check range
 cout << "Sorry "
 << n << " is not in the [1:10] range; please try again\n";
}
// … use n here …

This is pretty ugly, but it “sort of works.” If you don’t like using the break (§A.6),
you can combine the reading and the range checking:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;
while (cin>>n && !(1<=n && n<=10)) // read and check range
 cout << "Sorry "
 << n << " is not in the [1:10] range; please try again\n";
// … use n here …

However, that’s just a cosmetic change. Why does it only “sort of work”? It works
if the user carefully enters integers. If the user is a poor typist and hits t rather
than 6 (t is just below 6 on most keyboards), the program will leave the loop
without changing the value of n, so that n will have an out-of-range value. We
wouldn’t call that quality code. A joker (or a diligent tester) might also send an
“end of file” from the keyboard (Ctrl+Z on a Windows machine and Ctrl+D on
a Unix machine). Again, we’d leave the loop with n out of range. In other words,
to get a robust read we have to deal with three problems:

Stroustrup_book.indb 358Stroustrup_book.indb 358 4/22/14 9:42 AM4/22/14 9:42 AM

10.7 READING A SINGLE VALUE 359

 1. The user typing an out-of-range value
 2. Getting no value (end of file)
 3. The user typing something of the wrong type (here, not an integer)

What do we want to do in those three cases? That’s often the question when
writing a program: What do we really want? Here, for each of those three errors,
we have three alternatives:

 1. Handle the problem in the code doing the read.
 2. Throw an exception to let someone else handle the problem (potentially

terminating the program).
 3. Ignore the problem.

As it happens, those are three very common alternatives for dealing with an error
condition. Thus, this is a good example of the kind of thinking we have to do
about errors.

It is tempting to say that the third alternative, ignoring the problem, is always
unacceptable, but that would be patronizing. If I’m writing a trivial program for
my own use, I can do whatever I like, including forgetting about error checking
with potential nasty results. However, for a program that I might want to use for
more than a few hours after I wrote it, I would probably be foolish to leave such
errors, and if I want to share that program with anyone, I should not leave such
holes in the error checking in the code. Please note that we deliberately use the
first-person singular here; “we” would be misleading. We do not consider alterna-
tive 3 acceptable even when just two people are involved.

The choice between alternatives 1 and 2 is genuine; that is, in a given pro-
gram there can be good reasons to choose either way. First we note that in most
programs there is no local and elegant way to deal with no input from a user
sitting at the keyboard: after the input stream is closed, there isn’t much point in
asking the user to enter a number. We could reopen cin (using cin.clear()), but the
user is unlikely to have closed that stream by accident (how would you hit Ctrl+Z
by accident?). If the program wants an integer and finds “end of file,” the part of
the program trying to read the integer must usually give up and hope that some
other part of the program can cope; that is, our code requesting input from the
user must throw an exception. This implies that the choice is not between throw-
ing exceptions and handling problems locally, but a choice of which problems (if
any) we should handle locally.

10.7.1 Breaking the problem into manageable parts
Let’s try handling both an out-of-range input and an input of the wrong type locally:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;

Stroustrup_book.indb 359Stroustrup_book.indb 359 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS360

while (true) {
 cin >> n;
 if (cin) { // we got an integer; now check it
 if (1<=n && n<=10) break;
 cout << "Sorry "
 << n << " is not in the [1:10] range; please try again\n";
 }
 else if (cin.fail()) { // we found something that wasn’t an integer
 cin.clear(); // set the state back to good();
 // we want to look at the characters
 cout << "Sorry, that was not a number; please try again\n";
 for (char ch; cin>>ch && !isdigit(ch);) // throw away non-digits
 /* nothing */ ;
 if (!cin) error("no input"); // we didn’t find a digit: give up
 cin.unget(); // put the digit back, so that we can read the number
 }
 else {
 error("no input"); // eof or bad: give up
 }
}
// if we get here n is in [1:10]

This is messy, and rather long-winded. In fact, it is so messy that we could not
recommend that people write such code each time they needed an integer from
a user. On the other hand, we do need to deal with the potential errors because
people do make them, so what can we do? The reason that the code is messy is
that code dealing with several different concerns is all mixed together:

• Reading values
• Prompting the user for input
• Writing error messages
• Skipping past “bad” input characters
• Testing the input against a range

The way to make code clearer is often to separate logically distinct concerns into
separate functions. For example, we can separate out the code for recovering after
seeing a “bad” (i.e., unexpected) character:

void skip_to_int()
{
 if (cin.fail()) { // we found something that wasn’t an integer
 cin.clear(); // we’d like to look at the characters

Stroustrup_book.indb 360Stroustrup_book.indb 360 4/22/14 9:42 AM4/22/14 9:42 AM

10.7 READING A SINGLE VALUE 361

 for (char ch; cin>>ch;) { // throw away non-digits
 if (isdigit(ch) || ch=="-") {
 cin.unget(); // put the digit back,
 // so that we can read the number
 return;
 }
 }
 }
 error("no input"); // eof or bad: give up
}

Given the skip_to_int() “utility function,” we can write

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
int n = 0;
while (true) {
 if (cin>>n) { // we got an integer; now check it
 if (1<=n && n<=10) break;
 cout << "Sorry " << n
 << " is not in the [1:10] range; please try again\n";
 }
 else {
 cout << "Sorry, that was not a number; please try again\n";
 skip_to_int();
 }
}
// if we get here n is in [1:10]

This code is better, but it is still too long and too messy to use many times in a
program. We’d never get it consistently right, except after (too) much testing.

What operation would we really like to have? One plausible answer is “a
function that reads an int, any int, and another that reads an int of a given range”:

int get_int(); // read an int from cin
int get_int(int low, int high); // read an int in [low:high] from cin

If we had those, we would at least be able to use them simply and correctly. They
are not that hard to write:

int get_int()
{
 int n = 0;
 while (true) {

Stroustrup_book.indb 361Stroustrup_book.indb 361 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS362

 if (cin >> n) return n;
 cout << "Sorry, that was not a number; please try again\n";
 skip_to_int();
 }
}

Basically, get_int() stubbornly keeps reading until it finds some digits that it can
interpret as an integer. If we want to get out of get_int(), we must supply an inte-
ger or end of file (and end of file will cause get_int() to throw an exception).

Using that general get_int(), we can write the range-checking get_int():

int get_int(int low, int high)
{
 cout << "Please enter an integer in the range "
 << low << " to " << high << " (inclusive):\n";

 while (true) {
 int n = get_int();
 if (low<=n && n<=high) return n;
 cout << "Sorry "
 << n << " is not in the [" << low << ':' << high
 << "] range; please try again\n";
 }
}

This get_int() is as stubborn as the other. It keeps getting ints from the
non-range get_int() until the int it gets is in the expected range.

We can now reliably read integers like this:

int n = get_int(1,10);
cout << "n: " << n << '\n';

int m = get_int(2,300);
cout << "m: " << m << '\n';

Don’t forget to catch exceptions somewhere, though, if you want decent error
messages for the (probably rare) case when get_int() really couldn’t read a num-
ber for us.

10.7.2 Separating dialog from function
The get_int() functions still mix up reading with writing messages to the user. That’s
probably good enough for a simple program, but in a large program we might want
to vary the messages written to the user. We might want to call get_int() like this:

Stroustrup_book.indb 362Stroustrup_book.indb 362 4/22/14 9:42 AM4/22/14 9:42 AM

10.8 USER-DEFINED OUTPUT OPERATORS 363

int strength = get_int(1,10, "enter strength", "Not in range, try again");
cout << "strength: " << strength << '\n';

int altitude = get_int(0,50000,
 "Please enter altitude in feet",
 "Not in range, please try again");
cout << "altitude: " << altitude << "f above sea level\n";

We could implement that like this:

int get_int(int low, int high, const string& greeting, const string& sorry)
{
 cout << greeting << ": [" << low << ':' << high << "]\n";

 while (true) {
 int n = get_int();
 if (low<=n && n<=high) return n;
 cout << sorry << ": [" << low << ':' << high << "]\n";
 }
}

It is hard to compose arbitrary messages, so we “stylized” the messages. That’s
often acceptable, and composing really flexible messages, such as are needed to
support many natural languages (e.g., Arabic, Bengali, Chinese, Danish, English,
and French), is not a task for a novice.

Note that our solution is still incomplete: the get_int() without a range still
“blabbers.” The deeper point here is that “utility functions” that we use in many
parts of a program shouldn’t have messages “hardwired” into them. Further, li-
brary functions that are meant for use in many programs shouldn’t write to the
user at all — after all, the library writer may not even know that the program in
which the library runs is used on a machine with a human watching. That’s one
reason that our error() function doesn’t just write an error message (§5.6.3); in
general, we wouldn’t know where to write.

10.8 User-defi ned output operators
Defining the output operator, <<, for a given type is typically trivial. The main
design problem is that different people might prefer the output to look differ-
ent, so it is hard to agree on a single format. However, even if no single output
format is good enough for all uses, it is often a good idea to define << for a
user-defined type. That way, we can at least trivially write out objects of the type
during debugging and early development. Later, we might provide a more sophis-
ticated << that allows a user to provide formatting information. Also, if we want

Stroustrup_book.indb 363Stroustrup_book.indb 363 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS364

output that looks different from what a << provides, we can simply bypass the <<
and write out the individual parts of the user-defined type the way we happen to
like them in our application.

Here is a simple output operator for Date from §9.8 that simply prints the
year, month, and day comma-separated in parentheses:

ostream& operator<<(ostream& os, const Date& d)
{
 return os << '(' << d.year()
 << ',' << d.month()
 << ',' << d.day() << ')';
}

This will print August 30, 2004, as (2004,8,30). This simple list-of-elements repre-
sentation is what we tend to use for types with a few members unless we have a
better idea or more specific needs.

In §9.6, we mention that a user-defined operator is handled by calling its
function. Here we can see an example of how that’s done. Given the definition of
<< for Date, the meaning of

cout << d1;

where d1 is a Date is the call

operator<<(cout,d1);

Note how operator<<() takes an ostream& as its first argument and returns it
again as its return value. That’s the way the output stream is passed along so
that you can “chain” output operations. For example, we could output two dates
like this:

cout << d1 << d2;

This will be handled by first resolving the first << and after that the second <<:

cout << d1 << d2; // means operator<<(cout,d1) << d2;
 // means operator<<(operator<<(cout,d1),d2);

That is, first output d1 to cout and then output d2 to the output stream that is the
result of the first output operation. In fact, we can use any of those three variants
to write out d1 and d2. We know which one is easier to read, though.

Stroustrup_book.indb 364Stroustrup_book.indb 364 4/22/14 9:42 AM4/22/14 9:42 AM

10.10 A STANDARD INPUT LOOP 365

10.9 User-defi ned input operators
Defining the input operator, >>, for a given type and input format is basically an
exercise in error handling. It can therefore be quite tricky.

Here is a simple input operator for the Date from §9.8 that will read dates as
written by the operator << defined above:

istream& operator>>(istream& is, Date& dd)
{
 int y, m, d;
 char ch1, ch2, ch3, ch4;
 is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;
 if (!is) return is;
 if (ch1!='(' || ch2!=',' || ch3!=',' || ch4!=')') { // oops: format error
 is.clear(ios_base::failbit);
 return is;
 }
 dd = Date{y,Date::Month(m),d}; // update dd
 return is;
}

This >> will read items like (2004,8,20) and try to make a Date out of those three
integers. As ever, input is harder to deal with than output. There is simply more
that can — and often does — go wrong with input than with output.

If this >> doesn’t find something in the (integer , integer , integer) format, it will
leave the stream in a not-good state (fail, eof, or bad) and leave the target Date
unchanged. The clear() member function is used to set the state of the istream.
Obviously, ios_base::failbit puts the stream into the fail() state. Leaving the target
Date unchanged in case of a failure to read is the ideal; it tends to lead to cleaner
code. The ideal is for an operator>>() not to consume (throw away) any charac-
ters that it didn’t use, but that’s too difficult in this case: we might have read lots
of characters before we caught a format error. As an example, consider (2004, 8,
30}. Only when we see the final } do we know that we have a format error on
our hands and we cannot in general rely on putting back many characters. One
character unget() is all that’s universally guaranteed. If this operator>>() reads
an invalid Date, such as (2004,8,32), Date’s constructor will throw an exception,
which will get us out of this operator>>().

10.10 A standard input loop
In §10.5, we saw how we could read and write files. However, that was before
we looked more carefully at errors (§10.6), so the input loop simply assumed that

Stroustrup_book.indb 365Stroustrup_book.indb 365 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS366

we could read a file from its beginning until end of file. That can be a reasonable
assumption, because we often apply separate checks to ensure that a file is valid.
However, we often want to check our reads as we go along. Here is a general
strategy, assuming that ist is an istream:

for (My_type var; ist>>var;) { // read until end of file
 // maybe check that var is valid
 // do something with var
}
// we can rarely recover from bad; don’t try unless you really have to:
if (ist.bad()) error("bad input stream");
if (ist.fail()) {
 // was it an acceptable terminator?
}
// carry on: we found end of file

That is, we read a sequence of values into variables and when we can’t read any
more values, we check the stream state to see why. As in §10.6, we can improve
this a bit by letting the istream throw an exception of type failure if it goes bad.
That saves us the bother of checking for it all the time:

// somewhere: make ist throw an exception if it goes bad:
ist.exceptions(ist.exceptions()|ios_base::badbit);

We could also decide to designate a character as a terminator:

for (My_type var; ist>>var;) { // read until end of file
 // maybe check that var is valid
 // do something with var
}
if (ist.fail()) { // use '|' as terminator and/or separator
 ist.clear();
 char ch;
 if (!(ist>>ch && ch=='|')) error("bad termination of input");
}
// carry on: we found end of file or a terminator

If we don’t want to accept a terminator — that is, to accept only end of file as the
end — we simply delete the test before the call of error(). However, terminators are
very useful when you read files with nested constructs, such as a file of monthly
readings containing daily readings, containing hourly readings, etc., so we’ll keep
considering the possibility of a terminating character.

Stroustrup_book.indb 366Stroustrup_book.indb 366 4/22/14 9:42 AM4/22/14 9:42 AM

10.11 READING A STRUCTURED FILE 367

Unfortunately, that code is still a bit messy. In particular, it is tedious to re-
peat the terminator test if we read a lot of files. We could write a function to deal
with that:

// somewhere: make ist throw if it goes bad:
ist.exceptions(ist.exceptions()|ios_base::badbit);

void end_of_loop(istream& ist, char term, const string& message)
{
 if (ist.fail()) { // use term as terminator and/or separator
 ist.clear();
 char ch;
 if (ist>>ch && ch==term) return; // all is fine
 error(message);
 }
}

This reduces the input loop to

for (My_type var; ist>>var;) { // read until end of file
 // maybe check that var is valid

 // . . . do something with var . . .
}
end_of_loop(ist,'|',"bad termination of file"); // test if we can continue

// carry on: we found end of file or a terminator

The end_of_loop() does nothing unless the stream is in the fail() state. We con-
sider that simple enough and general enough for many purposes.

10.11 Reading a structured fi le
Let’s try to use this “standard loop” for a concrete example. As usual, we’ll use
the example to illustrate widely applicable design and programming techniques.
Assume that you have a file of temperature readings that has been structured
like this:

• A fi le holds years (of months of readings).
• A year starts with { year followed by an integer giving the year, such

as 1900, and ends with }.

Stroustrup_book.indb 367Stroustrup_book.indb 367 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS368

• A year holds months (of days of readings).
• A month starts with { month followed by a three-letter month name,

such as jan, and ends with }.

• A reading holds a time and a temperature.
• A reading starts with a (followed by day of the month, hour of the

day, and temperature and ends with a).

For example:

{ year 1990 }
{year 1991 { month jun }}
{ year 1992 { month jan (1 0 61.5) } {month feb (1 1 64) (2 2 65.2) } }
{year 2000
 { month feb (1 1 68) (2 3 66.66) (1 0 67.2)}
 {month dec (15 15 –9.2) (15 14 –8.8) (14 0 –2) }
}

This format is somewhat peculiar. File formats often are. There is a move toward
more regular and hierarchically structured files (such as HTML and XML files)
in the industry, but the reality is still that we can rarely control the input format
offered by the files we need to read. The files are the way they are, and we just
have to read them. If a format is too awful or files contain too many errors, we
can write a format conversion program to produce a format that suits our main
program better. On the other hand, we can typically choose the in-memory rep-
resentation of data to suit our needs, and we can often pick output formats to suit
needs and tastes.

So, let’s assume that we have been given the temperature reading format
above and have to live with it. Fortunately, it has self-identifying components,
such as years and months (a bit like HTML or XML). On the other hand, the
format of individual readings is somewhat unhelpful. For example, there is no
information that could help us if someone flipped a day-of-the-month value with
an hour of day or if someone produced a file with temperatures in Celsius and the
program expected them in Fahrenheit or vice versa. We just have to cope.

10.11.1 In-memory representation
How should we represent this data in memory? The obvious first choice is three
classes, Year, Month, and Reading, to exactly match the input. Year and Month are
obviously useful when manipulating the data; we want to compare temperatures
of different years, calculate monthly averages, compare different months of a year,
compare the same month of different years, match up temperature readings with

Stroustrup_book.indb 368Stroustrup_book.indb 368 4/22/14 9:42 AM4/22/14 9:42 AM

10.11 READING A STRUCTURED FILE 369

sunshine records and humidity readings, etc. Basically, Year and Month match the
way we think about temperatures and weather in general: Month holds a month’s
worth of information and Year holds a year’s worth of information. But what
about Reading? That’s a low-level notion matching some piece of hardware (a
sensor). The data of a Reading (day of month, hour of day, temperature) is “odd”
and makes sense only within a Month. It is also unstructured: we have no promise
that readings come in day-of-the-month or hour-of-the-day order. Basically, when-
ever we want to do anything of interest with the readings we have to sort them.

For representing the temperature data in memory, we make these assumptions:

• If we have any readings for a month, then we tend to have lots of readings
for that month.

• If we have any readings for a day, then we tend to have lots of readings
for that day.

When that’s the case, it makes sense to represent a Year as a vector of 12 Months,
a Month as a vector of about 30 Days, and a Day as 24 temperatures (one per
hour). That’s simple and easy to manipulate for a wide variety of uses. So, Day,
Month, and Year are simple data structures, each with a constructor. Since we plan
to create Months and Days as part of a Year before we know what temperature
readings we have, we need to have a notion of “not a reading” for an hour of a
day for which we haven’t (yet) read data.

const int not_a_reading = –7777; // less than absolute zero

Similarly, we noticed that we often had a month without data, so we introduced
the notion “not a month” to represent that directly, rather than having to search
through all the days to be sure that no data was lurking somewhere:

const int not_a_month = –1;

The three key classes then become

struct Day {
 vector<double> hour {vector<double>(24,not_a_reading)};
};

That is, a Day has 24 hours, each initialized to not_a_reading.

struct Month { // a month of temperature readings
 int month {not_a_month}; // [0:11] January is 0
 vector<Day> day {32}; // [1:31] one vector of readings per day
};

Stroustrup_book.indb 369Stroustrup_book.indb 369 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS370

We “waste” day[0] to keep the code simple.

struct Year { // a year of temperature readings, organized by month
 int year; // positive == A.D.
 vector<Month> month {12}; // [0:11] January is 0
};

Each class is basically a simple vector of “parts,” and Month and Year have an
identifying member month and year, respectively.

There are several “magic constants” here (for example, 24, 32, and 12). We try
to avoid such literal constants in code. These are pretty fundamental (the number
of months in a year rarely changes) and will not be used in the rest of the code.
However, we left them in the code primarily so that we could remind you of the
problem with “magic constants”; symbolic constants are almost always preferable
(§7.6.1). Using 32 for the number of days in a month definitely requires explana-
tion; 32 is obviously “magic” here.

Why didn’t we write

struct Day {
 vector<double> hour {24,not_a_reading};
};

That would have been simpler, but unfortunately, we would have gotten a vector
of two elements (24 and –1). When we want to specify the number of elements for
a vector for which an integer can be converted to the element type, we unfortu-
nately have to use the () initial izer syntax (§18.2).

10.11.2 Reading structured values
The Reading class will be used only for reading input and is even simpler:

struct Reading {
 int day;
 int hour;
 double temperature;
};

istream& operator>>(istream& is, Reading& r)
// read a temperature reading from is into r
// format: (3 4 9.7)
// check format, but don’t bother with data validity
{

Stroustrup_book.indb 370Stroustrup_book.indb 370 4/22/14 9:42 AM4/22/14 9:42 AM

10.11 READING A STRUCTURED FILE 371

 char ch1;
 if (is>>ch1 && ch1!='(') { // could it be a Reading?
 is.unget();
 is.clear(ios_base::failbit);
 return is;
 }

 char ch2;
 int d;
 int h;
 double t;
 is >> d >> h >> t >> ch2;
 if (!is || ch2!=')') error("bad reading"); // messed-up reading
 r.day = d;
 r.hour = h;
 r.temperature = t;
 return is;
}

Basically, we check if the format begins plausibly, and if it doesn’t we set the file
state to fail() and return. This allows us to try to read the information in some
other way. On the other hand, if we find the format wrong after having read some
data so that there is no real chance of recovering, we bail out with error().

The Month input operation is much the same, except that it has to read an ar-
bitrary number of Readings rather than a fixed set of values (as Reading’s >> did):

istream& operator>>(istream& is, Month& m)
// read a month from is into m
// format: { month feb . . . }
{
 char ch = 0;
 if (is >> ch && ch!='{') {
 is.unget();
 is.clear(ios_base::failbit); // we failed to read a Month
 return is;
 }

 string month_marker;
 string mm;
 is >> month_marker >> mm;
 if (!is || month_marker!="month") error("bad start of month");
 m.month = month_to_int(mm);

Stroustrup_book.indb 371Stroustrup_book.indb 371 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS372

 int duplicates = 0;
 int invalids = 0;
 for (Reading r; is >> r;) {
 if (is_valid(r)) {
 if (m.day[r.day].hour[r.hour] != not_a_reading)
 ++duplicates;
 m.day[r.day].hour[r.hour] = r.temperature;
 }
 else
 ++invalids;
 }
 if (invalids) error("invalid readings in month",invalids);
 if (duplicates) error("duplicate readings in month", duplicates);
 end_of_loop(is,'}',"bad end of month");
 return is;
}

We’ll get back to month_to_int() later; it converts the symbolic notation for a
month, such as jun, to a number in the [0:11] range. Note the use of end_of_
loop() from §10.10 to check for the terminator. We keep count of invalid and
duplicate Readings; someone might be interested.

Month’s >> does a quick check that a Reading is plausible before storing it:

constexpr int implausible_min = –200;
constexpr int implausible_max = 200;

bool is_valid(const Reading& r)
// a rough test
{
 if (r.day<1 || 31<r.day) return false;
 if (r.hour<0 || 23<r.hour) return false;
 if (r.temperature<implausible_min|| implausible_max<r.temperature)
 return false;
 return true;
}

Finally, we can read Years. Year’s >> is similar to Month’s >>:

istream& operator>>(istream& is, Year& y)
// read a year from is into y
// format: { year 1972 . . . }
{

Stroustrup_book.indb 372Stroustrup_book.indb 372 4/22/14 9:42 AM4/22/14 9:42 AM

10.11 READING A STRUCTURED FILE 373

 char ch;
 is >> ch;
 if (ch!='{') {
 is.unget();
 is.clear(ios::failbit);
 return is;
 }

 string year_marker;
 int yy;
 is >> year_marker >> yy;
 if (!is || year_marker!="year") error("bad start of year");
 y.year = yy;

 while(true) {
 Month m; // get a clean m each time around
 if(!(is >> m)) break;
 y.month[m.month] = m;
 }

 end_of_loop(is,'}',"bad end of year");
 return is;
}

We would have preferred “boringly similar” to just “similar,” but there is a signif-
icant difference. Have a look at the read loop. Did you expect something like the
following?

for (Month m; is >> m;)
 y.month[m.month] = m;

You probably should have, because that’s the way we have written all the read
loops so far. That’s actually what we first wrote, and it’s wrong. The problem
is that operator>>(istream& is, Month& m) doesn’t assign a brand-new value to
m; it simply adds data from Readings to m. Thus, the repeated is>>m would
have kept adding to our one and only m. Oops! Each new month would have
gotten all the readings from all previous months of that year. We need a brand-
new, clean Month to read into each time we do is>>m. The easiest way to do
that was to put the definition of m inside the loop so that it would be initialized
each time around. The alternatives would have been for operator>>(istream&

Stroustrup_book.indb 373Stroustrup_book.indb 373 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS374

is, Month& m) to assign an empty month to m before reading into it, or for the
loop to do that:

for (Month m; is >> m;) {
 y.month[m.month] = m;
 m = Month{}; // “reinitialize” m
}

Let’s try to use it:

// open an input file:
cout << "Please enter input file name\n";
string iname;
cin >> iname;
ifstream ist {iname};
if (!ifs) error("can't open input file",iname);

ifs.exceptions(ifs.exceptions()|ios_base::badbit); // throw for bad()

// open an output file:
cout << "Please enter output file name\n";
string oname;
cin >> oname;
ofstream ost {oname};
if (!ofs) error("can't open output file",oname);

// read an arbitrary number of years:
vector<Year> ys;
while(true) {
 Year y; // get a freshly initialized Year each time around
 if (!(ifs>>y)) break;
 ys.push_back(y);
}
cout << "read " << ys.size() << " years of readings\n";

for (Year& y : ys) print_year(ofs,y);

We leave print_year() as an exercise.

10.11.3 Changing representations
To get Month’s >> to work, we need to provide a way of reading symbolic repre-
sentations of the month. For symmetry, we’ll provide a matching write using a sym-
bolic representation. The tedious way would be to write an if-statement convert:

Stroustrup_book.indb 374Stroustrup_book.indb 374 4/22/14 9:42 AM4/22/14 9:42 AM

10.11 READING A STRUCTURED FILE 375

if (s=="jan")
 m = 1;
else if (s=="feb")
 m = 2;
. . .

This is not just tedious; it also builds the names of the months into the code. It
would be better to have those in a table somewhere so that the main program
could stay unchanged even if we had to change the symbolic representation. We
decided to represent the input representation as a vector<string> plus an initializa-
tion function and a lookup function:

vector<string> month_input_tbl = {
 "jan", "feb", "mar", "apr", "may", "jun", "jul",
 "aug", "sep", "oct", "nov", "dec"
};

int month_to_int(string s)
// is s the name of a month? If so return its index [0:11] otherwise –1
{
 for (int i=0; i<12; ++i) if (month_input_tbl[i]==s) return i;
 return –1;
}

In case you wonder: the C++ standard library does provide a simpler way to do
this. See §21.6.1 for a map<string,int>.

When we want to produce output, we have the opposite problem. We have an
int representing a month and would like a symbolic representation to be printed.
Our solution is fundamentally similar, but instead of using a table to go from
string to int, we use one to go from int to string:

vector<string> month_print_tbl = {
 "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"
};

string int_to_month(int i)
// months [0:11]
{
 if (i<0 || 12<=i) error("bad month index");
 return month_print_tbl[i];
}

Stroustrup_book.indb 375Stroustrup_book.indb 375 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS376

So, did you actually read all of that code and the explanations? Or did your
eyes glaze over and skip to the end? Remember that the easiest way of learning
to write good code is to read a lot of code. Believe it or not, the techniques we
used for this example are simple, but not trivial to discover without help. Read-
ing data is fundamental. Writing loops correctly (initializing every variable used
correctly) is fundamental. Converting between representations is fundamental.
That is, you will learn to do such things. The only questions are whether you’ll
learn to do them well and whether you learn the basic techniques before losing
too much sleep.

Drill
 1. Start a program to work with points, discussed in §10.4. Begin by defin-

ing the data type Point that has two coordinate members x and y.
 2. Using the code and discussion in §10.4, prompt the user to input seven

(x,y) pairs. As the data is entered, store it in a vector of Points called
original_points.

 3. Print the data in original_points to see what it looks like.
 4. Open an ofstream and output each point to a file named mydata.txt. On

Windows, we suggest the .txt suffix to make it easier to look at the data
with an ordinary text editor (such as WordPad).

 5. Close the ofstream and then open an ifstream for mydata.txt. Read the
data from mydata.txt and store it in a new vector called processed_points.

 6. Print the data elements from both vectors.
 7. Compare the two vectors and print Something's wrong! if the number of

elements or the values of elements differ.

Review
 1. When dealing with input and output, how is the variety of devices dealt

with in most modern computers?
 2. What, fundamentally, does an istream do?
 3. What, fundamentally, does an ostream do?
 4. What, fundamentally, is a file?
 5. What is a file format?
 6. Name four different types of devices that can require I/O for a program.
 7. What are the four steps for reading a file?
 8. What are the four steps for writing a file?
 9. Name and define the four stream states.

Stroustrup_book.indb 376Stroustrup_book.indb 376 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 EXERCISES 377

 10. Discuss how the following input problems can be resolved:
 a. The user typing an out-of-range value
 b. Getting no value (end of file)
 c. The user typing something of the wrong type
 11. In what way is input usually harder than output?
 12. In what way is output usually harder than input?
 13. Why do we (often) want to separate input and output from computation?
 14. What are the two most common uses of the istream member function

clear()?
 15. What are the usual function declarations for << and >> for a user-defined

type X?

Terms
bad() good() ostream
buffer ifstream ouput device
clear() input device ouput operator
close() input operator stream state
device driver iostream structured fi le
eof() istream terminator
fail() ofstream unget()
fi le open()

Exercises
 1. Write a program that produces the sum of all the numbers in a file of

whitespace-separated integers.
 2. Write a program that creates a file of data in the form of the temperature

Reading type defined in §10.5. For testing, fill the file with at least 50
“temperature readings.” Call this program store_temps.cpp and the file it
creates raw_temps.txt.

 3. Write a program that reads the data from raw_temps.txt created in ex-
ercise 2 into a vector and then calculates the mean and median tempera-
tures in your data set. Call this program temp_stats.cpp.

 4. Modify the store_temps.cpp program from exercise 2 to include a tem-
perature suffix c for Celsius or f for Fahrenheit temperatures. Then mod-
ify the temp_stats.cpp program to test each temperature, converting the
Celsius readings to Fahrenheit before putting them into the vector.

 5. Write the function print_year() mentioned in §10.11.2.
 6. Define a Roman_int class for holding Roman numerals (as ints) with a

<< and >>. Provide Roman_int with an as_int() member that returns the

Stroustrup_book.indb 377Stroustrup_book.indb 377 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 10 • INPUT AND OUTPUT STREAMS378

int value, so that if r is a Roman_int, we can write cout << "Roman"
<< r << " equals " << r.as_int() << '\n';.

 7. Make a version of the calculator from Chapter 7 that accepts Roman
numerals rather than the usual Arabic ones, for example, XXI + CIV ==
CXXV.

 8. Write a program that accepts two file names and produces a new file that
is the contents of the first file followed by the contents of the second; that
is, the program concatenates the two files.

 9. Write a program that takes two files containing sorted whitespace-separated
words and merges them, preserving order.

 10. Add a command from x to the calculator from Chapter 7 that makes it
take input from a file x. Add a command to y to the calculator that makes
it write its output (both standard output and error output) to file y. Write
a collection of test cases based on ideas from §7.3 and use that to test the
calculator. Discuss how you would use these commands for testing.

 11. Write a program that produces the sum of all the whitespace-separated in-
tegers in a text file. For example, bears: 17 elephants 9 end should out-
put 26.

Postscript
Much of computing involves moving lots of data from one place to another, for
example, copying text from a fi le to a screen or moving music from a computer
onto an MP3 player. Often, some transformation of the data is needed on the way.
The iostream library is a way of handling many such tasks where the data can be
seen as a sequence (a stream) of values. Input and output can be a surprisingly
large part of common programming tasks. This is partly because we (or our pro-
grams) need a lot of data and partly because the point where data enters a system
is a place where lots of errors can happen. So, we must try to keep our I/O simple
and try to minimize the chances that bad data “slips through” into our system.

Stroustrup_book.indb 378Stroustrup_book.indb 378 4/22/14 9:42 AM4/22/14 9:42 AM

379

11

Customizing
Input and Output

“Keep it simple:
as simple as possible,

but no simpler.”

—Albert Einstein

In this chapter, we concentrate on how to adapt the general

iostream framework presented in Chapter 10 to specific needs

and tastes. This involves a lot of messy details dictated by human

sensibilities to what they read and also practical constraints on

the uses of files. The final example shows the design of an input

stream for which you can specify the set of separators.

Stroustrup_book.indb 379Stroustrup_book.indb 379 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT380

11.1 Regularity and irregularity
The iostream library — the input/output part of the ISO C++ standard library —
provides a unified and extensible framework for input and output of text. By
“text” we mean just about anything that can be represented as a sequence of char-
acters. Thus, when we talk about input and output we can consider the integer
1234 as text because we can write it using the four characters 1, 2, 3, and 4.

So far, we have treated all input sources as equivalent. Sometimes, that’s not
enough. For example, files differ from other input sources (such as communica-
tions connections) in that we can address individual bytes. Similarly, we worked
on the assumption that the type of an object completely determined the lay-
out of its input and output. That’s not quite right and wouldn’t be sufficient.
For example, we often want to specify the number of digits used to represent a
floating-point number on output (its precision). This chapter presents a number
of ways in which we can tailor input and output to our needs.

As programmers, we prefer regularity; treating all in-memory objects uni-
formly, treating all input sources equivalently, and imposing a single standard
on the way to represent objects entering and exiting the system give the clean-
est, simplest, most maintainable, and often the most efficient code. However, our
programs exist to serve humans, and humans have strong preferences. Thus, as
programmers we must strive for a balance between program complexity and ac-
commodation of users’ personal tastes.

11.2 Output formatting
People care a lot about apparently minor details of the output they have to read.
For example, to a physicist 1.25 (rounded to two digits after the dot) can be very

 11.1 Regularity and irregularity

 11.2 Output formatting
 11.2.1 Integer output

 11.2.2 Integer input

 11.2.3 Floating-point output

 11.2.4 Precision

 11.2.5 Fields

 11.3 File opening and positioning
 11.3.1 File open modes

 11.3.2 Binary fi les

 11.3.3 Positioning in fi les

 11.4 String streams

 11.5 Line-oriented input

 11.6 Character classification

 11.7 Using nonstandard separators

 11.8 And there is so much more

Stroustrup_book.indb 380Stroustrup_book.indb 380 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 381

different from 1.24670477, and to an accountant (1.25) can be legally different
from (1.2467) and totally different from 1.25 (in financial documents, parentheses
are sometimes used to indicate losses, that is, negative values). As programmers,
we aim at making our output as clear and as close as possible to the expectations
of the “consumers” of our program. Output streams (ostreams) provide a variety
of ways for formatting the output of built-in types. For user-defined types, it is up
to the programmer to define suitable << operations.

There seem to be an infinite number of details, refinements, and options for
output and quite a few for input. Examples are the character used for the deci-
mal point (usually dot or comma), the way to output monetary values, a way to
represent true as the word true (or vrai or sandt) rather than the number 1 when
output, ways to deal with non-ASCII character sets (such as Unicode), and a way
to limit the number of characters read into a string. These facilities tend to be
uninteresting until you need them, so we’ll leave their description to manuals and
specialized works such as Langer, Standard C++ IOStreams and Locales; Chapters 38
and 39 of The C++ Programming Language by Stroustrup; and §22 and §27 of the
ISO C++ standard. Here we’ll present the most frequently useful features and a
few general concepts.

11.2.1 Integer output
Integer values can be output as octal (the base-8 number system), decimal (our
usual base-10 number system), and hexadecimal (the base-16 number system). If
you don’t know about these systems, read §A.2.1.1 before proceeding here. Most
output uses decimal. Hexadecimal is popular for outputting hardware-related in-
formation. The reason is that a hexadecimal digit exactly represents a 4-bit value.
Thus, two hexadecimal digits can be used to present the value of an 8-bit byte,
four hexadecimal digits give the value of 2 bytes (that’s often a half word), and
eight hexadecimal digits can present the value of 4 bytes (that’s often the size of
a word or a register). When C++’s ancestor C was first designed (in the 1970s),
octal was popular for representing bit patterns, but now it’s rarely used.

We can specify the output (decimal) value 1234 to be decimal, hexadecimal
(often called “hex”), and octal:

cout << 1234 << "\t(decimal)\n"
 << hex << 1234 << "\t(hexadecimal)\n"
 << oct << 1234 << "\t(octal)\n";

The '\t' character is “tab” (short for “tabulation character”). This prints

1234 (decimal)
4d2 (hexadecimal)
2322 (octal)

Stroustrup_book.indb 381Stroustrup_book.indb 381 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT382

The notations << hex and << oct do not output values. Instead, << hex informs
the stream that any further integer values should be displayed in hexadecimal and
<< oct informs the stream that any further integer values should be displayed in
octal. For example:

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';
cout << 1234 << '\n'; // the octal base is still in effect

This produces

1234 4d2 2322
2322 // integers will continue to show as octal until changed

Note that the last output is octal; that is, oct, hex, and dec (for decimal) persist
(“stick,” “are sticky”) — they apply to every integer value output until we tell the
stream otherwise. Terms such as hex and oct that are used to change the behavior
of a stream are called manipulators.

TRY THIS

Output your birth year in decimal, hexadecimal, and octal form. Label each
value. Line up your output in columns using the tab character. Now output
your age.

Seeing values of a base different from 10 can often be confusing. For example,
unless we tell you otherwise, you’ll assume that 11 represents the (decimal) number
11, rather than 9 (11 in octal) or 17 (11 in hexadecimal). To alleviate such problems,
we can ask the ostream to show the base of each integer printed. For example:

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';
cout << showbase << dec; // show bases
cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

This prints

1234 4d2 2322
1234 0x4d2 02322

So, decimal numbers have no prefix, octal numbers have the prefix 0, and hexa-
decimal values have the prefix 0x (or 0X). This is exactly the notation for integer
literals in C++ source code. For example:

T

Stroustrup_book.indb 382Stroustrup_book.indb 382 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 383

cout << 1234 << '\t' << 0x4d2 << '\t' << 02322 << '\n';

In decimal form, this will print

1234 1234 1234

As you might have noticed, showbase persists, just like oct and hex. The manipu-
lator noshowbase reverses the action of showbase, reverting to the default, which
shows each number without its base.

In summary, the integer output manipulators are:

Integer output manipulations

oct use base-8 (octal) notation

dec use base-10 (decimal) notation

hex use base-16 (hexadecimal) notation

showbase prefix 0 for octal and 0x for hexadecimal

noshowbase don’t use prefixes

11.2.2 Integer input
By default, >> assumes that numbers use the decimal notation, but you can tell it
to read hexadecimal or octal integers:

int a;
int b;
int c;
int d;
cin >> a >> hex >> b >> oct >> c >> d;
cout << a << '\t' << b << '\t' << c << '\t' << d << '\n';

If you type in

1234 4d2 2322 2322

this will print

1234 1234 1234 1234

Note that this implies that oct, dec, and hex “stick” for input, just as they do for
output.

Stroustrup_book.indb 383Stroustrup_book.indb 383 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT384

TRY THIS

Complete the code fragment above to make it into a program. Try the sug-
gested input; then type in

1234 1234 1234 1234

Explain the results. Try other inputs to see what happens.

You can get >> to accept and correctly interpret the 0 and 0x prefixes. To do that,
you “unset” all the defaults. For example:

cin.unsetf(ios::dec); // don’t assume decimal (so that 0x can mean hex)
cin.unsetf(ios::oct); // don’t assume octal (so that 12 can mean twelve)
cin.unsetf(ios::hex); // don’t assume hexadecimal (so that 12 can mean twelve)

The stream member function unsetf() clears the flag (or flags) given as argument.
Now, if you write

cin >>a >> b >> c >> d;

and enter

1234 0x4d2 02322 02322

you get

1234 1234 1234 1234

11.2.3 Floating-point output
If you deal directly with hardware, you’ll need hexadecimal (or possibly octal)
notation. Similarly, if you deal with scientific computation, you must deal with the
formatting of floating-point values. They are handled using iostream manipula-
tors in a manner very similar to that of integer values. For example:

cout << 1234.56789 << "\t\t(defaultfloat)\n" // \t\t to line up columns
 << fixed << 1234.56789 << "\t(fixed)\n"
 << scientific << 1234.56789 << "\t(scientific)\n";

T

Stroustrup_book.indb 384Stroustrup_book.indb 384 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 385

This prints

1234.57 (general)
1234.567890 (fixed)
1.234568e+003 (scientific)

The manipulators fixed, scientific, and defaultfloat are used to select floating-point
formats; defaultfloat is the default format (also known as the general format). Now,
we can write

cout << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << 1234.56789 << '\n'; // floating format “sticks”
cout << defaultfloat << 1234.56789 << '\t' // the default format for

// floating-point output
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

This prints

1234.57 1234.567890 1.234568e+003
1.234568e+003 // scientific manipulator “sticks”
1234.57 1234.567890 1.234568e+003

In summary, the basic floating-point output-formatting manipulators are:

Floating-point formats

fixed use fixed-point notation

scientific use mantissa and exponent notation; the mantissa is always in the [1:10)
range; that is, there is a single nonzero digit before the decimal point

defaultfloat choose fixed or scientific to give the numerically most accurate
representation, within the precision of defaultfloat

11.2.4 Precision
By default, a floating-point value is printed using six total digits using the
defaultfloat format. The most appropriate format is chosen and the number is
rounded to give the best approximation that can be printed using only six digits
(the default precision for the defaultfloat format). For example:

1234.567 prints as 1234.57

1.2345678 prints as 1.23457

Stroustrup_book.indb 385Stroustrup_book.indb 385 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT386

The rounding rule is the usual 4/5 rule: 0 to 4 round down (toward zero) and 5
to 9 round up (away from zero). Note that floating-point formatting applies only
to floating-point numbers, so

1234567 prints as 1234567 (because it’s an integer)
1234567.0 prints as 1.23457e+006

In the latter case, the ostream determines that 1234567.0 cannot be printed using
the fixed format using only six digits and switches to scientific format to pre-
serve the most accurate representation. Basically the defaultfloat format chooses
between scientific and fixed formats to present the user with the most accurate
representation of a floating-point value within the precision of the general format,
which defaults to six total digits.

TRY THIS

Write some code to print the number 1234567.89 three times, first using
 defaultfloat, then fixed, then scientific. Which output form presents the user
with the most accurate representation? Explain why.

A programmer can set the precision using the manipulator setprecision(). For
example:

cout << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << defaultfloat << setprecision(5)
 << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << defaultfloat << setprecision(8)
 << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

This prints (note the rounding)

1234.57 1234.567890 1.234568e+003
1234.6 1234.56789 1.23457e+003
1234.5679 1234.56789000 1.23456789e+003

The precision is defined as:

T

Stroustrup_book.indb 386Stroustrup_book.indb 386 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 387

Floating-point precision

defaultfloat precision is the total number of digits

scientific precision is the number of digits after the decimal point

fixed precision is the number of digits after the decimal point

Use the default (defaultfloat format with precision 6) unless there is a reason not
to. The usual reason not to is “Because we need greater accuracy of the output.”

11.2.5 Fields
Using scientific and fixed formats, a programmer can control exactly how much
space a value takes up on output. That’s clearly useful for printing tables, etc. The
equivalent mechanism for integer values is called fields. You can specify exactly
how many character positions an integer value or string value will occupy using
the “set field width” manipulator setw(). For example:

cout << 123456 // no field used
 <<'|'<< setw(4) << 123456 << '|' // 123456 doesn’t fit in a 4-char field
 << setw(8) << 123456 << '|' // set field width to 8
 << 123456 << "|\n"; // field sizes don’t stick

This prints

123456|123456| 123456|123456|

Note first the two spaces before the third occurrence of 123456. That’s what we
would expect for a six-digit number in an eight-character field. However, 123456
did not get truncated to fit into a four-character field. Why not? |1234| or |3456|
might be considered plausible outputs for the four-character field. However, that
would have completely changed the value printed without any warning to the
poor reader that something had gone wrong. The ostream doesn’t do that; in-
stead it breaks the output format. Bad formatting is almost always preferable
to “bad output data.” In the most common uses of fields (such as printing out a
table), the “overflow” is visually very noticeable, so that it can be corrected.

Fields can also be used for floating-point numbers and strings. For example:

cout << 12345 <<'|'<< setw(4) << 12345 << '|'
 << setw(8) << 12345 << '|' << 12345 << "|\n";
cout << 1234.5 <<'|'<< setw(4) << 1234.5 << '|'
 << setw(8) << 1234.5 << '|' << 1234.5 << "|\n";

Stroustrup_book.indb 387Stroustrup_book.indb 387 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT388

cout << "asdfg" <<'|'<< setw(4) << "asdfg" << '|'
 << setw(8) << "asdfg" << '|' << "asdfg" << "|\n";

This prints

12345|12345| 12345|12345|
1234.5|1234.5| 1234.5|1234.5|
asdfg|asdfg| asdfg|asdfg|

Note that the field width “doesn’t stick.” In all three cases, the first and the last
values are printed in the default “as many characters as it takes” format. In other
words, unless you set the field width immediately before an output operation, the
notion of “field” is not used.

TRY THIS

Make a simple table including the last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experiment
with different field widths until you are satisfied that the table is well presented.

11.3 File opening and positioning
As seen from C++, a file is an abstraction of what the operating system pro-
vides. As described in §10.3, a file is simply a sequence of bytes numbered from
0 upward:

0: 1: 2:

The question is how we access those bytes. Using iostreams, this is largely de-
termined when we open a file and associate a stream with it. The properties of
a stream determine what operations we can perform after opening the file, and
their meaning. The simplest example of this is that if we open an istream for a
file, we can read from the file, whereas if we open a file with an ostream, we can
write to it.

11.3.1 File open modes
You can open a file in one of several modes. By default, an ifstream opens its file
for reading and an ofstream opens its file for writing. That takes care of most
common needs. However, you can choose between several alternatives:

T

Stroustrup_book.indb 388Stroustrup_book.indb 388 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 389

File stream open modes

ios_base::app append (i.e., add to the end of the file)

ios_base::ate “at end” (open and seek to end)

ios_base::binary binary mode — beware of system-specific behavior

ios_base::in for reading

ios_base::out for writing

ios_base::trunc truncate file to 0 length

A file mode is optionally specified after the name of the file. For example:

ofstream of1 {name1}; // defaults to ios_base::out
ifstream if1 {name2}; // defaults to ios_base::in

ofstream ofs {name, ios_base::app}; // ofstreams by default include
 // io_base::out
fstream fs {"myfile", ios_base::in|ios_base::out}; // both in and out

The | in that last example is the “bitwise or” operator (§A.5.5) that can be used to
combine modes as shown. The app option is popular for writing log files where
you always add to the end.

In each case, the exact effect of opening a file may depend on the operating
system, and if an operating system cannot honor a request to open a file in a cer-
tain way, the result will be a stream that is not in the good() state:

if (!fs) // oops: we couldn’t open that file that way

The most common reason for a failure to open a file for reading is that the file
doesn’t exist (at least not with the name we used):

ifstream ifs {"redungs"};
if (!ifs) // error: can’t open “readings” for reading

In this case, we guess that a spelling error might be the problem.
Note that typically, an operating system will create a new file if you try to

open a nonexistent file for output, but (fortunately) not if you try to open a non-
existent file for input:

ofstream ofs {"no-such-file"}; // create new file called no-such-file
ifstream ifs {"no-file-of-this-name"}; // error: ifs will not be good()

Stroustrup_book.indb 389Stroustrup_book.indb 389 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT390

Try not to be clever with file open modes. Operating systems don’t handle “un-
usual” mode consistently. When you can, stick to reading from files opened as
istreams and writing to files opened as ostreams.

11.3.2 Binary fi les
In memory, we can represent the number 123 as an integer value or as a string
value. For example:

int n = 123;
string s = "123";

In the first case, 123 is stored as a (binary) number in an amount of memory that
is the same as for all other ints (4 bytes, that is, 32 bits, on a PC). Had we chosen
the value 12345 instead, the same 4 bytes would have been used. In the second
case, 123 is stored as a string of three characters. Had we chosen the string value
"12345" it would have used five characters (plus the fixed overhead for managing
a string). We could illustrate this like this (using the ordinary decimal and char-
acter representation, rather than the binary representation actually used within
the computer):

1 2 3 ? ? ? ? ?123 as characters:

1 2 3 4 5 ? ? ?12345 as characters:

123123 as binary:

1234512345 as binary:

When we use a character representation, we must use some character to represent
the end of a number in memory, just as we do on paper: 123456 is one number
and 123 456 are two numbers. On “paper,” we use the space character to repre-
sent the end of the number. In memory, we could do the same:

1 2 3 4 5 6 ?123456 as characters:

1 2 3 4 5 6123 456 as characters:

The distinction between storing fixed-size binary representation (e.g., an int) and
variable-size character string representation (e.g., a string) also occurs in files. By
default, iostreams deal with character representations; that is, an istream reads a
sequence of characters and turns it into an object of the desired type. An ostream
takes an object of a specified type and transforms it into a sequence of characters
which it writes out. However, it is possible to request istream and ostream to

Stroustrup_book.indb 390Stroustrup_book.indb 390 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 391

simply copy bytes to and from files. That’s called binary I/O and is requested by
opening a file with the mode ios_base::binary. Here is an example that reads and
writes binary files of integers. The key lines that specifically deal with “binary”
are explained below:

int main()
{
 // open an istream for binary input from a file:
 cout << "Please enter input file name\n";
 string iname;
 cin >> iname;
 ifstream ifs {iname,ios_base::binary}; // note: stream mode
 // binary tells the stream not to try anything clever with the bytes
 if (!ifs) error("can't open input file ",ina me);

 // open an ostream for binary output to a file:
 cout << "Please enter output file name\n";
 string oname;
 cin >> oname;
 ofstream ofs {oname,ios_base::binary}; // note: stream mode
 // binary tells the stream not to try anything clever with the bytes
 if (!ofs) error("can't open output file ",oname);

 vector<int> v;

 // read from binary file:
 for(int x; ifs.read(as_bytes(x),sizeof(int));) // note: reading bytes
 v.push_back(x);

 // . . . do something with v . . .

 // write to binary file:
 for(int x : v)
 ofs.write(as_bytes(x),sizeof(int)); // note: writing bytes
 return 0;
}

We open the files using ios_base::binary as the stream mode:

ifstream ifs {iname, ios_base::binary};

ofstream ofs {oname, ios_base::binary};

Stroustrup_book.indb 391Stroustrup_book.indb 391 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT392

In both cases, we chose the trickier, but often more compact, binary representa-
tion. When we move from character-oriented I/O to binary I/O, we give up our
usual >> and << operators. Those operators specifically turn values into character
sequences using the default conventions (e.g., the string "asdf" turns into the char-
acters a, s, d, f and the integer 123 turns into the characters 1, 2, 3). If we wanted
that, we wouldn’t need to say binary — the default would suffice. We use binary
only if we (or someone else) thought that we somehow could do better than the
default. We use binary to tell the stream not to try anything clever with the bytes.

What “cleverness” might we do to an int? The obvious is to store a 4-byte int
in 4 bytes; that is, we can look at the representation of the int in memory (a se-
quence of 4 bytes) and transfer those bytes to the file. Later, we can read those
bytes back the same way and reassemble the int:

ifs.read(as_bytes(i),sizeof(int)) // note: reading bytes
ofs.write(as_bytes(v[i]),sizeof(int)) // note: writing bytes

The ostream write() and the istream read() both take an address (supplied here
by as_bytes()) and a number of bytes (characters) which we obtained by using the
operator sizeof. That address should refer to the first byte of memory holding the
value we want to read or write. For example, if we had an int with the value 1234,
we would get the 4 bytes (using hexadecimal notation) 00, 00, 04, d2:

00 00 04 d2

as_bytes(i)

i:

The as_bytes() function is needed to get the address of the first byte of an object’s
representation. It can — using language facilities yet to be explained (§17.8 and
§19.3) — be defined like this:

template<class T>
char* as_bytes(T& i) // treat a T as a sequence of bytes
{
 void* addr = &i; // get the address of the first byte
 // of memory used to store the object
 return static_cast<char*>(addr); // treat that memory as bytes
}

The (unsafe) type conversion using static_cast is necessary to get to the “raw
bytes” of a variable. The notion of addresses will be explored in some detail in
Chapters 17 and 18. Here, we just show how to treat any object in memory as a
sequence of bytes for the use of read() and write().

Stroustrup_book.indb 392Stroustrup_book.indb 392 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 393

This binary I/O is messy, somewhat complicated, and error-prone. However,
as programmers we don’t always have the freedom to choose file formats, so occa-
sionally we must use binary I/O simply because that’s the format someone chose
for the files we need to read or write. Alternatively, there may be a good logical
reason for choosing a non-character representation. A typical example is an image
or a sound file, for which there is no reasonable character representation: a pho-
tograph or a piece of music is basically just a bag of bits.

The character I/O provided by default by the iostream library is portable,
human readable, and reasonably supported by the type system. Use it when you
have a choice and don’t mess with binary I/O unless you really have to.

11.3.3 Positioning in fi les
Whenever you can, just read and write files from the beginning to the end. That’s
the easiest and least error-prone way. Many times, when you feel that you have
to make a change to a file, the better solution is to produce a new file containing
the change.

However, if you must, you can use positioning to select a specific place in a
file for reading or writing. Basically, every file that is open for reading has a “read/
get position” and every file that is open for writing has a “write/put position”:

0: 1:
A file: . . .

2 Put position: 6 Get position:

y

This can be used like this:

fstream fs {name}; // open for input and output
if (!fs) error("can't open ",name);

fs.seekg(5); // move reading position (g for “get”) to 5 (the 6th character)
char ch;
fs>>ch; // read and increment reading position
cout << "character[5] is " << ch << ' (' << int(ch) << ")\n";

fs.seekp(1); // move writing position (p for “put”) to 1
fs<<'y'; // write and increment writing position

Note that seekg() and seekp() increment their respective positions, so the figure
represents the state of the program after execution.

Stroustrup_book.indb 393Stroustrup_book.indb 393 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT394

Please be careful: there is next to no run-time error checking when you use
positioning. In particular, it is undefined what happens if you try to seek (using
seekg() or seekp()) beyond the end of a file, and operating systems really do differ
in what happens then.

11.4 String streams
You can use a string as the source of an istream or the target for an ostream. An
istream that reads from a string is called an istringstream and an ostream that
stores characters written to it in a string is called an ostringstream. For example,
an istringstream is useful for extracting numeric values from a string:

double str_to_double(string s)
 // if possible, convert characters in s to floating-point value
{
 istringstream is {s}; // make a stream so that we can read from s
 double d;
 is >> d;
 if (!is) error("double format error: ",s);
 return d;
}

double d1 = str_to_double("12.4"); // testing
double d2 = str_to_double("1.34e–3");
double d3 = str_to_double("twelve point three"); // will call error()

If we try to read beyond the end of an istringstream’s string, the istringstream
will go into eof() state. This means that we can use “the usual input loop” for an
istringstream; an istringstream really is a kind of istream.

Conversely, an ostringstream can be useful for formatting output for a sys-
tem that requires a simple string argument, such as a GUI system (see §16.5). For
example:

void my_code(string label, Temperature temp)
{
 // . . .
 ostringstream os; // stream for composing a message
 os << setw(8) << label << ": "
 << fixed << setprecision(5) << temp.temp << temp.unit;
 someobject.display(Point(100,100), os.str().c_str());
 // . . .
}

Stroustrup_book.indb 394Stroustrup_book.indb 394 4/22/14 9:42 AM4/22/14 9:42 AM

11.5 LINE-ORIENTED INPUT 395

The str() member function of ostringstream returns the string composed by out-
put operations to an ostringstream. The c_str() is a member function of string
that returns a C-style string as required by many system interfaces.

The stringstreams are generally used when we want to separate actual I/O
from processing. For example, a string argument for str_to_double() will usually
originate in a file (e.g., a web log) or from a keyboard. Similarly, the message we
composed in my_code() will eventually end up written to an area of a screen. For
example, in §11.7, we use a stringstream to filter undesirable characters out of our
input. Thus, stringstreams can be seen as a mechanism for tailoring I/O to special
needs and tastes.

A simple use of an ostringstream is to construct strings by concatenation. For
example:

int seq_no = get_next_number(); // get the number of a log file
ostringstream name;
name << "myfile" << seq_no << ".log"; // e.g., myfile17.log
ofstream logfile{name.str()}; // e.g., open myfile17.log

Usually, we initialize an istringstream with a string and then read the charac-
ters from that string using input operations. Conversely, we typically initialize an
 ostringstream to the empty string and then fill it using output operations. There
is a more direct way of accessing characters in a stringstream that is sometimes
useful: ss.str() returns a copy of ss’s string, and ss.str(s) sets ss’s string to a copy
of s. §11.7 shows an example where ss.str(s) is essential.

11.5 Line-oriented input
A >> operator reads into objects of a given type according to that type’s standard
format. For example, when reading into an int, >> will read until it encounters
something that’s not a digit, and when reading into a string, >> will read until it
encounters whitespace. The standard library istream library also provides facili-
ties for reading individual characters and whole lines. Consider:

string name;
cin >> name; // input: Dennis Ritchie
cout << name << '\n'; // output: Dennis

What if we wanted to read everything on that line at once and decide how to
format it later? That could be done using the function getline(). For example:

string name;
getline(cin,name); // input: Dennis Ritchie
cout << name << '\n'; // output: Dennis Ritchie

Stroustrup_book.indb 395Stroustrup_book.indb 395 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT396

Now we have the whole line. Why would we want that? A good answer would be
“Because we want to do something that can’t be done by >>.” Often, the answer is
a poor one: “Because the user typed a whole line.” If that’s the best you can think
of, stick to >>, because once you have the line entered, you usually have to parse
it somehow. For example:

string first_name;
string second_name;
stringstream ss {name};
ss>>first_name; // input Dennis
ss>>second_name; // input Ritchie

Reading directly into first_name and second_name would have been simpler.
One common reason for wanting to read a whole line is that the definition of

whitespace isn’t always appropriate. Sometimes, we want to consider a newline
as different from other whitespace characters. For example, a text communication
with a game might consider a line a sentence, rather than relying on conventional
punctuation:

go left until you see a picture on the wall to your right
remove the picture and open the door behind it. take the bag from there

In that case, we’d first read a whole line and then extract individual words from
that.

string command;
getline(cin,command); // read the line

stringstream ss {command};
vector<string> words;
for (string s; ss>>s;)
 words.push_back(s); // extract the individual words

On the other hand, had we had a choice, we would most likely have preferred to
rely on some proper punctuation rather than a line break.

11.6 Character classifi cation
Usually, we read integers, floating-point numbers, words, etc. as defined by for-
mat conventions. However, we can — and sometimes must — go down a level of
abstraction and read individual characters. That’s more work, but when we read
individual characters, we have full control over what we are doing. Consider

Stroustrup_book.indb 396Stroustrup_book.indb 396 4/22/14 9:42 AM4/22/14 9:42 AM

11.6 CHARACTER CLASSIFICATION 397

tokenizing an expression (§7.8.2). For example, we want 1+4*x<=y/z*5 to be sep-
arated into the eleven tokens

1 + 4 * x <= y / z * 5

We could use >> to read the numbers, but trying to read the identifiers as strings
would cause x<=y to be read as one string (since < and = are not whitespace char-
acters) and z* to be read as one string (since * isn’t a whitespace character either).
Instead, we could write

for (char ch; cin.get(ch);) {
 if (isspace(ch)) { // if ch is whitespace
 // do nothing (i.e., skip whitespace)
 }
 if (isdigit(ch)) {
 // read a number
 }
 else if (isalpha(ch)) {
 // read an identifier
 }
 else {
 // deal with operators
 }
}

The istream::get() function reads a single character into its argument. It does not
skip whitespace. Like >>, get() returns a reference to its istream so that we can
test its state.

When we read individual characters, we usually want to classify them: Is
this character a digit? Is this character uppercase? And so forth. There is a set of
standard library functions for that:

Character classifi cation

isspace(c) Is c whitespace (' ', '\t', '\n', etc.)?
isalpha(c) Is c a letter ('a'.. 'z', 'A'.. 'Z') (note: not '_')?
isdigit(c) Is c a decimal digit ('0'.. '9')?
isxdigit(c) Is c a hexadecimal digit (decimal digit or 'a'.. 'f' or 'A'.. 'F')?
isupper(c) Is c an uppercase letter?
islower(c) Is c a lowercase letter?
isalnum(c) Is c a letter or a decimal digit?
iscntrl(c) Is c a control character (ASCII 0..31 and 127)?

Stroustrup_book.indb 397Stroustrup_book.indb 397 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT398

Character classifi cation (continued)

ispunct(c) Is c not a letter, digit, whitespace, or invisible control character?
isprint(c) Is c printable (ASCII ' '.. '~')?
isgraph(c) Is isalpha(c) or isdigit(c) or ispunct(c) (note: not space)?

Note that the classifications can be combined using the “or” operator (||). For exam-
ple, isalnum(c) means isalpha(c)||isdigit(c); that is, “Is c either a letter or a digit?”

In addition, the standard library provides two useful functions for getting rid
of case differences:

Character case

toupper(c) c or c’s uppercase equivalent
tolower(c) c or c’s lowercase equivalent

These are useful when you want to ignore case differences. For example, in input
from a user Right, right, and rigHT most likely mean the same thing (rigHT most
likely being the result of an unfortunate hit on the Caps Lock key). After applying
tolower() to each character in each of those strings, we get right for each. We can
do that for an arbitrary string:

void tolower(string& s) // put s into lower case
{
 for (char& x : s) x = tolower(x);
}

We use pass-by-reference (§8.5.5) to actually change the string. Had we wanted
to keep the old string we could have written a function to make a lowercase copy.
Prefer tolower() to toupper() because that works better for text in some natural
languages, such as German, where not every lowercase character has an upper-
case equivalent.

11.7 Using nonstandard separators
This section provides a semi-realistic example of the use of iostreams to solve a
real problem. When we read strings, words are by default separated by whitespace.
Unfortunately, istream doesn’t offer a facility for us to define what characters
make up whitespace or in some other way directly change how >> reads a string.
So, what do we do if we need another definition of whitespace? Consider the

Stroustrup_book.indb 398Stroustrup_book.indb 398 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 399

example from §4.6.3 where we read in “words” and compared them. Those words
were whitespace-separated, so if we read

As planned, the guests arrived; then,

We would get the “words”

As
planned,
the
guests
arrived;
then,

This is not what we’d find in a dictionary: planned, and arrived; are not words.
They are words plus distracting and irrelevant punctuation characters. For most
purposes we must treat punctuation just like whitespace. How might we get rid
of such punctuation? We could read characters, remove the punctuation charac-
ters — or turn them into whitespace — and then read the “cleaned-up” input again:

string line;
getline(cin,line); // read into line
for (char& ch : line) // replace each punctuation character by a space
 switch(ch) {
 case ';': case '.': case ',': case '?': case '!':
 ch = ' ';
 }

stringstream ss(line); // make an istream ss reading from line
vector<string> vs;
for (string word; ss>>word;) // read words without punctuation characters
 vs.push_back(word);

Using that to read the line, we get the desired

As
planned
the
guests
arrived
then

Stroustrup_book.indb 399Stroustrup_book.indb 399 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT400

Unfortunately, the code above is messy and rather special-purpose. What would
we do if we had another definition of punctuation? Let’s provide a more general
and useful way of removing unwanted characters from an input stream. What
would that be? What would we like our user code to look like? How about

ps.whitespace(";:,."); // treat semicolon, colon, comma, and dot as whitespace
for (string word; ps>>word;)
 vs.push_back(word);

How would we define a stream that would work like ps? The basic idea is to read
words from an ordinary input stream and then treat the user-specified “whitespace”
characters as whitespace; that is, we do not give “whitespace” characters to the
user, we just use them to separate words. For example,

as.not

should be the two words

as
not

We can define a class to do that for us. It must get characters from an istream and
have a >> operator that works just like istream’s except that we can tell it which
characters it should consider to be whitespace. For simplicity, we will not provide
a way of treating existing whitespace characters (space, newline, etc.) as non-
whitespace; we’ll just allow a user to specify additional “whitespace” characters.
Nor will we provide a way to completely remove the designated characters from
the stream; as before, we will just turn them into whitespace. Let’s call that class
Punct_stream:

class Punct_stream { // like an istream, but the user can add to
 // the set of whitespace characters
public:
 Punct_stream(istream& is)
 : source{is}, sensitive{true} { }

 void whitespace(const string& s) // make s the whitespace set
 { white = s; }
 void add_white(char c) { white += c; } // add to the whitespace set
 bool is_whitespace(char c); // is c in the whitespace set?

Stroustrup_book.indb 400Stroustrup_book.indb 400 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 401

 void case_sensitive(bool b) { sensitive = b; }
 bool is_case_sensitive() { return sensitive; }

 Punct_stream& operator>>(string& s);
 operator bool();
private:
 istream& source; // character source
 istringstream buffer; // we let buffer do our formatting
 string white; // characters considered “whitespace”
 bool sensitive; // is the stream case-sensitive?
};

The basic idea is — just as in the example above — to read a line at a time from the
 istream, convert “whitespace” characters into spaces, and then use the istringstream
to do formatting. In addition to dealing with user-defined whitespace, we have
given Punct_stream a related facility: if we ask it to, using case_sensitive(), it can
convert case-sensitive input into non-case-sensitive input. For example, if we ask,
we can get a Punct_stream to read

Man bites dog!

as

man
bites
dog

Punct_stream’s constructor takes the istream to be used as a character source and
gives it the local name source. The constructor also defaults the stream to the
usual case-sensitive behavior. We can make a Punct_stream that reads from cin
regarding semicolon, colon, and dot as whitespace, and that turns all characters
into lower case:

Punct_stream ps {cin}; // ps reads from cin
ps.whitespace(";:."); // semicolon, colon, and dot are also whitespace
ps.case_sensitive(false); // not case-sensitive

Obviously, the most interesting operation is the input operator >>. It is also by far
the most difficult to define. Our general strategy is to read a whole line from the
istream into a string (called line). We then convert all of “our” whitespace charac-
ters to the space character (' '). That done, we put the line into the istringstream

Stroustrup_book.indb 401Stroustrup_book.indb 401 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT402

called buffer. Now we can use the usual whitespace-separating >> to read from
buffer. The code looks a bit more complicated than this because we simply try
reading from the buffer and try to fill it only when we find it empty:

Punct_stream& Punct_stream::operator>>(string& s)
{
 while (!(buffer>>s)) { // try to read from buffer
 if (buffer.bad() || !source.good()) return *this;
 buffer.clear();

 string line;
 getline(source,line); // get a line from source

 // do character replacement as needed:
 for (char& ch : line)
 if (is_whitespace(ch))
 ch = ' '; // to space
 else if (!sensitive)
 ch = tolower(ch); // to lower case

 buffer.str(line); // put string into stream
 }
 return *this;
}

Let’s consider this bit by bit. Consider first the somewhat unusual

while (!(buffer>>s)) {

If there are characters in the istringstream called buffer, the read buffer>>s will
work, and s will receive a “whitespace”-separated word; then there is nothing
more to do. That will happen as long as there are characters in buffer for us to
read. However, when buffer>>s fails — that is, if !(buffer>>s) — we must replenish
buffer from source. Note that the buffer>>s read is in a loop; after we have tried
to replenish buffer, we need to try another read, so we get

while (!(buffer>>s)) { // try to read from buffer
 if (buffer.bad() || !source.good()) return *this;
 buffer.clear();

 // replenish buffer
}

Stroustrup_book.indb 402Stroustrup_book.indb 402 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 403

If buffer is bad() or the source has a problem, we give up; otherwise, we clear
buffer and try again. We need to clear buffer because we get into that “replenish
loop” only if a read failed, typically because we hit eof() for buffer; that is, there
were no more characters in buffer for us to read. Dealing with stream state is
always messy and it is often the source of subtle errors that require tedious debug-
ging. Fortunately the rest of the replenish loop is pretty straightforward:

string line;
getline(source,line); // get a line from source

// do character replacement as needed:
for (char& ch : line)
 if (is_whitespace(ch))
 ch = ' '; // to space
 else if (!sensitive)
 ch = tolower(ch); // to lower case

buffer.str(line); // put string into stream

We read a line into line. Then we look at each character of that line to see if we
need to change it. The is_whitespace() function is a member of Punct_stream,
which we’ll define later. The tolower() function is a standard library function
doing the obvious, such as turning A into a (see §11.6).

Once we have a properly processed line, we need to get it into our
 istringstream. That’s what buffer.str(line) does; it can be read as “Set the istring-
stream buffer’s string to line.”

Note that we “forgot” to test the state of source after reading from it using
getline(). We don’t need to because we will eventually reach the !source.good()
test at the top of the loop.

As ever, we return a reference to the stream itself, *this, as the result of >>;
see §17.10.

Testing for whitespace is easy; we just compare a character to each character
of the string that holds our whitespace set:

bool Punct_stream::is_whitespace(char c)
{
 for (char w : white)
 if (c==w) return true;
 return false;
}

Stroustrup_book.indb 403Stroustrup_book.indb 403 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT404

Remember that we left the istringstream to deal with the usual whitespace char-
acters (e.g., newline and space) in the usual way, so we don’t need to do anything
special about those.

This leaves one mysterious function:

Punct_stream::operator bool()
{
 return !(source.fail() || source.bad()) && source.good();
}

The conventional use of an istream is to test the result of >>. For example:

while (ps>>s) { /* . . . */ }

That means that we need a way of looking at the result of ps>>s as a Boolean
value. The result of ps>>s is a Punct_stream, so we need a way of implicitly
turning a Punct_stream into a bool. That’s what Punct_stream’s operator bool()
does. A member function called operator bool() defines a conversion to bool. In
particular, it returns true if the operation on the Punct_stream succeeded.

Now we can write our program:

int main()
 // given text input, produce a sorted list of all words in that text
 // ignore punctuation and case differences
 // eliminate duplicates from the output
{
 Punct_stream ps {cin};
 ps.whitespace(";:,.?!()\"{}<>/&$@#%^*|~"); // note \“ means ” in string
 ps.case_sensitive(false);

 cout << "please enter words\n";
 vector<string> vs;
 for (string word; ps>>word;)
 vs.push_back(word); // read words

 sort(vs.begin(),vs.end()); // sort in lexicographical order
 for (int i=0; i<vs.size(); ++i) // write dictionary
 if (i==0 || vs[i]!=vs[i–1]) cout << vs[i] << '\n';
}

This will produce a properly sorted list of words from input. The test

if (i==0 || vs[i]!=vs[i–1])

Stroustrup_book.indb 404Stroustrup_book.indb 404 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 405

will suppress duplicates. Feed this program the input

There are only two kinds of languages: languages that people complain
about, and languages that people don't use.

and it will output

about
and
are
complain
don't
kind
languages
of
only
people
that
there
two
use

Why did we get don't and not dont? We left the single quote out of the whitespace()
call.

Caution: Punct_stream behaves like an istream in many important and useful
ways, but it isn’t really an istream. For example, we can’t ask for its state using
 rdstate(), eof() isn’t defined, and we didn’t bother providing a >> that reads integers.
Importantly, we cannot pass a Punct_stream to a function expecting an istream.
Could we define a Punct_istream that really is an istream? We could, but we don’t
yet have the programming experience, the design concepts, and the language fa-
cilities required to pull off that stunt (if you — much later — want to return to this
problem, you have to look up stream buffers in an expert-level guide or manual).

Did you find Punct_stream easy to read? Did you find the explanations easy
to follow? Do you think you could have written it yourself? If you were a genuine
novice a few days ago, the honest answer is likely to be “No, no, no!” or even
“NO, no! Nooo!! — Are you crazy?” We understand — and the answer to the last
question/outburst is “No, at least we think not.” The purpose of the example is

• To show a somewhat realistic problem and solution
• To show what can be achieved with relatively modest means
• To provide an easy-to-use solution to an apparently easy problem
• To illustrate the distinction between the interface and the implementation

Stroustrup_book.indb 405Stroustrup_book.indb 405 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT406

To become a programmer, you need to read code, and not just carefully polished
solutions to educational problems. This is an example. In another few days or
weeks, this will become easy for you to read, and you will be looking at ways to
improve the solution.

One way to think of this example is as equivalent to a teacher having dropped
some genuine English slang into an English-for-beginners course to give a bit of
color and enliven the proceedings.

11.8 And there is so much more
The details of I/O seem infinite. They probably are, since they are limited only
by human inventiveness and capriciousness. For example, we have not considered
the complexity implied by natural languages. What is written as 12.35 in English
will be conventionally represented as 12,35 in most other European languages.
Naturally, the C++ standard library provides facilities for dealing with that and
many other natural-language-specific aspects of I/O. How do you write Chinese
characters? How do you compare strings written using Malayalam characters?
There are answers, but they are far beyond the scope of this book. If you need
to know, look in more specialized or advanced books (such as Langer, Standard
C++ IOStreams and Locales, and Stroustrup, The C++ Programming Language) and
in library and system documentation. Look for “locale”; that’s the term usually
applied to facilities for dealing with natural language differences.

Another source of complexity is buffering: the standard library iostreams rely
on a concept called streambuf. For advanced work — whether for performance
or functionality — with iostreams these streambufs are unavoidable. If you feel
the need to define your own iostreams or to tune iostreams to new data sources/
sinks, see Chapter 38 of The C++ Programming Language by Stroustrup or your
system documentation.

When using C++, you may also encounter the C standard printf()/scanf()
family of I/O functions. If you do, look them up in §27.6, §B.10.2, or in the ex-
cellent C textbook by Kernighan and Ritchie (The C Programming Language) or one
of the innumerable sources on the web. Each language has its own I/O facilities;
they all vary, most are quirky, but most reflect (in various odd ways) the same
fundamental concepts that we have presented in Chapters 10 and 11.

The standard library I/O facilities are summarized in Appendix B.
The related topic of graphical user interfaces (GUIs) is described in Chap-

ters 12–16.

Stroustrup_book.indb 406Stroustrup_book.indb 406 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 REVIEW 407

Drill
 1. Start a program called Test_output.cpp. Declare an integer birth_year

and assign it the year you were born.
 2. Output your birth_year in decimal, hexadecimal, and octal form.
 3. Label each value with the name of the base used.
 4. Did you line up your output in columns using the tab character? If not,

do it.
 5. Now output your age.
 6. Was there a problem? What happened? Fix your output to decimal.
 7. Go back to 2 and cause your output to show the base for each output.
 8. Try reading as octal, hexadecimal, etc.:

cin >> a >>oct >> b >> hex >> c >> d;
cout << a << '\t'<< b << '\t'<< c << '\t'<< d << '\n' ;

Run this code with the input

1234 1234 1234 1234

Explain the results.
 9. Write some code to print the number 1234567.89 three times, first using

defaultfloat, then fixed, then scientific forms. Which output form pre-
sents the user with the most accurate representation? Explain why.

 10. Make a simple table including last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experi-
ment with different field widths until you are satisfied that the table is well
presented.

Review
 1. Why is I/O tricky for a programmer?
 2. What does the notation << hex do?
 3. What are hexadecimal numbers used for in computer science? Why?
 4. Name some of the options you may want to implement for formatting

integer output.
 5. What is a manipulator?
 6. What is the prefix for decimal? For octal? For hexadecimal?
 7. What is the default output format for floating-point values?
 8. What is a field?
 9. Explain what setprecision() and setw() do.
 10. What is the purpose of file open modes?
 11. Which of the following manipulators does not “stick”: hex, scientific,

setprecision(), showbase, setw?

Stroustrup_book.indb 407Stroustrup_book.indb 407 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT408

 12. What is the difference between character I/O and binary I/O?
 13. Give an example of when it would probably be beneficial to use a binary

file instead of a text file.
 14. Give two examples where a stringstream can be useful.
 15. What is a file position?
 16. What happens if you position a file position beyond the end of file?
 17. When would you prefer line-oriented input to type-specific input?
 18. What does isalnum(c) do?

Terms
binary hexadecimal octal
character classifi cation irregularity output formatting
decimal line-oriented input regularity
defaultfl oat manipulator scientifi c
fi le positioning nonstandard separator setprecision()
fi xed noshowbase showbase

Exercises
 1. Write a program that reads a text file and converts its input to all lower

case, producing a new file.
 2. Write a program that given a file name and a word outputs each line that

contains that word together with the line number. Hint: getline().
 3. Write a program that removes all vowels from a file (“disemvowels”). For

example, Once upon a time! becomes nc pn tm!. Surprisingly often, the
result is still readable; try it on your friends.

 4. Write a program called multi_input.cpp that prompts the user to enter
several integers in any combination of octal, decimal, or hexadecimal,
using the 0 and 0x base suffixes; interprets the numbers correctly; and
converts them to decimal form. Then your program should output the
values in properly spaced columns like this:

 0x43 hexadecimal converts to 67 decimal
 0123 octal converts to 83 decimal
 65 decimal converts to 65 decimal

 5. Write a program that reads strings and for each string outputs the char-
acter classification of each character, as defined by the character classifica-
tion functions presented in §11.6. Note that a character can have several
classifications (e.g., x is both a letter and an alphanumeric).

 6. Write a program that replaces punctuation with whitespace. Consider
. (dot), ; (semicolon), , (comma), ? (question mark), - (dash), ' (single

Stroustrup_book.indb 408Stroustrup_book.indb 408 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 EXERCISES 409

quote) punctuation characters. Don’t modify characters within a pair of
double quotes ("). For example, “ - don't use the as-if rule.” becomes
“ don t use the as if rule ”.

 7. Modify the program from the previous exercise so that it replaces don't
with do not, can't with cannot, etc.; leaves hyphens within words intact
(so that we get “ do not use the as-if rule ”); and converts all characters
to lower case.

 8. Use the program from the previous exercise to make a dictionary (as an
alternative to the approach in §11.7). Run the result on a multi-page text
file, look at the result, and see if you can improve the program to make a
better dictionary.

 9. Split the binary I/O program from §11.3.2 into two: one program that
converts an ordinary text file into binary and one program that reads
binary and converts it to text. Test these programs by comparing a text
file with what you get by converting it to binary and back.

 10. Write a function vector<string> split(const string& s) that returns a vector
of whitespace-separated substrings from the argument s.

 11. Write a function vector<string> split(const string& s, const string& w)
that returns a vector of whitespace-separated substrings from the argu-
ment s, where whitespace is defined as “ordinary whitespace” plus the
characters in w.

 12. Reverse the order of characters in a text file. For example, asdfghjkl be-
comes lkjhgfdsa. Warning: There is no really good, portable, and efficient
way of reading a file backward.

 13. Reverse the order of words (defined as whitespace-separated strings) in a
file. For example, Norwegian Blue parrot becomes parrot Blue Norwegian.
You are allowed to assume that all the strings from the file will fit into
memory at once.

 14. Write a program that reads a text file and writes out how many characters
of each character classification (§11.6) are in the file.

 15. Write a program that reads a file of whitespace-separated numbers and
outputs a file of numbers using scientific format and precision 8 in four
fields of 20 characters per line.

 16. Write a program to read a file of whitespace-separated numbers and out-
put them in order (lowest value first), one value per line. Write a value
only once, and if it occurs more than once write the count of its occur-
rences on its line. For example, 7 5 5 7 3 117 5 should give

3
5 3
7 2
117

Stroustrup_book.indb 409Stroustrup_book.indb 409 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT410

Postscript

Input and output are messy because our human tastes and conventions have
not followed simple-to-state rules and straightforward mathematical laws. As pro-
grammers, we are rarely in a position to dictate that our users depart from their
preferences, and when we are, we should typically be less arrogant than to think
that we can provide a simple alternative to conventions built up over time. Conse-
quently, we must expect, accept, and adapt to a certain messiness of input and out-
put while still trying to keep our programs as simple as possible — but no simpler.

Stroustrup_book.indb 410Stroustrup_book.indb 410 4/22/14 9:42 AM4/22/14 9:42 AM

411

12

A Display Model

“The world was black and white then.
[It] didn’t turn color

until sometime in the 1930s.”

—Calvin’s dad

This chapter presents a display model (the output part of

GUI), giving examples of use and fundamental notions

such as screen coordinates, lines, and color. Line, Lines, Poly-

gons, Axis, and Text are examples of Shapes. A Shape is an ob-

ject in memory that we can display and manipulate on a screen.

The next two chapters will explore these classes further, with

Chapter 13 focusing on their implementation and Chapter 14 on

design issues.

Stroustrup_book.indb 411Stroustrup_book.indb 411 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL412

12.1 Why graphics?
Why do we spend four chapters on graphics and one on GUIs (graphical user in-
terfaces)? After all, this is a book about programming, not a graphics book. There
is a huge number of interesting software topics that we don’t discuss, and we can
at best scratch the surface on the topic of graphics. So, “Why graphics?” Basically,
graphics is a subject that allows us to explore several important areas of software
design, programming, and programming language facilities:

• Graphics are useful. There is much more to programming than graphics and
much more to software than code manipulated through a GUI. However,
in many areas good graphics are either essential or very important. For
example, we wouldn’t dream of studying scientifi c computing, data analy-
sis, or just about any quantitative subject without the ability to graph data.
Chapter 15 gives simple (but general) facilities for graphing data.

• Graphics are fun. There are few areas of computing where the effect of a
piece of code is as immediately obvious and — when fi nally free of bugs —
as pleasing. We’d be tempted to play with graphics even if it wasn’t useful!

• Graphics provide lots of interesting code to read. Part of learning to program is
to read lots of code to get a feel for what good code is like. Similarly, the
way to become a good writer of English involves reading a lot of books,
articles, and quality newspapers. Because of the direct correspondence
between what we see on the screen and what we write in our programs,
simple graphics code is more readable than most kinds of code of similar
complexity. This chapter will prove that you can read graphics code after
a few minutes of introduction; Chapter 13 will demonstrate how you can
write it after another couple of hours.

 12.1 Why graphics?

 12.2 A display model

 12.3 A first example

 12.4 Using a GUI library

 12.5 Coordinates

 12.6 Shapes

 12.7 Using Shape primitives
 12.7.1 Graphics headers and main
 12.7.2 An almost blank window
 12.7.3 Axis
 12.7.4 Graphing a function
 12.7.5 Polygons
 12.7.6 Rectangles
 12.7.7 Fill
 12.7.8 Text
 12.7.9 Images
 12.7.10 And much more

 12.8 Getting this to run
 12.8.1 Source fi les

Stroustrup_book.indb 412Stroustrup_book.indb 412 4/22/14 9:42 AM4/22/14 9:42 AM

12.2 A DISPLAY MODEL 413

• Graphics are a fertile source of design examples. It is actually hard to design and
implement a good graphics and GUI library. Graphics are a very rich
source of concrete and practical examples of design decisions and de-
sign techniques. Some of the most useful techniques for designing classes,
designing functions, separating software into layers (of abstraction), and
constructing libraries can be illustrated with a relatively small amount of
graphics and GUI code.

• Graphics provide a good introduction to what is commonly called object-oriented
programming and the language features that support it. Despite rumors to the
contrary, object-oriented programming wasn’t invented to be able to do
graphics (see Chapter 22), but it was soon applied to that, and graphics
provide some of the most accessible examples of object-oriented designs.

• Some of the key graphics concepts are nontrivial. So they are worth teaching, rather
than leaving it to your own initiative (and patience) to seek out information.
If we did not show how graphics and GUI were done, you might consider
them “magic,” thus violating one of the fundamental aims of this book.

12.2 A display model
The iostream library is oriented toward reading and writing streams of charac-
ters as they might appear in a list of numeric values or a book. The only direct
supports for the notion of graphical position are the newline and tab charac-
ters. You can embed notions of color and two-dimensional positions, etc. in a
one-dimensional stream of characters. That’s what layout (typesetting, “markup”)
languages such as Troff, TeX, Word, HTML, and XML (and their associated
graphical packages) do. For example:

<hr>
<h2>
Organization
</h2>
This list is organized in three parts:

 Proposals, numbered EPddd, . . .
 Issues, numbered EIddd, . . .
 Suggestions, numbered ESddd, . . .

<p>We try to . . .
<p>

This is a piece of HTML specifying a header (<h2> . . . </h2>), a list (. . .
) with list items (. . .), and a paragraph (<p>). We left out most

Stroustrup_book.indb 413Stroustrup_book.indb 413 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL414

of the actual text because it is irrelevant here. The point is that you can express
layout notions in plain text, but the connection between the characters written
and what appears on the screen is indirect, governed by a program that interprets
those “markup” commands. Such techniques are fundamentally simple and im-
mensely useful (just about everything you read has been produced using them),
but they also have their limitations.

In this chapter and the next four, we present an alternative: a notion of graph-
ics and of graphical user interfaces that is directly aimed at a computer screen. The
fundamental concepts are inherently graphical (and two-dimensional, adapted to
the rectangular area of a computer screen), such as coordinates, lines, rectangles,
and circles. The aim from a programming point of view is a direct correspondence
between the objects in memory and the images on the screen.

The basic model is as follows: We compose objects with basic objects provided
by a graphics system, such as lines. We “attach” these graphics objects to a window
object, representing our physical screen. A program that we can think of as the
display itself, as “a display engine,” as “our graphics library,” as “the GUI library,”
or even (humorously) as “the small gnome writing on the back of the screen,” then
takes the objects we have attached to our window and draws them on the screen:

Circle

Square

Display
engine

“Window”

attach()

attach()

draw()

The “display engine” draws lines on the screen, places strings of text on the screen,
colors areas of the screen, etc. For simplicity, we’ll use the phrase “our GUI li-
brary” or even “the system” for the display engine even though our GUI library
does much more than just drawing the objects. In the same way that our code lets
the GUI library do most of the work for us, the GUI library delegates much of its
work to the operating system.

12.3 A fi rst example
Our job is to define classes from which we can make objects that we want to see
on the screen. For example, we might want to draw a graph as a series of con-
nected lines. Here is a small program presenting a very simple version of that:

Stroustrup_book.indb 414Stroustrup_book.indb 414 4/22/14 9:42 AM4/22/14 9:42 AM

12.3 A FIRST EXAMPLE 415

#include "Simple_window.h" // get access to our window library
#include "Graph.h" // get access to our graphics library facilities

int main()
{
 using namespace Graph_lib; // our graphics facilities are in Graph_lib

 Point tl {100,100}; // to become top left corner of window

 Simple_window win {tl,600,400,"Canvas"}; // make a simple window

 Polygon poly; // make a shape (a polygon)

 poly.add(Point{300,200}); // add a point
 poly.add(Point{350,100}); // add another point
 poly.add(Point{400,200}); // add a third point

 poly.set_color(Color::red); // adjust properties of poly

 win.attach (poly); // connect poly to the window

 win.wait_for_button(); // give control to the display engine
}

When we run this program, the screen looks something like this:

Stroustrup_book.indb 415Stroustrup_book.indb 415 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL416

Let’s go through the program line by line to see what was done. First we include
the headers for our graphics interface libraries:

#include "Simple_window.h" // get access to our window library
#include "Graph.h" // get access to our graphics library facilities

Then, in main(), we start by telling the compiler that our graphics facilities are to
be found in Graph_lib:

using namespace Graph_lib; // our graphics facilities are in Graph_lib

Then, we define a point that we will use as the top left corner of our window:

Point tl {100,100}; // to become top left corner of window

Next, we create a window on the screen:

Simple_window win {tl,600,400,"Canvas"}; // make a simple window

We use a class representing a window in our Graph_lib interface library called
Simple_window. The name of this particular Simple_window is win; that is, win
is a variable of class Simple_window. The initializer list for win starts with the
point to be used as the top left corner, tl, followed by 600 and 400. Those are the
width and height, respectively, of the window, as displayed on the screen, mea-
sured in pixels. We’ll explain in more detail later, but the main point here is that
we specify a rectangle by giving its width and height. The string Canvas is used to
label the window. If you look, you can see the word Canvas in the top left corner
of the window’s frame.

Next, we put an object in the window:

Polygon poly; // make a shape (a polygon)

poly.add(Point{300,200}); // add a point
poly.add(Point{350,100}); // add another point
poly.add(Point{400,200}); // add a third point

We define a polygon, poly, and then add points to it. In our graphics library, a
Polygon starts empty and we can add as many points to it as we like. Since we
added three points, we get a triangle. A point is simply a pair of values giving the
x and y (horizontal and vertical) coordinates within a window.

Just to show off, we then color the lines of our polygon red:

poly.set_color(Color::red); // adjust properties of poly

Stroustrup_book.indb 416Stroustrup_book.indb 416 4/22/14 9:42 AM4/22/14 9:42 AM

12.3 A FIRST EXAMPLE 417

Finally, we attach poly to our window, win:

win.attach(poly); // connect poly to the window

If the program wasn’t so fast, you would notice that so far nothing had happened
to the screen: nothing at all. We created a window (an object of class Simple_
window, to be precise), created a polygon (called poly), painted that polygon red
(Color::red), and attached it to the window (called win), but we have not yet
asked for that window to be displayed on the screen. That’s done by the final line
of the program:

win.wait_for_button(); // give control to the display engine

To get a GUI system to display objects on the screen, you have to give control
to “the system.” Our wait_for_button() does that, and it also waits for you to
“press” (“click”) the “Next” button of our Simple_window before proceeding.
This gives you a chance to look at the window before the program finishes and
the window disappears. When you press the button, the program terminates,
closing the window.

In isolation, our window looks like this:

You’ll notice that we “cheated” a bit. Where did that button labeled “Next” come
from? We built it into our Simple_window class. In Chapter 16, we’ll move from
Simple_window to “plain” Window, which has no potentially spurious facilities

Stroustrup_book.indb 417Stroustrup_book.indb 417 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL418

built in, and show how we can write our own code to control interaction with
a window.

For the next three chapters, we’ll simply use that “Next” button to move from
one “display” to the next when we want to display information in stages (“frame
by frame”).

You are so used to the operating system putting a frame around each win-
dow that you might not have noticed it specifically. However, the pictures in this
and the following chapters were produced on a Microsoft Windows system, so
you get the usual three buttons on the top right “for free.” This can be useful: if
your program gets in a real mess (as it surely will sometimes during debugging),
you can kill it by hitting the X button. When you run your program on another
system, a different frame will be added to fit that system’s conventions. Our only
contribution to the frame is the label (here, Canvas).

12.4 Using a GUI library
In this book, we will not use the operating system’s graphical and GUI (graph-
ical user interface) facilities directly. Doing so would limit our programs to run
on a single operating system and would also force us to deal directly with a lot
of messy details. As with text I/O, we’ll use a library to smooth over operating
system differences, I/O device variations, etc. and to simplify our code. Unfor-
tunately, C++ does not provide a standard GUI library the way it provides the
standard stream I/O library, so we use one of the many available C++ GUI
libraries. So as not to tie you directly into one of those GUI libraries, and to save
you from hitting the full complexity of a GUI library all at once, we use a set of
simple interface classes that can be implemented in a couple of hundred lines of
code for just about any GUI library.

The GUI toolkit that we are using (indirectly for now) is called FLTK (Fast
Light Tool Kit, pronounced “full tick”) from www.fltk.org. Our code is portable
wherever FLTK is used (Windows, Unix, Mac, Linux, etc.). Our interface classes
can also be re-implemented using other toolkits, so code using them is potentially
even more portable.

The programming model presented by our interface classes is far simpler
than what common toolkits offer. For example, our complete graphics and GUI
interface library is about 600 lines of C++ code, whereas the extremely terse
FLTK documentation is 370 pages. You can download that from www.fltk.org,
but we don’t recommend you do that just yet. You can do without that level of
detail for a while. The general ideas presented in Chapters 12–16 can be used
with any popular GUI toolkit. We will of course explain how our interface classes
map to FLTK so that you will (eventually) see how you can use that (and similar
toolkits) directly, if necessary.

Stroustrup_book.indb 418Stroustrup_book.indb 418 4/22/14 9:42 AM4/22/14 9:42 AM

12.5 COORDINATES 419

We can illustrate the parts of our “graphics world” like this:

Our code

Our screen

Our interface library

A graphics/GUI library
(here FLTK)

The operating system
(e.g., Windows or Linux)

Our interface classes provide a simple and user-extensible basic notion of two-
dimensional shapes with limited support for the use of color. To drive that, we
present a simple notion of GUI based on “callback” functions triggered by the use
of user-defined buttons, etc. on the screen (Chapter 16).

12.5 Coordinates
A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot
that can be given some color. The most common way of modeling a screen in a
program is as a rectangle of pixels. Each pixel is identified by an x (horizontal)
coordinate and a y (vertical) coordinate. The x coordinates start with 0, indicating
the leftmost pixel, and increase (toward the right) to the rightmost pixel. The y
coordinates start with 0, indicating the topmost pixel, and increase (toward the
bottom) to the lowest pixel:

50,50

0,0 200,0

0,100 200,100

Stroustrup_book.indb 419Stroustrup_book.indb 419 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL420

Please note that y coordinates “grow downward.” Mathematicians, in particular,
find this odd, but screens (and windows) come in many sizes, and the top left
point is about all that they have in common.

The number of pixels available depends on the screen: 1024-by-768, 1280-by-
1024, 1400-by-1050, and 1600-by-1200 are common screen sizes.

In the context of interacting with a computer using a screen, a window is a
rectangular region of the screen devoted to some specific purpose and controlled
by a program. A window is addressed exactly like a screen. Basically, we see a
window as a small screen. For example, when we said

Simple_window win {tl,600,400,"Canvas"};

we requested a rectangular area 600 pixels wide and 400 pixels high that we can ad-
dress as 0–599 (left to right) and 0–399 (top to bottom). The area of a window that
you can draw on is commonly referred to as a canvas. The 600-by-400 area refers
to “the inside” of the window, that is, the area inside the system-provided frame;
it does not include the space the system uses for the title bar, quit button, etc.

12.6 Shapes
Our basic toolbox for drawing on the screen consists of about a dozen classes:

Window

Simple_window Point

Line Lines Polygon Axis Rectangle Text Image

Shape

Line_style Color

An arrow indicates that the class pointing can be used where the class pointed to
is required. For example, a Polygon can be used where a Shape is required; that
is, a Polygon is a kind of Shape.

We will start out presenting and using

• Simple_window, Window

• Shape, Text, Polygon, Line, Lines, Rectangle, Function, etc.
• Color, Line_style, Point

• Axis

Stroustrup_book.indb 420Stroustrup_book.indb 420 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 421

Later (Chapter 16), we’ll add GUI (user interaction) classes:

• Button, In_box, Menu, etc.

We could easily add many more classes (for some definition of “easy”), such as

• Spline, Grid, Block_chart, Pie_chart, etc.

However, defining or describing a complete GUI framework with all its facilities
is beyond the scope of this book.

12.7 Using Shape primitives
In this section, we will walk you through some of the primitive facilities of our
graphics library: Simple_window, Window, Shape, Text, Polygon, Line, Lines,
Rectangle, Color, Line_style, Point, Axis. The aim is to give you a broad view of
what you can do with those facilities, but not yet a detailed understanding of any
of those classes. In the next chapters, we explore the design of each.

We will now walk through a simple program, explaining the code line by line
and showing the effect of each on the screen. When you run the program you’ll
see how the image changes as we add shapes to the window and modify existing
shapes. Basically, we are “animating” the progress through the code by looking at
the program as it is executed.

12.7.1 Graphics headers and main
First, we include the header files defining our interface to the graphics and GUI
facilities:

#include "Window.h" // a plain window
#include "Graph.h"

or

#include "Simple_window.h" // if we want that “Next” button
#include "Graph.h"

As you probably guessed, Window.h contains the facilities related to windows and
Graph.h the facilities related to drawing shapes (including text) into windows.
These facilities are defined in the Graph_lib namespace. To simplify notation we
use a namespace directive to make the names from Graph_lib directly available
in our program:

using namespace Graph_lib;

Stroustrup_book.indb 421Stroustrup_book.indb 421 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL422

As usual, main() contains the code we want to execute (directly or indirectly) and
deals with exceptions:

int main ()
try
{
 // . . . here is our code . . .

}
catch(exception& e) {
 // some error reporting
 return 1;
}
catch(...) {
 // some more error reporting
 return 2;
}

For this main() to compile, we need to have exception defined. We get that if we
include std_lib_facilities.h as usual, or we could start to deal directly with stan-
dard headers and include <stdexcept>.

12.7.2 An almost blank window
We will not discuss error handling here (see Chapter 5, in particular, §5.6.3) but
go straight to the graphics within main():

Point tl {100,100}; // top left corner of our window

Simple_window win {tl,600,400,"Canvas"};
 // screen coordinate tl for top left corner
 // window size(600*400)
 // title: Canvas
win.wait_for_button(); // display!

This creates a Simple_window, that is, a window with a “Next” button, and dis-
plays it on the screen. Obviously, we need to have #included the header Simple_
window.h rather than Window.h to get Simple_window. Here we are specific
about where on the screen the window should go: its top left corner goes at
Point{100,100}. That’s near, but not too near, the top left corner of the screen.

Stroustrup_book.indb 422Stroustrup_book.indb 422 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 423

Obviously, Point is a class with a constructor that takes a pair of integers and
interprets them as an (x,y) coordinate pair. We could have written

Simple_window win {Point{100,100},600,400,"Canvas"};

However, we want to use the point (100,100) several times so it is more conve-
nient to give it a symbolic name. The 600 is the width and 400 is the height of the
window, and Canvas is the label we want put on the frame of the window.

To actually get the window drawn on the screen, we have to give control to
the GUI system. We do this by calling win.wait_for_button() and the result is:

In the background of our window, we see a laptop screen (somewhat cleaned up for
the occasion). For people who are curious about irrelevant details, we can tell you
that I took the photo standing near the Picasso library in Antibes looking across the
bay to Nice. The black console window partially hidden behind is the one running
our program. Having a console window is somewhat ugly and unnecessary, but it
has the advantage of giving us an effective way of killing our window if a partially
debugged program gets into an infinite loop and refuses to go away. If you look
carefully, you’ll notice that we have the Microsoft C++ compiler running, but you
could just as well have used some other compiler (such as Borland or GNU).

Stroustrup_book.indb 423Stroustrup_book.indb 423 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL424

For the rest of the presentation we will eliminate the distractions around our
window and just show that window by itself:

The actual size of the window (in inches) depends on the resolution of your
screen. Some screens have bigger pixels than other screens.

12.7.3 Axis
An almost blank window isn’t very interesting, so we’d better add some informa-
tion. What would we like to display? Just to remind you that graphics is not all
fun and games, we will start with something serious and somewhat complicated:
an axis. A graph without axes is usually a disgrace. You just don’t know what the
data represents without axes. Maybe you explained it all in some accompanying
text, but it is far safer to add axes; people often don’t read the explanation and
often a nice graphical representation gets separated from its original context. So,
a graph needs axes:

Axis xa {Axis::x, Point{20,300}, 280, 10, "x axis"}; // make an Axis
 // an Axis is a kind of Shape
 // Axis::x means horizontal
 // starting at (20,300)
 // 280 pixels long
 // 10 “notches”
 // label the axis "x axis"

Stroustrup_book.indb 424Stroustrup_book.indb 424 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 425

win.attach(xa); // attach xa to the window, win
win.set_label("Canvas #2"); // relabel the window
win.wait_for_button(); // display!

The sequence of actions is: make the axis object, add it to the window, and finally
display it:

We can see that an Axis::x is a horizontal line. We see the required number of
“notches” (10) and the label “x axis.” Usually, the label will explain what the
axis and the notches represent. Naturally, we chose to place the x axis some-
where near the bottom of the window. In real life, we’d represent the height and
width by symbolic constants so that we could refer to “just above the bottom” as
something like y_max-bottom_margin rather than by a “magic constant,” such
as 300 (§4.3.1, §15.6.2).

To help identify our output we relabeled the screen to Canvas #2 using
 Window’s member function set_label().

Now, let’s add a y axis:

Axis ya {Axis::y, Point{20,300}, 280, 10, "y axis"};
ya.set_color(Color::cyan); // choose a color
ya.label.set_color(Color::dark_red); // choose a color for the text
win.attach(ya);
win.set_label("Canvas #3");
win.wait_for_button(); // display!

Stroustrup_book.indb 425Stroustrup_book.indb 425 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL426

Just to show off some facilities, we colored our y axis cyan and our label dark red.

We don’t actually think that it is a good idea to use different colors for x and y
axes. We just wanted to show you how you can set the color of a shape and of
individual elements of a shape. Using lots of color is not necessarily a good idea.
In particular, novices tend to use color with more enthusiasm than taste.

12.7.4 Graphing a function
What next? We now have a window with axes, so it seems a good idea to graph a
function. We make a shape representing a sine function and attach it:

Function sine {sin,0,100,Point{20,150},1000,50,50}; // sine curve
 // plot sin() in the range [0:100) with (0,0) at (20,150)
 // using 1000 points; scale x values *50, scale y values *50

win.attach(sine);
win.set_label("Canvas #4");
win.wait_for_button();

Here, the Function named sine will draw a sine curve using the standard library
function sin() to generate values. We explain details about how to graph func-
tions in §15.3. For now, just note that to graph a function we have to say where
it starts (a Point) and for what set of input values we want to see it (a range),
and we need to give some information about how to squeeze that information
into our window (scaling):

Stroustrup_book.indb 426Stroustrup_book.indb 426 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 427

Note how the curve simply stops when it hits the edge of the window. Points
drawn outside our window rectangle are simply ignored by the GUI system and
never seen.

12.7.5 Polygons
A graphed function is an example of data presentation. We’ll see much more of
that in Chapter 15. However, we can also draw different kinds of objects in a
window: geometric shapes. We use geometric shapes for graphical illustrations,
to indicate user interaction elements (such as buttons), and generally to make
our presentations more interesting. A Polygon is characterized by a sequence of
points, which the Polygon class connects by lines. The first line connects the first
point to the second, the second line connects the second point to the third, and the
last line connects the last point to the first:

sine.set_color(Color::blue); // we changed our mind about sine’s color

Polygon poly; // a polygon; a Polygon is a kind of Shape
poly.add(Point{300,200}); // three points make a triangle
poly.add(Point{350,100});
poly.add(Point{400,200});

poly.set_color(Color::red);
poly.set_style(Line_style::dash);
win.attach(poly);

Stroustrup_book.indb 427Stroustrup_book.indb 427 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL428

win.set_label("Canvas #5");
win.wait_for_button();

This time we change the color of the sine curve (sine) just to show how. Then, we
add a triangle, just as in our first example from §12.3, as an example of a polygon.
Again, we set a color, and finally, we set a style. The lines of a Polygon have a
“style.” By default that is solid, but we can also make those lines dashed, dotted,
etc. as needed (see §13.5). We get

12.7.6 Rectangles
A screen is a rectangle, a window is a rectangle, and a piece of paper is a rectangle.
In fact, an awful lot of the shapes in our modern world are rectangles (or at least
rectangles with rounded corners). There is a reason for this: a rectangle is the
simplest shape to deal with. For example, it’s easy to describe (top left corner plus
width plus height, or top left corner plus bottom right corner, or whatever), it’s
easy to tell whether a point is inside a rectangle or outside it, and it’s easy to get
hardware to draw a rectangle of pixels fast.

So, most higher-level graphics libraries deal better with rectangles than with
other closed shapes. Consequently, we provide Rectangle as a class separate from

Stroustrup_book.indb 428Stroustrup_book.indb 428 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 429

the Polygon class. A Rectangle is characterized by its top left corner plus a width
and height:

Rectangle r {Point{200,200}, 100, 50}; // top left corner, width, height
win.attach(r);
win.set_label("Canvas #6");
win.wait_for_button();

From that, we get

Please note that making a polyline with four points in the right places is not
enough to make a Rectangle. It is easy to make a Closed_polyline that looks like
a Rectangle on the screen (you can even make an Open_polyline that looks just
like a Rectangle); for example:

Closed_polyline poly_rect;
poly_rect.add(Point{100,50});
poly_rect.add(Point{200,50});
poly_rect.add(Point{200,100});
poly_rect.add(Point{100,100});
win.attach(poly_rect);

Stroustrup_book.indb 429Stroustrup_book.indb 429 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL430

In fact, the image on the screen of such a poly_rect is a rectangle. However, the
poly_rect object in memory is not a Rectangle and it does not “know” anything
about rectangles. The simplest way to prove that is to add another point:

poly_rect.add(Point{50,75});

No rectangle has five points:

It is important for our reasoning about our code that a Rectangle doesn’t just hap-
pen to look like a rectangle on the screen; it maintains the fundamental guarantees

Stroustrup_book.indb 430Stroustrup_book.indb 430 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 431

of a rectangle (as we know them from geometry). We write code that depends on
a Rectangle really being a rectangle on the screen and staying that way.

12.7.7 Fill
We have been drawing our shapes as outlines. We can also “fill” a rectangle
with color:

r.set_fill_color(Color::yellow); // color the inside of the rectangle
poly.set_style(Line_style(Line_style::dash,4));
poly_rect.set_style(Line_style(Line_style::dash,2));
poly_rect.set_fill_color(Color::green);
win.set_label("Canvas #7");
win.wait_for_button();

We also decided that we didn’t like the line style of our triangle (poly), so we set
its line style to “fat (thickness four times normal) dashed.” Similarly, we changed
the style of poly_rect (now no longer looking like a rectangle):

If you look carefully at poly_rect, you’ll see that the outline is printed on top of
the fill.

It is possible to fill any closed shape (see §13.9). Rectangles are just special in
how easy (and fast) they are to fill.

12.7.8 Text
Finally, no system for drawing is complete without a simple way of writing
text — drawing each character as a set of lines just doesn’t cut it. We label the

Stroustrup_book.indb 431Stroustrup_book.indb 431 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL432

window itself, and axes can have labels, but we can also place text anywhere
using a Text object:

Text t {Point{150,150}, "Hello, graphical world!"};
win.attach(t);
win.set_label("Canvas #8");
win.wait_for_button();

From the primitive graphics elements you see in this window, you can build dis-
plays of just about any complexity and subtlety. For now, just note a peculiarity
of the code in this chapter: there are no loops, no selection statements, and all
data was “hardwired” in. The output was just composed of primitives in the
simplest possible way. Once we start composing these primitives using data and
algorithms, things will start to get interesting.

We have seen how we can control the color of text: the label of an Axis
(§12.7.3) is simply a Text object. In addition, we can choose a font and set the size
of the characters:

t.set_font(Font::times_bold);
t.set_font_size(20);
win.set_label("Canvas #9");
win.wait_for_button();

We enlarged the characters of the Text string Hello, graphical world! to point size
20 and chose the Times font in bold:

Stroustrup_book.indb 432Stroustrup_book.indb 432 4/22/14 9:42 AM4/22/14 9:42 AM

12.7 USING SHAPE PRIMITIVES 433

12.7.9 Images
We can also load images from files:

Image ii {Point{100,50),"image.jpg"}; // 400*212-pixel jpg
win.attach(ii);
win.set_label("Canvas #10");
win.wait_for_button();

As it happens, the file called image.jpg is a photo of two planes breaking the
sound barrier:

Stroustrup_book.indb 433Stroustrup_book.indb 433 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL434

That photo is relatively large and we placed it right on top of our text and shapes.
So, to clean up our window a bit, let us move it a bit out of the way:

ii.move(100,200);
win.set_label("Canvas #11");
win.wait_for_button();

Note how the parts of the photo that didn’t fit in the window are simply not
represented. What would have appeared outside the window is “clipped” away.

12.7.10 And much more
And here, without further comment, is some more code:

Circle c {Point{100,200},50};
Ellipse e {Point{100,200}, 75,25};
e.set_color(Color::dark_red);
Mark m {Point{100,200),'x'};

ostringstream oss;
oss << "screen size: " << x_max() << "*" << y_max()
 << "; window size: " << win.x_max() << "*" << win.y_max();
Text sizes {Point{100,20},oss.str()};

Image cal {Point{225,225},"snow_cpp.gif"}; // 320*240-pixel gif
cal.set_mask(Point{40,40},200,150); // display center part of image

Stroustrup_book.indb 434Stroustrup_book.indb 434 4/22/14 9:42 AM4/22/14 9:42 AM

12.8 GETTING THIS TO RUN 435

win.attach(c);
win.attach(m);
win.attach(e);

win.attach(sizes);
win.attach(cal);
win.set_label("Canvas #12");
win.wait_for_button();

Can you guess what this code does? Is it obvious?

The connection between the code and what appears on the screen is direct. If you
don’t yet see how that code caused that output, it soon will become clear. Note the
way we used an ostringstream (§11.4) to format the text object displaying sizes.

12.8 Getting this to run
We have seen how to make a window and how to draw various shapes in it. In
the following chapters, we’ll see how those Shape classes are defined and show
more ways of using them.

Getting this program to run requires more than the programs we have pre-
sented so far. In addition to our code in main(), we need to get the interface library
code compiled and linked to our code, and finally, nothing will run unless the
FLTK library (or whatever GUI system we use) is installed and correctly linked
to ours.

Stroustrup_book.indb 435Stroustrup_book.indb 435 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL436

One way of looking at the program is that it has four distinct parts:

• Our program code (main(), etc.)
• Our interface library (Window, Shape, Polygon, etc.)
• The FLTK library
• The C++ standard library

Indirectly, we also use the operating system. Leaving out the OS and the standard
library, we can illustrate the organization of our graphics code like this:

#include "Graph.h"
#include "Simple_window.h"
int main() { … }

chapter12.cpp:

// window interface:
class Simple_window {…};
…

Simple_window.h:

// window interface:
class Window {…};
…

FLTK headers FLTK headers FLTK headers

FLTK code

Window.h:

Graph code

Graph.cpp:

struct Point { … };

Point.h:

// graphing interface:
struct Shape { … };
…

Graph.h:

Window code

window.cpp:

GUI code

GUI.cpp:

// GUI interface:
struct In_box { … };
…

GUI.h:

Appendix D explains how to get all of this to work together.

Stroustrup_book.indb 436Stroustrup_book.indb 436 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 REVIEW 437

12.8.1 Source fi les
Our graphics and GUI interface library consists of just five header files and three
code files:

• Headers:

• Point.h

• Window.h

• Simple_window.h

• Graph.h

• GUI.h

• Code fi les:

• Window.cpp

• Graph.cpp

• GUI.cpp

Until Chapter 16, you can ignore the GUI files.

Drill
The drill is the graphical equivalent to the “Hello, World!” program. Its purpose
is to get you acquainted with the simplest graphical output tools.

 1. Get an empty Simple_window with the size 600 by 400 and a label My
window compiled, linked, and run. Note that you have to link the FLTK
library as described in Appendix D; #include Graph.h and Simple_
window.h in your code; and include Graph.cpp and Window.cpp in your
project.

 2. Now add the examples from §12.7 one by one, testing between each
added subsection example.

 3. Go through and make one minor change (e.g., in color, in location, or in
number of points) to each of the subsection examples.

Review
 1. Why do we use graphics?
 2. When do we try not to use graphics?
 3. Why is graphics interesting for a programmer?

Stroustrup_book.indb 437Stroustrup_book.indb 437 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL438

 4. What is a window?
 5. In which namespace do we keep our graphics interface classes (our graph-

ics library)?
 6. What header files do you need to do basic graphics using our graphics

library?
 7. What is the simplest window to use?
 8. What is the minimal window?
 9. What’s a window label?
 10. How do you label a window?
 11. How do screen coordinates work? Window coordinates? Mathematical

coordinates?
 12. What are examples of simple “shapes” that we can display?
 13. What command attaches a shape to a window?
 14. Which basic shape would you use to draw a hexagon?
 15. How do you write text somewhere in a window?
 16. How would you put a photo of your best friend in a window (using a

program you wrote yourself)?
 17. You made a Window object, but nothing appears on your screen. What

are some possible reasons for that?
 18. You have made a shape, but it doesn’t appear in the window. What are

some possible reasons for that?

Terms
color
coordinates
display
fi ll color
FLTK

graphics
GUI
GUI library
HTML
image

JPEG
line style
software layer
window
XML

Exercises
We recommend that you use Simple_window for these exercises.

 1. Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the
Polygon red and the lines of the Rectangle blue.

 2. Draw a 100-by-30 Rectangle and place the text “Howdy!” inside it.
 3. Draw your initials 150 pixels high. Use a thick line. Draw each initial in

a different color.
 4. Draw a 3-by-3 tic-tac-toe board of alternating white and red squares.
 5. Draw a red ¼-inch frame around a rectangle that is three-quarters the

height of your screen and two-thirds the width.

Stroustrup_book.indb 438Stroustrup_book.indb 438 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 POSTSCRIPT 439

 6. What happens when you draw a Shape that doesn’t fit inside its window?
What happens when you draw a Window that doesn’t fit on your screen?
Write two programs that illustrate these two phenomena.

 7. Draw a two-dimensional house seen from the front, the way a child
would: with a door, two windows, and a roof with a chimney. Feel free to
add details; maybe have “smoke” come out of the chimney.

 8. Draw the Olympic five rings. If you can’t remember the colors, look
them up.

 9. Display an image on the screen, e.g., a photo of a friend. Label the image
both with a title on the window and with a caption in the window.

 10. Draw the file diagram from §12.8.
 11. Draw a series of regular polygons, one inside the other. The innermost

should be an equilateral triangle, enclosed by a square, enclosed by a
pentagon, etc. For the mathematically adept only: let all the points of
each N-polygon touch sides of the (N+1)-polygon. Hint: The trigonomet-
ric functions are found in <cmath> (§24.8, §B.9.2).

 12. A superellipse is a two-dimensional shape defined by the equation

x
a

y
b

m n
m n

+ = >1 0; , .

 Look up superellipse on the web to get a better idea of what such shapes
look like. Write a program that draws “starlike” patterns by connecting
points on a superellipse. Take a, b, m, n, and N as arguments. Select N
points on the superellipse defined by a, b, m, and n. Make the points
equally spaced for some definition of “equal.” Connect each of those N
points to one or more other points (if you like you can make the number
of points to which to connect a point another argument or just use N–1,
i.e., all the other points).

 13. Find a way to add color to the lines from the previous exercise. Make
some lines one color and other lines another color or other colors.

Postscript

The ideal for program design is to have our concepts directly represented as en-
tities in our program. So, we often represent ideas by classes, real-world entities
by objects of classes, and actions and computations by functions. Graphics is a
domain where this idea has an obvious application. We have concepts, such as cir-
cles and polygons, and we represent them in our program as class Circle and class
Polygon. Where graphics is unusual is that when writing a graphics program, we
also have the opportunity to see objects of those classes on the screen; that is, the

Stroustrup_book.indb 439Stroustrup_book.indb 439 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 12 • A DISPLAY MODEL440

state of our program is directly represented for us to observe — in most applica-
tions we are not that lucky. This direct correspondence between ideas, code, and
output is what makes graphics programming so attractive. Please do remember,
though, that graphics are just illustrations of the general idea of using classes to
directly represent concepts in code. That idea is far more general and useful: just
about anything we can think of can be represented in code as a class, an object of
a class, or a set of classes.

Stroustrup_book.indb 440Stroustrup_book.indb 440 4/22/14 9:42 AM4/22/14 9:42 AM

441

13

Graphics Classes

“A language that doesn’t
change the way you think

isn’t worth learning.”

—Traditional

Chapter 12 gave an idea of what we could do in terms of

graphics using a set of simple interface classes, and how we

can do it. This chapter presents many of the classes offered. The

focus here is on the design, use, and implementation of individ-

ual interface classes such as Point, Color, Polygon, and Open_

polyline and their uses. The following chapter will present ideas

for designing sets of related classes and will also present more

implementation techniques.

Stroustrup_book.indb 441Stroustrup_book.indb 441 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES442

13.1 Overview of graphics classes
Graphics and GUI libraries provide lots of facilities. By “lots” we mean hundreds
of classes, often with dozens of functions applying to each. Reading a descrip-
tion, manual, or documentation is a bit like looking at an old-fashioned botany
textbook listing details of thousands of plants organized according to obscure
classifying traits. It is daunting! It can also be exciting — looking at the facilities of
a modern graphics/GUI library can make you feel like a child in a candy store,
but it can be hard to figure out where to start and what is really good for you.

One purpose of our interface library is to reduce the shock delivered by the
complexity of a full-blown graphics/GUI library. We present just two dozen classes
with hardly any operations. Yet they allow you to produce useful graphical out-
put. A closely related goal is to introduce key graphics and GUI concepts through
those classes. Already, you can write programs displaying results as simple graph-
ics. After this chapter, your range of graphics programs will have increased to
exceed most people’s initial requirements. After Chapter 14, you’ll understand
most of the design techniques and ideas involved so that you can deepen your
understanding and extend your range of graphical expression as needed. You can
do so either by adding to the facilities described here or by adopting another C++
graphics/GUI library.

The key interface classes are:

Graphics interface classes

Color used for lines, text, and filling shapes

Line_style used to draw lines

Point used to express locations on a screen and within a Window

13.1 Overview of graphics classes

13.2 Point and Line

13.3 Lines

13.4 Color

13.5 Line_style

13.6 Open_polyline

13.7 Closed_polyline

13.8 Polygon

13.9 Rectangle

13.10 Managing unnamed objects

13.11 Text

13.12 Circle

13.13 Ellipse

13.14 Marked_polyline

13.15 Marks

13.16 Mark

13.17 Images

Stroustrup_book.indb 442Stroustrup_book.indb 442 4/22/14 9:42 AM4/22/14 9:42 AM

13.1 OVERVIEW OF GRAPHICS CLASSES 443

Graphics interface classes (continued)

Line a line segment as we see it on the screen, defined by its two
end Points

Open_polyline a sequence of connected line segments defined by a sequence
of Points

Closed_polyline like an Open_polyline, except that a line segment connects
the last Point to the first

Polygon a Closed_polyline where no two line segments intersect

Text a string of characters

Lines a set of line segments defined by pairs of Points

Rectangle a common shape optimized for quick and convenient display

Circle a circle defined by a center and a radius

Ellipse an ellipse defined by a center and two axes

Function a function of one variable graphed in a range

Axis a labeled axis

Mark a point marked by a character (such as x or o)

Marks a sequence of points indicated by marks (such as x and o)

Marked_polyline an Open_polyline with its points indicated by marks

Image the contents of an image file

Chapter 15 examines Function and Axis. Chapter 16 presents the main GUI in-
terface classes:

GUI interface classes

Window an area of the screen in which we display our graphics objects

Simple_window a window with a “Next” button

Button a rectangle, usually labeled, in a window that we can press to
run one of our functions

In_box a box, usually labeled, in a window into which a user can type
a string

Out_box a box, usually labeled, in a window into which our program
can write a string

Menu a vector of Buttons

Stroustrup_book.indb 443Stroustrup_book.indb 443 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES444

The source code is organized into files like this:

Graphics interface source fi les

Point.h Point

Graph.h all other graphics interface classes

Window.h Window

Simple_window.h Simple_window

GUI.h Button and the other GUI classes

Graph.cpp definitions of functions from Graph.h

Window.cpp definitions of functions from Window.h

GUI.cpp definitions of functions from GUI.h

In addition to the graphics classes, we present a class that happens to be useful for
holding collections for Shapes or Widgets:

A container of Shapes or Widgets

Vector_ref a vector with an interface that makes it convenient for
holding unnamed elements

When you read the following sections, please don’t move too fast. There is little
that isn’t pretty obvious, but the purpose of this chapter isn’t just to show you
some pretty pictures — you see prettier pictures on your computer screen or tele-
vision every day. The main points of this chapter are

• To show the correspondence between code and the pictures produced.
• To get you used to reading code and thinking about how it works.
• To get you to think about the design of code — in particular to think about

how to represent concepts as classes in code. Why do those classes look
the way they do? How else could they have looked? We made many,
many design decisions, most of which could reasonably have been made
differently, in some cases radically differently.

So please don’t rush. If you do, you’ll miss something important and you might
then find the exercises unnecessarily hard.

13.2 Point and Line
The most basic part of any graphics system is the point. To define point is to define
how we organize our geometric space. Here, we use a conventional, computer-

Stroustrup_book.indb 444Stroustrup_book.indb 444 4/22/14 9:42 AM4/22/14 9:42 AM

13.2 POINT AND LINE 445

oriented layout of two-dimensional points defined by (x,y) integer coordinates. As
described in §12.5, x coordinates go from 0 (representing the left-hand side of the
screen) to x_max() (representing the right-hand side of the screen); y coordinates
go from 0 (representing the top of the screen) to y_max() (representing the bottom
of the screen).

As defined in Point.h, Point is simply a pair of ints (the coordinates):

struct Point {
 int x, y;
};

bool operator==(Point a, Point b) { return a.x==b.x && a.y==b.y; }
bool operator!=(Point a, Point b) { return !(a==b); }

In Graph.h, we find Shape, which we describe in detail in Chapter 14, and Line:

struct Line : Shape { // a Line is a Shape defined by two Points
 Line(Point p1, Point p2); // construct a Line from two Points
};

A Line is a kind of Shape. That’s what : Shape means. Shape is called a base
class for Line or simply a base of Line. Basically, Shape provides the facilities
needed to make the definition of Line simple. Once we have a feel for the par-
ticular shapes, such as Line and Open_polyline, we’ll explain what that implies
(Chapter 14).

A Line is defined by two Points. Leaving out the “scaffolding” (#includes,
etc. as described in §12.3), we can create lines and cause them to be drawn
like this:

// draw two lines

constexpr Point x {100,100};

Simple_window win1 {x,600,400,"two lines"};

Line horizontal {x,Point{200,100}}; // make a horizontal line
Line vertical {Point{150,50},Point{150,150}}; // make a vertical line

win1.attach(horizontal); // attach the lines to the window
win1.attach(vertical);

win1.wait_for_button(); // display!

Stroustrup_book.indb 445Stroustrup_book.indb 445 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES446

Executing that, we get

As a user interface designed for simplicity, Line works quite well. You don’t
need to be Einstein to guess that

Line vertical {Point{150,50},Point{150,150}};

creates a (vertical) line from (150,50) to (150,150). There are, of course, imple-
mentation details, but you don’t have to know those to make Lines. The imple-
mentation of Line’s constructor is correspondingly simple:

Line::Line(Point p1, Point p2) // construct a line from two points
{
 add(p1); // add p1 to this shape
 add(p2); // add p2 to this shape
}

That is, it simply “adds” two points. Adds to what? And how does a Line get
drawn in a window? The answer lies in the Shape class. As we’ll describe in
Chapter 14, Shape can hold points defining lines, knows how to draw lines de-
fined by pairs of Points, and provides a function add() that allows an object to add
a Point to its Shape. The key point (sic!) here is that defining Line is trivial. Most
of the implementation work is done by “the system” so that we can concentrate
on writing simple classes that are easy to use.

Stroustrup_book.indb 446Stroustrup_book.indb 446 4/22/14 9:42 AM4/22/14 9:42 AM

13.3 LINES 447

From now on we’ll leave out the definition of the Simple_window and the
calls of attach(). Those are just more “scaffolding” that we need for a complete
program but that adds little to the discussion of specific Shapes.

13.3 Lines
As it turns out, we rarely draw just one line. We tend to think in terms of objects
consisting of many lines, such as triangles, polygons, paths, mazes, grids, bar
graphs, mathematical functions, graphs of data, etc. One of the simplest such
“composite graphical object classes” is Lines:

struct Lines : Shape { // related lines
 Lines() {} // empty
 Lines(initializer_list<Point> lst); // initialize from a list of Points

 void draw_lines() const;
 void add(Point p1, Point p2); // add a line defined by two points
};

A Lines object is simply a collection of lines, each defined by a pair of Points. For
example, had we considered the two lines from the Line example in §13.2 as part
of a single graphical object, we could have defined them like this:

Lines x;
x.add(Point{100,100}, Point{200,100}); // first line: horizontal
x.add(Point{150,50}, Point{150,150}); // second line: vertical

This gives output that is indistinguishable (to the last pixel) from the Line version:

Stroustrup_book.indb 447Stroustrup_book.indb 447 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES448

The only way we can tell that this is a different window is that we labeled them
differently.

The difference between a set of Line objects and a set of lines in a Lines object
is completely one of our view of what’s going on. By using Lines, we have ex-
pressed our opinion that the two lines belong together and should be manipulated
together. For example, we can change the color of all lines that are part of a Lines
object with a single command. On the other hand, we can give lines that are indi-
vidual Line objects different colors. As a more realistic example, consider how to
define a grid. A grid consists of a number of evenly spaced horizontal and vertical
lines. However, we think of a grid as one “thing,” so we define those lines as part
of a Lines object, which we call grid:

int x_size = win3.x_max(); // get the size of our window
int y_size = win3.y_max();
int x_grid = 80;
int y_grid = 40;

Lines grid;
for (int x=x_grid; x<x_size; x+=x_grid)
 grid.add(Point{x,0},Point{x,y_size}); // vertical line
for (int y = y_grid; y<y_size; y+=y_grid)
 grid.add(Point{0,y},Point{x_size,y}); // horizontal line

Note how we get the dimension of our window using x_max() and y_max(). This
is also the first example where we are writing code that computes which objects
we want to display. It would have been unbearably tedious to define this grid by
defining one named variable for each grid line. From that code, we get

Stroustrup_book.indb 448Stroustrup_book.indb 448 4/22/14 9:42 AM4/22/14 9:42 AM

13.3 LINES 449

Let’s return to the design of Lines. How are the member functions of class
Lines implemented? Lines provides just two constructors and two operations.

The add() function simply adds a line defined by a pair of points to the set of
lines to be displayed:

void Lines::add(Point p1, Point p2)
{
 Shape::add(p1);
 Shape::add(p2);
}

Yes, the Shape:: qualification is needed because otherwise the compiler would
see add(p1) as an (illegal) attempt to call Lines’ add() rather than Shape’s add().

The draw_lines() function draws the lines defined using add():

void Lines::draw_lines() const
{
 if (color().visibility())
 for (int i=1; i<number_of_points(); i+=2)
 fl_line(point(i–1).x,point(i–1).y,point(i).x,point(i).y);
}

That is, Lines::draw_lines() takes two points at a time (starting with points 0 and 1)
and draws the line between them using the underlying library’s line-drawing func-
tion (fl_line()). Visibility is a property of the Lines’ Color object (§13.4), so we
have to check that the lines are meant to be visible before drawing them.

As we explain in Chapter 14, draw_lines() is called by “the system.” We don’t
need to check that the number of points is even — Lines’ add() can add only
pairs of points. The functions number_of_points() and point() are defined in
class Shape (§14.2) and have their obvious meaning. These two functions pro-
vide read-only access to a Shape’s points. The member function draw_lines() is
defined to be const (see §9.7.4) because it doesn’t modify the shape.

The default constructor for Lines simply creates an empty object (contain-
ing no lines): the model of starting out with no points and then add()ing points
as needed is more flexible than any constructor could be. However, we also
added a constructor taking an initializer_list of pairs of Points, each defining a
line. Given that initializer-list constructor (§18.2), we can simply define Lines
starting out with 0, 1, 2, , 3, . . . lines. For example, the first Lines example could
be written like this:

Lines x = {
 {Point{100,100}, Point{200,100}}, // first line: horizontal
 {Point{150,50}, Point{150,150}} // second line: vertical
};

Stroustrup_book.indb 449Stroustrup_book.indb 449 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES450

or even like this:

Lines x = {
 {{100,100}, {200,100}}, // first line: horizontal
 {{150,50}, {150,150}} // second line: vertical
};

The initializer-list constructor is easily defined:

void Lines::Lines(initializer_list<pair<Point,Point>> lst)
{
 for (auto p : lst) add(p.first,p.second);
}

The auto is a placeholder for the type pair<Point,Point>, and first and second are
the names of a pair’s first and second members. The types initializer_list and pair
are defined in the standard library (§B.6.4, §B.6.3).

13.4 Color
Color is the type we use to represent color. We can use Color like this:

grid.set_color(Color::red);

This colors the lines defined in grid red so that we get

Stroustrup_book.indb 450Stroustrup_book.indb 450 4/22/14 9:42 AM4/22/14 9:42 AM

13.4 COLOR 451

Color defines the notion of a color and gives symbolic names to a few of the more
common colors:

struct Color {
 enum Color_type {
 red=FL_RED,
 blue=FL_BLUE,
 green=FL_GREEN,
 yellow=FL_YELLOW,
 white=FL_WHITE,
 black=FL_BLACK,
 magenta=FL_MAGENTA,
 cyan=FL_CYAN,
 dark_red=FL_DARK_RED,
 dark_green=FL_DARK_GREEN,
 dark_yellow=FL_DARK_YELLOW,
 dark_blue=FL_DARK_BLUE,
 dark_magenta=FL_DARK_MAGENTA,
 dark_cyan=FL_DARK_CYAN
 };

 enum Transparency { invisible = 0, visible=255 };

 Color(Color_type cc) :c{Fl_Color(cc)}, v{visible} { }
 Color(Color_type cc, Transparency vv) :c{Fl_Color(cc)}, v{vv} { }
 Color(int cc) :c{Fl_Color(cc)}, v{visible} { }
 Color(Transparency vv) :c{Fl_Color()}, v{vv} { } // default color

 int as_int() const { return c; }

 char visibility() const { return v; }
 void set_visibility(Transparency vv) { v=vv; }
private:
 char v; // invisible and visible for now
 Fl_Color c;
};

The purpose of Color is

• To hide the implementation’s notion of color, FLTK’s Fl_Color type
• To map between Fl_Color and Color_type values

Stroustrup_book.indb 451Stroustrup_book.indb 451 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES452

• To give the color constants a scope
• To provide a simple version of transparency (visible and invisible)

You can pick colors

• From the list of named colors, for example, Color::dark_blue.
• By picking from a small “palette” of colors that most screens display well

by specifying a value in the range 0–255; for example, Color(99) is a dark
green. For a code example, see §13.9.

• By picking a value in the RGB (red, green, blue) system, which we will
not explain here. Look it up if you need it. In particular, a search for
“RGB color” on the web gives many sources, such as http://en.wikipedia
.org/wiki/RGB_color_model and www.rapidtables.com/web/color/RGB_
Color.htm. See also exercises 13 and 14.

Note the use of constructors to allow Colors to be created either from the Color_
type or from a plain int. The member c is initialized by each constructor. You
could argue that c is too short and too obscure a name to use, but since it is used
only within the small scope of Color and not intended for general use, that’s
probably OK. We made the member c private to protect it from direct use from
our users. For our representation of the data member c we use the FLTK type
Fl_Color that we don’t really want to expose to our users. However, looking at
a color as an int representing its RGB (or other) value is very common, so we
supplied as_int() for that. Note that as_int() is a const member because it doesn’t
actually change the Color object that it is used for.

The transparency is represented by the member v which can hold the values
Color::visible and Color::invisible, with their obvious meaning. It may surprise
you that an “invisible color” can be useful, but it can be most useful to have part
of a composite shape invisible.

13.5 Line_style
When we draw several lines in a window, we can distinguish them by color, by
style, or by both. A line style is the pattern used to outline the line. We can use
Line_style like this:

grid.set_style(Line_style::dot);

This displays the lines in grid as a sequence of dots rather than a solid line:

Stroustrup_book.indb 452Stroustrup_book.indb 452 4/22/14 9:42 AM4/22/14 9:42 AM

13.5 LINE_STYLE 453

That “thinned out” the grid a bit, making it more discreet. By adjusting the width
(thickness), we can adjust the grid lines to suit our taste and needs.

The Line_style type looks like this:

struct Line_style {
 enum Line_style_type {
 solid=FL_SOLID, // -------
 dash=FL_DASH, // - - - -
 dot=FL_DOT, //
 dashdot=FL_DASHDOT, // - . - .
 dashdotdot=FL_DASHDOTDOT, // -..-..
 };

 Line_style(Line_style_type ss) :s{ss}, w{0} { }
 Line_style(Line_style_type lst, int ww) :s{lst}, w{ww} { }
 Line_style(int ss) :s{ss}, w{0} { }

 int width() const { return w; }
 int style() const { return s; }
 private:
 int s;
 int w;
 };

Stroustrup_book.indb 453Stroustrup_book.indb 453 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES454

The programming techniques for defining Line_style are exactly the same as the
ones we used for Color. Here, we hide the fact that FLTK uses plain ints to rep-
resent line styles. Why is something like that worth hiding? Because it is exactly
such a detail that might change as a library evolves. The next FLTK release might
very well have a Fl_linestyle type, or we might retarget our interface classes to
some other GUI library. In either case, we wouldn’t like to have our code and
our users’ code littered with plain ints that we just happened to know represent
line styles.

Most of the time, we don’t worry about style at all; we just rely on the default
(default width and solid lines). This default line width is defined by the construc-
tors in the cases where we don’t specify one explicitly. Setting defaults is one of
the things that constructors are good for, and good defaults can significantly help
users of a class.

Note that Line_style has two “components”: the style proper (e.g., use dashed
or solid lines) and width (the thickness of the line used). The width is measured in
integers. The default width is 1. We can request a fat dashed line like this:

grid.set_style(Line_style{Line_style::dash,2});

This produces

Stroustrup_book.indb 454Stroustrup_book.indb 454 4/22/14 9:42 AM4/22/14 9:42 AM

13.6 OPEN_POLYLINE 455

Note that color and style apply to all lines of a shape. That is one of the advan-
tages of grouping many lines into a single graphics object, such as a Lines, Open_
polyline, or Polygon. If we want to control the color or style for lines separately,
we must define them as separate Lines. For example:

horizontal.set_color(Color::red);
vertical.set_color(Color::green);

This gives us

13.6 Open_polyline
An Open_polyline is a shape that is composed of a series of connected line seg-
ments defined by a series of points. Poly is the Greek word for “many,” and polyline
is a fairly conventional name for a shape composed of many lines. For example:

Open_polyline opl = {
 {100,100}, {150,200}, {250,250}, {300,200}
};

Stroustrup_book.indb 455Stroustrup_book.indb 455 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES456

This draws the shape that you get by connecting the four points:

Basically, an Open_polyline is a fancy word for what we encountered in kinder-
garten playing “Connect the Dots.”

Class Open_polyline is defined like this:

struct Open_polyline : Shape { // open sequence of lines
 using Shape::Shape; // use Shape’s constructors (§A.16)
 void add(Point p) { Shape::add(p); }
};

Open_polyline inherits from Shape. Open_polyline’s add() function is there to
allow the users of an Open_polyline to access the add() from Shape (that is,
Shape::add()). We don’t even need to define a draw_lines() because Shape by
default interprets the Points add()ed as a sequence of connected lines.

The declaration using Shape::Shape is a using declaration. It says that an
Open_polyline can use the constructors defined for Shape. Shape has a default
constructor (§9.7.3) and an initializer-list constructor (§18.2), so the using declara-
tion is simply a shorthand for defining those two constructors for Open_polyline.
As for Lines, the initializer-list constructor is there as a shorthand for an initial
sequence of add()s.

13.7 Closed_polyline
A Closed_polyline is just like an Open_polyline, except that we also draw a line
from the last point to the first. For example, we could use the same points we used
for the Open_polyline in §13.6 for a Closed_polyline:

Stroustrup_book.indb 456Stroustrup_book.indb 456 4/22/14 9:42 AM4/22/14 9:42 AM

13.7 CLOSED_POLYLINE 457

Closed_polyline cpl = {
 {100,100}, {150,200}, {250,250}, {300,200}
};

The result is (of course) identical to that of §13.6 except for that final closing line:

The definition of Closed_polyline is

struct Closed_polyline : Open_polyline { // closed sequence of lines
 using Open_polyline::Open_polyline; // use Open_polyline’s
 // constructors (§A.16)
 void draw_lines() const;
};

void Closed_polyline::draw_lines() const
{
 Open_polyline::draw_lines(); // first draw the “open polyline part”

 // then draw closing line:
 if (2<number_of_points() && color().visibility())
 fl_line(point(number_of_points()–1).x,
 point(number_of_points()–1).y,
 point(0).x,
 point(0).y);
}

Stroustrup_book.indb 457Stroustrup_book.indb 457 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES458

The using declaration (§A.16) says that Closed_polyline has the same construc-
tors as Open_polyline. Closed_polyline needs its own draw_lines() to draw that
closing line connecting the last point to the first.

We only have to do the little detail where Closed_polyline differs from what
Open_polyline offers. That’s important and is sometimes called “programming by
difference.” We need to program only what’s different about our derived class (here,
Closed_polyline) compared to what a base class (here, Open_polyline) offers.

So how do we draw that closing line? We use the FLTK line-drawing function
fl_line(). It takes four ints representing two points. So, here the underlying graphics
library is again used. Note, however, that — as in every other case — the mention
of FLTK is kept within the implementation of our class rather than being exposed
to our users. No user code needs to mention fl_line() or to know about interfaces
where points appear implicitly as integer pairs. If we wanted to, we could replace
FLTK with another GUI library with very little impact on our users’ code.

13.8 Polygon
A Polygon is very similar to a Closed_polyline. The only difference is that for
Polygons we don’t allow lines to cross. For example, the Closed_polyline above is
a polygon, but we can add another point:

cpl.add(Point{100,250});

The result is

Stroustrup_book.indb 458Stroustrup_book.indb 458 4/22/14 9:42 AM4/22/14 9:42 AM

13.8 POLYGON 459

According to classical definitions, this Closed_polyline is not a polygon. How do
we define Polygon so that we correctly capture the relationship to Closed_polyline
without violating the rules of geometry? The presentation above contains a strong
hint. A Polygon is a Closed_polyline where lines do not cross. Alternatively, we
could emphasize the way a shape is built out of points and say that a Polygon is
a Closed_polyline where we cannot add a Point that defines a line segment that
intersects one of the existing lines of the Polygon.

Given that idea, we define Polygon like this:

struct Polygon : Closed_polyline { // closed sequence of nonintersecting
 // lines
 using Closed_polyline::Closed_polyline; // use Closed_polyline’s
 // constructors
 void add(Point p);
 void draw_lines() const;
};

void Polygon::add(Point p)
{
 // check that the new line doesn’t intersect existing lines (code not shown)
 Closed_polyline::add(p);
}

Here we inherit Closed_polyline’s definition of draw_lines(), thus saving a fair
bit of work and avoiding duplication of code. Unfortunately, we have to check
each add(). That yields an inefficient (order N-squared) algorithm — defining
a Polygon with N points requires N *(N–1)/2 calls of intersect(). In effect, we
have made the assumption that the Polygon class will be used for polygons of a
low number of points. For example, creating a Polygon with 24 Points involves
24*(24–1)/2 == 276 calls of intersect(). That’s probably acceptable, but if we
wanted a polygon with 2000 points it would cost us about 2,000,000 calls, and
we might look for a better algorithm, which might require a modified interface.

Using the initializer-list constructor, we can create a polygon like this:

Polygon poly = {
 {100,100}, {150,200}, {250,250}, {300,200}
};

Stroustrup_book.indb 459Stroustrup_book.indb 459 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES460

Obviously, this creates a Polygon that (to the last pixel) is identical to our original
Closed_polyline:

Ensuring that a Polygon really represents a polygon turned out to be surprisingly
messy. The check for intersection that we left out of Polygon::add() is arguably
the most complicated in the whole graphics library. If you are interested in fiddly
coordinate manipulation of geometry, have a look at the code.

The trouble is that Polygon’s invariant “the points represent a polygon” can’t
be verified until all points have been defined; that is, we are not — as strongly rec-
ommended — establishing Polygon’s invariant in its constructor. We considered
removing add() and requiring that a Polygon be completely specified by an initial-
izer list with at least three points, but that would have complicated uses where a
program generated a sequence of points.

13.9 Rectangle
The most common shape on a screen is a rectangle. The reasons for that are
partly cultural (most of our doors, windows, pictures, walls, bookcases, pages,
etc. are also rectangular) and partly technical (keeping a coordinate within rectan-
gular space is simpler than for any other shaped space). Anyway, rectangles are

Stroustrup_book.indb 460Stroustrup_book.indb 460 4/22/14 9:42 AM4/22/14 9:42 AM

13.9 RECTANGLE 461

so common that GUI systems support them directly rather than treating them
simply as polygons that happen to have four corners and right angles.

struct Rectangle : Shape {
 Rectangle(Point xy, int ww, int hh);
 Rectangle(Point x, Point y);
 void draw_lines() const;

 int height() const { return h; }
 int width() const { return w; }
private:
 int h; // height
 int w; // width
};

We can specify a rectangle by two points (top left and bottom right) or by one
point (top left) and a width and a height. The constructors can be defined like
this:

Rectangle::Rectangle(Point xy, int ww, int hh)
 : w{ww}, h{hh}
{
 if (h<=0 || w<=0)
 error("Bad rectangle: non-positive side");
 add(xy);
}

Rectangle::Rectangle(Point x, Point y)
 :w{y.x–x.x}, h{y.y–x.y}
{
 if (h<=0 || w<=0)
 error("Bad rectangle: first point is not top left");
 add(x);
}

Each constructor initializes the members h and w appropriately (using the mem-
ber initialization syntax; see §9.4.4) and stores away the top left corner point in
the Rectangle’s base Shape (using add()). In addition, it does a simple sanity
check: we don’t really want Rectangles with negative width or height.

Stroustrup_book.indb 461Stroustrup_book.indb 461 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES462

One of the reasons that some graphics/GUI systems treat rectangles as spe-
cial is that the algorithm for determining which pixels are inside a rectangle is far
simpler — and therefore far faster — than for other shapes, such as Polygons and
Circles. Consequently, the notion of “fill color” — that is, the color of the space in-
side the rectangle — is more commonly used for rectangles than for other shapes.
We can set the fill color in a constructor or by the operation set_fill_color() (pro-
vided by Shape together with the other services related to color):

Rectangle rect00 {Point{150,100},200,100};
Rectangle rect11 {Point{50,50},Point{250,150}};
Rectangle rect12 {Point{50,150},Point{250,250}}; // just below rect11
Rectangle rect21 {Point{250,50},200,100}; // just to the right of rect11
Rectangle rect22 {Point{250,150},200,100}; // just below rect21

rect00.set_fill_color(Color::yellow);
rect11.set_fill_color(Color::blue);
rect12.set_fill_color(Color::red);
rect21.set_fill_color(Color::green);

This produces

Stroustrup_book.indb 462Stroustrup_book.indb 462 4/22/14 9:42 AM4/22/14 9:42 AM

13.9 RECTANGLE 463

When you don’t have a fill color, the rectangle is transparent; that’s how you can
see a corner of the yellow rect00.

We can move shapes around in a window (§14.2.3). For example:

rect11.move(400,0); // to the right of rect21
rect11.set_fill_color(Color::white);
win12.set_label("rectangles 2");

This produces

Note how only part of the white rect11 fits in the window. What doesn’t fit is
“clipped”; that is, it is not shown anywhere on the screen.

Note also how shapes are placed one on top of another. This is done just
like you would put sheets of paper on a table. The first one you put will be on
the bottom. Our Window (§E.3) provides a simple way of reordering shapes.
You can tell a window to put a shape on top (using Window::put_on_top()).
For example:

win12.put_on_top(rect00);
win12.set_label("rectangles 3");

Stroustrup_book.indb 463Stroustrup_book.indb 463 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES464

This produces

Note that we can see the lines that make up the rectangles even though we have
filled (all but one of) them. If we don’t like those outlines, we can remove them:

rect00.set_color(Color::invisible);
rect11.set_color(Color::invisible);
rect12.set_color(Color::invisible);
rect21.set_color(Color::invisible);
rect22.set_color(Color::invisible);

We get

Stroustrup_book.indb 464Stroustrup_book.indb 464 4/22/14 9:42 AM4/22/14 9:42 AM

13.10 MANAGING UNNAMED OBJECTS 465

Note that with both fill color and line color set to invisible, rect22 can no longer
be seen.

Because it has to deal with both line color and fill color, Rectangle’s draw_
lines() is a bit messy:

void Rectangle::draw_lines() const
{
 if (fill_color().visibility()) { // fill
 fl_color(fill_color().as_int());
 fl_rectf(point(0).x,point(0).y,w,h);
 }

 if (color().visibility()) { // lines on top of fill
 fl_color(color().as_int());
 fl_rect(point(0).x,point(0).y,w,h);
 }
}

As you can see, FLTK provides functions for drawing rectangle fill (fl_rectf()) and
rectangle outlines (fl_rect()). By default, we draw both (with the lines/outline on top).

13.10 Managing unnamed objects
So far, we have named all our graphical objects. When we want lots of objects,
this becomes infeasible. As an example, let us draw a simple color chart of the 256
colors in FLTK’s palette; that is, let’s make 256 colored squares and draw them
in a 16-by-16 matrix that shows how colors with similar color values relate. First,
here is the result:

Stroustrup_book.indb 465Stroustrup_book.indb 465 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES466

Naming those 256 squares would not only be tedious, it would be silly. The obvi-
ous “name” of the top left square is its location in the matrix (0,0), and any other
square is similarly identified (“named”) by a coordinate pair (i,j). What we need
for this example is the equivalent of a matrix of objects. We thought of using a
vector<Rectangle>, but that turned out to be not quite flexible enough. For ex-
ample, it can be useful to have a collection of unnamed objects (elements) that are
not all of the same type. We discuss that flexibility issue in §14.3. Here, we’ll just
present our solution: a vector type that can hold named and unnamed objects:

template<class T> class Vector_ref {
public:
 // . . .
 void push_back(T&); // add a named object
 void push_back(T*); // add an unnamed object

 T& operator[](int i); // subscripting: read and write access
 const T& operator[](int i) const;

 int size() const;
};

The way you use it is very much like a standard library vector:

Vector_ref<Rectangle> rect;

Rectangle x {Point{100,200},Point{200,300}};
rect.push_back(x); // add named

rect.push_back(new Rectangle{Point{50,60},Point{80,90}}); // add unnamed

for (int i=0; i<rect.size(); ++i) rect[i].move(10,10); // use rect

We explain the new operator in Chapter 17, and the implementation of Vector_ref
is presented in Appendix E. For now, it is sufficient to know that we can use it to hold
unnamed objects. Operator new is followed by the name of a type (here, Rectangle)
optionally followed by an initializer list (here, {Point{50,60},Point{80,90}}). Expe-
rienced programmers will be relieved to hear that we did not introduce a memory
leak in this example.

Given Rectangle and Vector_ref, we can play with colors. For example, we
can draw a simple color chart of the 256 colors shown above:

Stroustrup_book.indb 466Stroustrup_book.indb 466 4/22/14 9:42 AM4/22/14 9:42 AM

13.11 TEXT 467

Vector_ref<Rectangle> vr;

for (int i = 0; i<16; ++i)
 for (int j = 0; j<16; ++j) {
 vr.push_back(new Rectangle{Point{i*20,j*20},20,20});
 vr[vr.size()–1].set_fill_color(Color{i*16+j});
 win20.attach(vr[vr.size()–1]);
 }

We make a Vector_ref of 256 Rectangles, organized graphically in the Window as
a 16-by-16 matrix. We give the Rectangles the colors 0, 1, 2, 3, 4, and so on. After
each Rectangle is created, we attach it to the window, so that it will be displayed:

13.11 Text
Obviously, we want to be able to add text to our displays. For example, we might
want to label our “odd” Closed_polyline from §13.8:

Text t {Point{200,200},"A closed polyline that isn't a polygon"};
t.set_color(Color::blue);

Stroustrup_book.indb 467Stroustrup_book.indb 467 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES468

We get

Basically, a Text object defines a line of text starting at a Point. The Point will
be the bottom left corner of the text. The reason for restricting the string to be
a single line is to ensure portability across systems. Don’t try to put in a newline
character; it may or may not be represented as a newline in your window. String
streams (§11.4) are useful for composing strings for display in Text objects (exam-
ples in §12.7.7 and §12.7.8). Text is defined like this:

struct Text : Shape {
 // the point is the bottom left of the first letter
 Text(Point x, const string& s)
 : lab{s}
 { add(x); }

 void draw_lines() const;

 void set_label(const string& s) { lab = s; }
 string label() const { return lab; }

 void set_font(Font f) { fnt = f; }
 Font font() const { return fnt; }

 void set_font_size(int s) { fnt_sz = s; }
 int font_size() const { return fnt_sz; }

Stroustrup_book.indb 468Stroustrup_book.indb 468 4/22/14 9:42 AM4/22/14 9:42 AM

13.11 TEXT 469

private:
 string lab; // label
 Font fnt {fl_font()};
 int fnt_sz {(fl_size()<14)?14:fl_size()} ;
};

If you want the font character size to be less than 14 or larger than the FLTK
default, you have to explicitly set it. This is an example of a test protecting a user
from possible variations in the behavior of an underlying library. In this case, an
update of FLTK changed its default in a way that broke existing programs by
making the characters tiny, and we decided to prevent that problem.

We provide the initializers as member initializers, rather than as part of the
constructors’ initializer lists, because the initializers do not depend on constructor
arguments.

Text has its own draw_lines() because only the Text class knows how its string
is stored:

void Text::draw_lines() const
{
 fl_draw(lab.c_str(),point(0).x,point(0).y);
}

The color of the characters is determined exactly like the lines in shapes com-
posed of lines (such as Open_polyline and Circle), so you can choose a color us-
ing set_color() and see what color is currently used by color(). The character size
and font are handled analogously. There is a small number of predefined fonts:

class Font { // character font
public:
 enum Font_type {
 helvetica=FL_HELVETICA,
 helvetica_bold=FL_HELVETICA_BOLD,
 helvetica_italic=FL_HELVETICA_ITALIC,
 helvetica_bold_italic=FL_HELVETICA_BOLD_ITALIC,
 courier=FL_COURIER,
 courier_bold=FL_COURIER_BOLD,
 courier_italic=FL_COURIER_ITALIC,
 courier_bold_italic=FL_COURIER_BOLD_ITALIC,
 times=FL_TIMES,
 times_bold=FL_TIMES_BOLD,
 times_italic=FL_TIMES_ITALIC,
 times_bold_italic=FL_TIMES_BOLD_ITALIC,
 symbol=FL_SYMBOL,

Stroustrup_book.indb 469Stroustrup_book.indb 469 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES470

 screen=FL_SCREEN,
 screen_bold=FL_SCREEN_BOLD,
 zapf_dingbats=FL_ZAPF_DINGBATS
 };

 Font(Font_type ff) :f{ff} { }
 Font(int ff) :f{ff} { }

 int as_int() const { return f; }
private:
 int f;
};

The style of class definition used to define Font is the same as we used to define
Color (§13.4) and Line_style (§13.5).

13.12 Circle
Just to show that the world isn’t completely rectangular, we provide class Circle
and class Ellipse. A Circle is defined by a center and a radius:

struct Circle : Shape {
 Circle(Point p, int rr); // center and radius

 void draw_lines() const;

 Point center() const ;
 int radius() const { return r; }
 void set_radius(int rr)
 {
 set_point(0,Point{center().x–rr,center().y–rr}); // maintain
 // the center
 r = rr;
 }
private:
 int r;
};

We can use Circle like this:

Circle c1 {Point{100,200},50};
Circle c2 {Point{150,200},100};
Circle c3 {Point{200,200},150};

Stroustrup_book.indb 470Stroustrup_book.indb 470 4/22/14 9:42 AM4/22/14 9:42 AM

13.12 CIRCLE 471

This produces three circles of different sizes aligned with their centers in a hori-
zontal line:

The main peculiarity of Circle’s implementation is that the point stored is not the
center, but the top left corner of the square bounding the circle. We could have
stored either but chose the one FLTK uses for its optimized circle-drawing routine.
That way, Circle provides another example of how a class can be used to present a
different (and supposedly nicer) view of a concept than its implementation:

Circle::Circle(Point p, int rr) // center and radius
 :r{rr}
{
 add(Point{p.x–r,p.y–r}); // store top left corner
}

Point Circle::center() const
{
 return {point(0).x+r, point(0).y+r};
}

void Circle::draw_lines() const
{
 if (color().visibility())
 fl_arc(point(0).x,point(0).y,r+r,r+r,0,360);
}

Stroustrup_book.indb 471Stroustrup_book.indb 471 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES472

Note the use of fl_arc() to draw the circle. The initial two arguments specify the top
left corner, the next two arguments specify the width and the height of the smallest
rectangle that encloses the circle, and the final two arguments specify the beginning
and end angle to be drawn. A circle is drawn by going the full 360 degrees, but we
can also use fl_arc() to draw parts of a circle (and parts of an ellipse); see exercise 1.

13.13 Ellipse
An ellipse is similar to Circle but is defined with both a major and a minor axis,
instead of a radius; that is, to define an ellipse, we give the center’s coordinates,
the distance from the center to a point on the x axis, and the distance from the
center to a point on the y axis:

struct Ellipse : Shape {
 Ellipse(Point p, int w, int h); // center, max and min distance from center

 void draw_lines() const;

 Point center() const;
 Point focus1() const;
 Point focus2() const;

 void set_major(int ww)
 {
 set_point(0,Point{center().x–ww,center().y–h}; // maintain
 // the center
 w = ww;
 }
 int major() const { return w; }

 void set_minor(int hh)
 {
 set_point(0,Point{center().x–w,center().y–hh}); // maintain
 // the center
 h = hh;
 }
 int minor() const { return h; }
private:
 int w;
 int h;
};

Stroustrup_book.indb 472Stroustrup_book.indb 472 4/22/14 9:42 AM4/22/14 9:42 AM

13.13 ELLIPSE 473

We can use Ellipse like this:

Ellipse e1 {Point{200,200},50,50};
Ellipse e2 {Point{200,200},100,50};
Ellipse e3 {Point{200,200},100,150};

This gives us three ellipses with a common center but different-size axes:

Note that an Ellipse with major()==minor() looks exactly like a circle.
Another popular view of an ellipse specifies two foci plus a sum of distances

from a point to the foci. Given an Ellipse, we can compute a focus. For example:

Point focus1() const
{
 if (h<=w) // foci are on the x axis:
 return {center().x+int(sqrt(double(w*w–h*h))),center().y};
 else // foci are on the y axis:
 return {center().x,center().y+int(sqrt(double(h*h–w*w)))};
}

Stroustrup_book.indb 473Stroustrup_book.indb 473 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES474

Why is a Circle not an Ellipse? Geometrically, every circle is an ellipse, but not
every ellipse is a circle. In particular, a circle is an ellipse where the two foci are
equal. Imagine that we defined our Circle to be an Ellipse. We could do that at the
cost of needing an extra value in its representation (a circle is defined by a point
and a radius; an ellipse needs a center and a pair of axes). We don’t like space
overhead where we don’t need it, but the primary reason for our Circle not being
an Ellipse is that we couldn’t define it so without somehow disabling set_major()
and set_minor(). After all, it would not be a circle (as a mathematician would rec-
ognize it) if we could use set_major() to get major()!=minor() — at least it would
no longer be a circle after we had done that. We can’t have an object that is of one
type sometimes (i.e., when major()!=minor()) and another type some other time
(i.e., when major()==minor()). What we can have is an object (an Ellipse) that can
look like a circle sometimes. A Circle, on the other hand, never morphs into an
ellipse with two unequal axes.

When we design classes, we have to be careful not to be too clever and not
to be deceived by our “intuition” into defining classes that don’t make sense as
classes in our code. Conversely, we have to take care that our classes represent
some coherent concept and are not just a collection of data and function members.
Just throwing code together without thinking about what ideas/concepts we are
representing is “hacking” and leads to code that we can’t explain and that others
can’t maintain. If you don’t feel altruistic, remember that “others” might be you
in a few months’ time. Such code is also harder to debug.

13.14 Marked_polyline
We often want to “label” points on a graph. One way of displaying a graph is as
an open polyline, so what we need is an open polyline with “marks” at the points.
A Marked_polyline does that. For example:

Marked_polyline mpl {"1234"};
mpl.add(Point{100,100));
mpl.add(Point{150,200));
mpl.add(Point{250,250));
mpl.add(Point{300,200));

Stroustrup_book.indb 474Stroustrup_book.indb 474 4/22/14 9:42 AM4/22/14 9:42 AM

13.14 MARKED_POLYLINE 475

This produces

The definition of Marked_polyline is

struct Marked_polyline : Open_polyline {
 Marked_polyline(const string& m) :mark{m} { if (m=="") mark = "*"; }
 Marked_polyline(const string& m, initializer_list<Point> lst);
 void draw_lines() const;
private:
 string mark;
};

By deriving from Open_polyline, we get the handling of Points “for free”; all we
have to do is to deal with the marks. In particular, draw_lines() becomes

void Marked_polyline::draw_lines() const
{
 Open_polyline::draw_lines();
 for (int i=0; i<number_of_points(); ++i)
 draw_mark(point(i),mark[i%mark.size()]);
}

Stroustrup_book.indb 475Stroustrup_book.indb 475 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES476

The call Open_polyline::draw_lines() takes care of the lines, so we just have to
deal with the “marks.” We supply the marks as a string of characters and use them
in order: the mark[i%mark.size()] selects the character to be used next by cycling
through the characters supplied when the Marked_polyline was created. The %
is the modulo (remainder) operator. This draw_lines() uses a little helper function
draw_mark() to actually output a letter at a given point:

void draw_mark(Point xy, char c)
{
 constexpr int dx = 4;
 constexpr int dy = 4;

 string m {1,c}; // string holding the single char c
 fl_draw(m.c_str(),xy.x–dx,xy.y+dy);
}

The dx and dy constants are used to center the letter over the point. The string m
is constructed to contain the single character c.

The constructor that takes an initializer list simply forwards the list Open_
polyline’s initializer-list constructor:

Marked_polyline(const string& m, initializer_list<Point> lst)
 :Open_polyline{lst},
 mark{m}
{
 if (m=="") mark = "*";
}

The test for the empty string is needed to avoid draw_lines() trying to access a
character that isn’t there.

Given the constructor that takes an initializer list, we can abbreviate the ex-
ample to

Marked_polyline mpl {"1234",{{100,100}, {150,200}, {250,250}, {300,200}}};

13.15 Marks
Sometimes, we want to display marks without lines connecting them. We provide
the class Marks for that. For example, we can mark the four points we have used
for our various examples without connecting them with lines:

Marks pp {"x",{{100,100}, {150,200}, {250,250}, {300,200}}};

Stroustrup_book.indb 476Stroustrup_book.indb 476 4/22/14 9:42 AM4/22/14 9:42 AM

13.15 MARKS 477

This produces

One obvious use of Marks is to display data that represents discrete events so that
drawing connecting lines would be inappropriate. An example would be (height,
weight) data for a group of people.

A Marks is simply a Marked_polyline with the lines invisible:

struct Marks : Marked_polyline {
 Marks(const string& m)
 :Marked_polyline{m}
 {
 set_color(Color{Color::invisible});
 }

 Marked_polyline(const string& m, initializer_list<Point> lst)
 : Marked_polyline{m,lst}
 {
 set_color(Color{Color::invisible});
 }
};

The :Marked_polyline{m} notation is used to initialize the Marked_polyline part
of a Marks object. This notation is a variant of the syntax used to initialize mem-
bers (§9.4.4).

Stroustrup_book.indb 477Stroustrup_book.indb 477 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES478

13.16 Mark
A Point is simply a location in a Window. It is not something we draw or some-
thing we can see. If we want to mark a single Point so that we can see it, we can
indicate it by a pair of lines as in §13.2 or by using Marks. That’s a bit verbose, so
we have a simple version of Marks that is initialized by a point and a character. For
example, we could mark the centers of our circles from §13.12 like this:

Mark m1 {Point{100,200},'x'};
Mark m2 {Point{150,200},'y'};
Mark m3 {Point{200,200},'z'};
c1.set_color(Color::blue);
c2.set_color(Color::red);
c3.set_color(Color::green);

This produces

A Mark is simply a Marks with its initial (and typically only) point given
immediately:

struct Mark : Marks {
 Mark(Point xy, char c) : Marks{string{1,c}}
 {
 add(xy);
 }
};

Stroustrup_book.indb 478Stroustrup_book.indb 478 4/22/14 9:42 AM4/22/14 9:42 AM

13.17 IMAGES 479

The string{1,c} is a constructor for string, initializing the string to contain the
single character c.

All Mark provides is a convenient notation for creating a Marks object with
a single point marked with a single character. Is Mark worth our effort to define
it? Or is it just “spurious complication and confusion”? There is no clear, logical
answer. We went back and forth on this question, but in the end decided that it
was useful for users and the effort to define it was minimal.

Why use a character as a “mark”? We could have used any small shape, but
characters provide a useful and simple set of marks. It is often useful to be able to
use a variety of “marks” to distinguish different sets of points. Characters such as
x, o, +, and * are pleasantly symmetric around a center.

13.17 Images
The average personal computer holds thousands of images in files and can access
millions more over the web. Naturally, we want to display some of those images
in even quite simple programs. For example, here is an image (rita_path.gif) of the
projected path of Hurricane Rita as it approached the Texas Gulf Coast:

Stroustrup_book.indb 479Stroustrup_book.indb 479 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES480

We can select part of that image and add a photo of Rita as seen from space
(rita.jpg):

Image rita {Point{0,0},"rita.jpg"};
Image path {Point{0,0},"rita_path.gif"};
path.set_mask(Point{50,250},600,400); // select likely landfall

win.attach(path);
win.attach(rita);

The set_mask() operation selects a sub-picture of an image to be displayed. Here,
we selected a (600,400)-pixel image from rita_path.gif (loaded as path) with its top
leftmost point at path’s point (50,250). Selecting only part of an image for display
is so common that we chose to support it directly.

Shapes are laid down in the order they are attached, like pieces of paper on a
desk, so we got path “on the bottom” simply by attaching it before rita.

Images can be encoded in a bewildering variety of formats. Here we deal with
only two of the most common, JPEG and GIF:

enum class Suffix { none, jpg, gif };

Stroustrup_book.indb 480Stroustrup_book.indb 480 4/22/14 9:42 AM4/22/14 9:42 AM

13.17 IMAGES 481

In our graphics interface library, we represent an image in memory as an object
of class Image:

struct Image : Shape {
 Image(Point xy, string file_name, Suffix e = Suffix::none);
 ~Image() { delete p; }
 void draw_lines() const;
 void set_mask(Point xy, int ww, int hh)
 { w=ww; h=hh; cx=xy.x; cy=xy.y; }
private:
 int w,h; // define “masking box” within image relative to position (cx,cy)
 int cx,cy;
 Fl_Image* p;
 Text fn;
};

The Image constructor tries to open a file with the name given to it. Then it
tries to create a picture using the encoding specified as an optional argument or
(more often) as a file suffix. If the image cannot be displayed (e.g., because the
file wasn’t found), the Image displays a Bad_image. The definition of Bad_image
looks like this:

struct Bad_image : Fl_Image {
 Bad_image(int h, int w) : Fl_Image{h,w,0} { }
 void draw(int x,int y, int, int, int, int) { draw_empty(x,y); }
};

The handling of images within a graphics library is quite complicated, but the
main complexity of our graphics interface class Image is in the file handling in the
constructor:

// somewhat overelaborate constructor
// because errors related to image files can be such a pain to debug
Image::Image(Point xy, string s, Suffix e)
 :w{0}, h{0}, fn{xy,""}
{
 add(xy);

 if (!can_open(s)) { // can we open s?
 fn.set_label("cannot open \""+s+'"');

Stroustrup_book.indb 481Stroustrup_book.indb 481 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES482

 p = new Bad_image(30,20); // the “error image”
 return;
 }

 if (e == Suffix::none) e = get_encoding(s);

 switch(e) { // check if it is a known encoding
 case Suffix::jpg:
 p = new Fl_JPEG_Image{s.c_str()};
 break;
 case Suffix::gif:
 p = new Fl_GIF_Image{s.c_str()};
 break;
 default: // unsupported image encoding
 fn.set_label("unsupported file type \""+s+'"');
 p = new Bad_image{30,20}; // the “err or image”
 }
}

We use the suffix to pick the kind of object we create to hold the image (a Fl_
JPEG_Image or a Fl_GIF_Image). We create that implementation object using new
and assign it to a pointer. This is an implementation detail (see Chapter 17 for a
discussion of operator new and pointers) related to the organization of FLTK and
is of no fundamental importance here. FLTK uses C-style strings, so we have to
use s.c_str() rather than plain s.

Now, we just have to implement can_open() to test if we can open a named
file for reading:

bool can_open(const string& s)
 // check if a file named s exists and can be opened for reading
{
 ifstream ff(s);
 return ff;
}

Opening a file and then closing it again is a fairly clumsy way of portably separat-
ing errors related to “can’t open the file” from errors related to the format of the
data in the file.

You can look up the get_encoding() function, if you like. It simply looks for a
suffix and looks up that suffix in a table of known suffixes. That lookup table is a
standard library map (see §21.6).

Stroustrup_book.indb 482Stroustrup_book.indb 482 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 REVIEW 483

Drill
 1. Make an 800-by-1000 Simple_window.
 2. Put an 8-by-8 grid on the leftmost 800-by-800 part of that window (so that

each square is 100 by 100).
 3. Make the eight squares on the diagonal starting from the top left corner

red (use Rectangle).
 4. Find a 200-by-200-pixel image (JPEG or GIF) and place three copies of it

on the grid (each image covering four squares). If you can’t find an image
that is exactly 200 by 200, use set_mask() to pick a 200-by-200 section of
a larger image. Don’t obscure the red squares.

 5. Add a 100-by-100 image. Have it move around from square to square
when you click the “Next” button. Just put wait_for_button() in a loop
with some code that picks a new square for your image.

Review
 1. Why don’t we “just” use a commercial or open-source graphics library

directly?
 2. About how many classes from our graphics interface library do you need

to do simple graphics output?
 3. What are the header files needed to use the graphics interface library?
 4. What classes define closed shapes?
 5. Why don’t we just use Line for every shape?
 6. What do the arguments to Point indicate?
 7. What are the components of Line_style?
 8. What are the components of Color?
 9. What is RGB?
 10. What are the differences between two Lines and a Lines containing two

lines?
 11. What properties can you set for every Shape?
 12. How many sides does a Closed_polyline defined by five Points have?
 13. What do you see if you define a Shape but don’t attach it to a Window?
 14. How does a Rectangle differ from a Polygon with four Points (corners)?
 15. How does a Polygon differ from a Closed_polyline?
 16. What’s on top: fill or outline?
 17. Why didn’t we bother defining a Triangle class (after all, we did define

Rectangle)?
 18. How do you move a Shape to another place in a Window?
 19. How do you label a Shape with a line of text?

Stroustrup_book.indb 483Stroustrup_book.indb 483 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 • GRAPHICS CLASSES484

 20. What properties can you set for a text string in a Text?
 21. What is a font and why do we care?
 22. What is Vector_ref for and how do we use it?
 23. What is the difference between a Circle and an Ellipse?
 24. What happens if you try to display an Image given a file name that

doesn’t refer to a file containing an image?
 25. How do you display part of an image?

Terms
closed shape
color
ellipse
fi ll
font
font size
GIF

image
image encoding
invisible
JPEG
line
line style
open shape

point
polygon
polyline
unnamed object
Vector_ref
visible

Exercises
For each “defi ne a class” exercise, display a couple of objects of the class to demon-
strate that they work.

 1. Define a class Arc, which draws a part of an ellipse. Hint: fl_arc().
 2. Draw a box with rounded corners. Define a class Box, consisting of four

lines and four arcs.
 3. Define a class Arrow, which draws a line with an arrowhead.
 4. Define functions n(), s(), e(), w(), center(), ne(), se(), sw(), and nw(). Each

takes a Rectangle argument and returns a Point. These functions define
“connection points” on and in the rectangle. For example, nw(r) is the
northwest (top left) corner of a Rectangle called r.

 5. Define the functions from exercise 4 for a Circle and an Ellipse. Place the
connection points on or outside the shape but not outside the bounding
rectangle.

 6. Write a program that draws a class diagram like the one in §12.6. It will
simplify matters if you start by defining a Box class that is a rectangle with
a text label.

 7. Make an RGB color chart (e.g., search the web for “RGB color chart”).
 8. Define a class Regular_hexagon (a regular hexagon is a six-sided polygon

with all sides of equal length). Use the center and the distance from the
center to a corner point as constructor arguments.

 9. Tile a part of a window with Regular_hexagons (use at least eight hexagons).

Stroustrup_book.indb 484Stroustrup_book.indb 484 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 13 POSTSCRIPT 485

 10. Define a class Regular_polygon. Use the center, the number of sides (>2),
and the distance from the center to a corner as constructor arguments.

 11. Draw a 300-by-200-pixel ellipse. Draw a 400-pixel-long x axis and a
300-pixel-long y axis through the center of the ellipse. Mark the foci.
Mark a point on the ellipse that is not on one of the axes. Draw the two
lines from the foci to the point.

 12. Draw a circle. Move a mark around on the circle (let it move a bit each
time you hit the “Next” button).

 13. Draw the color matrix from §13.10, but without lines around each color.
 14. Define a right triangle class. Make an octagonal shape out of eight right

triangles of different colors.
 15. “Tile” a window with small right triangles.
 16. Do the previous exercise, but with hexagons.
 17. Do the previous exercise, but using hexagons of a few different colors.
 18. Define a class Poly that represents a polygon but checks that its points

really do make a polygon in its constructor. Hint: You’ll have to supply
the points to the constructor.

 19. Define a class Star. One parameter should be the number of points. Draw
a few stars with differing numbers of points, differing line colors, and dif-
fering fill colors.

Postscript
Chapter 12 showed how to be a user of classes. This chapter moves us one level
up the “food chain” of programmers: here we become tool builders in addition to
being tool users.

Stroustrup_book.indb 485Stroustrup_book.indb 485 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 486Stroustrup_book.indb 486 4/22/14 9:42 AM4/22/14 9:42 AM

487

14

Graphics Class Design

“Functional, durable, beautiful.”

—Vitruvius

The purpose of the graphics chapters is dual: we want to

provide useful tools for displaying information, but we

also use the family of graphical interface classes to illustrate gen-

eral design and implementation techniques. In particular, this

chapter presents some ideas of interface design and the notion

of inheritance. Along the way, we have to take a slight detour

to examine the language features that most directly support ob-

ject-oriented programming: class derivation, virtual functions,

and access control. We don’t believe that design can be discussed

in isolation from use and implementation, so our discussion of

design is rather concrete. Maybe you’d better think of this chap-

ter as “Graphics Class Design and Implementation.”

Stroustrup_book.indb 487Stroustrup_book.indb 487 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN488

14.1 Design principles
What are the design principles for our graphics interface classes? First: What kind
of question is that? What are “design principles” and why do we need to look at
those instead of getting on with the serious business of producing neat pictures?

14.1.1 Types
Graphics is an example of an application domain. So, what we are looking at
here is an example of how to present a set of fundamental application concepts
and facilities to programmers (like us). If the concepts are presented confusingly,
inconsistently, incompletely, or in other ways poorly represented in our code, the
difficulty of producing graphical output is increased. We want our graphics classes
to minimize the effort of a programmer trying to learn and to use them.

Our ideal of program design is to represent the concepts of the application
domain directly in code. That way, if you understand the application domain, you
understand the code and vice versa. For example:

• Window — a window as presented by the operating system
• Line — a line as you see it on the screen
• Point — a coordinate point
• Color — as you see it on the screen
• Shape — what’s common for all shapes in our graphics/GUI view of the

world

The last example, Shape, is different from the rest in that it is a generalization, a
purely abstract notion. We never see just a shape on the screen; we see a particular
shape, such as a line or a hexagon. You’ll find that reflected in the definition of our
types: try to make a Shape variable and the compiler will stop you.

The set of our graphics interface classes is a library; the classes are meant to
be used together and in combination. They are meant to be used as examples to

 14.1 Design principles
 14.1.1 Types
 14.1.2 Operations
 14.1.3 Naming
 14.1.4 Mutability

 14.2 Shape
 14.2.1 An abstract class
 14.2.2 Access control
 14.2.3 Drawing shapes
 14.2.4 Copying and mutability

 14.3 Base and derived classes
 14.3.1 Object layout
 14.3.2 Deriving classes and defi ning

virtual functions
 14.3.3 Overriding
 14.3.4 Access
 14.3.5 Pure virtual functions

 14.4 Benefits of object-oriented
programming

Stroustrup_book.indb 488Stroustrup_book.indb 488 4/22/14 9:42 AM4/22/14 9:42 AM

14.1 DESIGN PRINCIPLES 489

follow when you define classes to represent other graphical shapes and as build-
ing blocks for such classes. We are not just defining a set of unrelated classes, so
we can’t make design decisions for each class in isolation. Together, our classes
present a view of how to do graphics. We must ensure that this view is reasonably
elegant and coherent. Given the size of our library and the enormity of the do-
main of graphical applications, we cannot hope for completeness. Instead, we aim
for simplicity and extensibility.

In fact, no class library directly models all aspects of its application domain.
That’s not only impossible; it is also pointless. Consider writing a library for
displaying geographical information. Do you want to show vegetation? National,
state, and other political boundaries? Road systems? Railroads? Rivers? High-
light social and economic data? Seasonal variations in temperature and humidity?
Wind patterns in the atmosphere above? Airline routes? Mark the locations of
schools? The locations of fast-food “restaurants”? Local beauty spots? “All of
that!” may be a good answer for a comprehensive geographical application, but it
is not an answer for a single display. It may be an answer for a library supporting
such geographical applications, but it is unlikely that such a library could also
cover other graphical applications such as freehand drawing, editing photographic
images, scientific visualization, and aircraft control displays.

So, as ever, we have to decide what’s important to us. In this case, we have to
decide which kind of graphics/GUI we want to do well. Trying to do everything
is a recipe for failure. A good library directly and cleanly models its application
domain from a particular perspective, emphasizes some aspects of the application,
and deemphasizes others.

The classes we provide here are designed for simple graphics and simple
graphical user interfaces. They are primarily aimed at users who need to present
data and graphical output from numeric/scientific/engineering applications. You
can build your own classes “on top of” ours. If that is not enough, we expose suffi-
cient FLTK details in our implementation for you to get an idea of how to use that
(or a similar “full-blown” graphics/GUI library) directly, should you so desire.
However, if you decide to go that route, wait until you have absorbed Chapters 17
and 18. Those chapters contain information about pointers and memory manage-
ment that you need for successful direct use of most graphics/GUI libraries.

One key decision is to provide a lot of “little” classes with few operations.
For example, we provide Open_polyline, Closed_polyline, Polygon, Rectangle,
Marked_polyline, Marks, and Mark where we could have provided a single class
(possibly called “polyline”) with a lot of arguments and operations that allowed
us to specify which kind of polyline an object was and possibly even mutate a
polyline from one kind to another. The extreme of this kind of thinking would
be to provide every kind of shape as part of a single class Shape. We think that
using many small classes most closely and most usefully models our domain of
graphics. A single class providing “everything” would leave the user messing

Stroustrup_book.indb 489Stroustrup_book.indb 489 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN490

with data and options without a framework to help understanding, debugging,
and performance.

14.1.2 Operations
We provide a minimum of operations as part of each class. Our ideal is the min-
imal interface that allows us to do what we want. Where we want greater conve-
nience, we can always provide it in the form of added nonmember functions or
yet another class.

We want the interfaces of our classes to show a common style. For exam-
ple, all functions performing similar operations in different classes have the same
name, take arguments of the same types, and where possible require those argu-
ments in the same order. Consider the constructors: if a shape requires a location,
it takes a Point as its first argument:

Line ln {Point{100,200},Point{300,400}};
Mark m {Point{100,200},'x'}; // display a single point as an 'x'
Circle c {Point{200,200},250};

All functions that deal with points use class Point to represent them. That would
seem obvious, but many libraries exhibit a mixture of styles. For example, imag-
ine a function for drawing a line. We could use one of two styles:

void draw_line(Point p1, Point p2); // from p1 to p2 (our style)
void draw_line(int x1, int y1, int x2, int y2); // from (x1,y1) to (x2,y2)

We could even allow both, but for consistency, improved type checking, and im-
proved readability we use the first style exclusively. Using Point consistently also
saves us from confusion between coordinate pairs and the other common pair of
integers: width and height. For example, consider:

draw_rectangle(Point{100,200}, 300, 400); // our style
draw_rectangle(100,200,300,400); // alternative

The first call draws a rectangle with a point, width, and height. That’s reasonably
easy to guess, but how about the second call? Is that a rectangle defined by points
(100,200) and (300,400)? A rectangle defined by a point (100,200), a width 300,
and a height 400? Something completely different (though plausible to someone)?
Using the Point type consistently avoids such confusion.

Incidentally, if a function requires a width and a height, they are always pre-
sented in that order (just as we always give an x coordinate before a y coordinate).
Getting such little details consistent makes a surprisingly large difference to the
ease of use and the avoidance of run-time errors.

Stroustrup_book.indb 490Stroustrup_book.indb 490 4/22/14 9:42 AM4/22/14 9:42 AM

14.1 DESIGN PRINCIPLES 491

Logically identical operations have the same name. For example, every func-
tion that adds points, lines, etc. to any kind of shape is called add(), and any func-
tion that draws lines is called draw_lines(). Such uniformity helps us remember
(by offering fewer details to remember) and helps us when we design new classes
(“just do the usual”). Sometimes, it even allows us to write code that works for
many different types, because the operations on those types have an identical
pattern. Such code is called generic; see Chapters 19–21.

14.1.3 Naming
Logically different operations have different names. Again, that would seem ob-
vious, but consider: why do we “attach” a Shape to a Window, but “add” a Line
to a Shape? In both cases, we “put something into something,” so shouldn’t that
similarity be reflected by a common name? No. The similarity hides a fundamen-
tal difference. Consider:

Open_polyline opl;
opl.add(Point{100,100});
opl.add(Point{150,200});
opl.add(Point{250,250});

Here, we copy three points into opl. The shape opl does not care about “our”
points after a call to add(); it keeps its own copies. In fact, we rarely keep copies of
the points — we leave that to the shape. On the other hand, consider:

win.attach(opl);

Here, we create a connection between the window win and our shape opl; win
does not make a copy of opl — it keeps a reference to opl. So, it is our respon-
sibility to keep opl valid as long as win uses it. That is, we must not exit opl’s
scope while win is using opl. We can update opl and the next time win comes to
draw opl our changes will appear on the screen. We can illustrate the difference
between attach() and add() graphically:

(100,100)
(150,200)
(250,250)

Open_polyline:

Window:

Stroustrup_book.indb 491Stroustrup_book.indb 491 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN492

Basically, add() uses pass-by-value (copies) and attach() uses pass-by-reference
(shares a single object). We could have chosen to copy graphical objects into
Windows. However, that would have given a different programming model,
which we would have indicated by using add() rather than attach(). As it is, we
just “attach” a graphics object to a Window. That has important implications. For
example, we can’t create an object, attach it, allow the object to be destroyed, and
expect the resulting program to work:

void f(Simple_window& w)
{
 Rectangle r {Point{100,200},50,30};
 w.attach(r);
} // oops, the lifetime of r ends here

int main()
{
 Simple_window win {Point{100,100},600,400,"My window"};
 // . . .
 f(win); // asking for trouble
 // . . .
 win.wait_for_button();
}

By the time we have exited from f() and reached wait_for_button(), there is
no r for the win to refer to and display. In Chapter 17, we’ll show how to create
objects within a function and have them survive after the return from the func-
tion. Until then, we must avoid attaching objects that don’t survive until the call
of wait_for_button(). We have Vector_ref (§13.10, §E.4) to help with that.

Note that had we declared f() to take its Window as a const reference argu-
ment (as recommended in §8.5.6), the compiler would have prevented our mis-
take: we can’t attach(r) to a const Window because attach() needs to make a
change to the Window to record the Window’s interest in r.

14.1.4 Mutability
When we design a class, “Who can modify the data (representation)?” and
“How?” are key questions that we must answer. We try to ensure that modifi-
cation to the state of an object is done only by its own class. The public/private
distinction is key to this, but we’ll show examples where a more flexible/subtle
mechanism (protected) is employed. This implies that we can’t just give a class
a data member, say a string called label; we must also consider if it should be
possible to modify it after construction, and if so, how. We must also decide if

Stroustrup_book.indb 492Stroustrup_book.indb 492 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 493

code other than our class’s member functions needs to read the value of label,
and if so, how. For example:

struct Circle {
 // . . .
private:
 int r; // radius
};

Circle c {Point{100,200},50};
c.r = –9; // OK? No — compile-time error: Circle::r is private

As you might have noticed in Chapter 13, we decided to prevent direct access
to most data members. Not exposing the data directly gives us the opportunity to
check against “silly” values, such as a Circle with a negative radius. For simplicity
of implementation, we take only limited advantage of this opportunity, so do be
careful with your values. The decision not to consistently and completely check
reflects a desire to keep the code short for presentation and the knowledge that if
a user (you, us) supplies “silly” values, the result is simply a messed-up image on
the screen and not corruption of precious data.

We treat the screen (seen as a set of Windows) purely as an output device. We
can display new objects and remove old ones, but we never ask “the system” for
information that we don’t (or couldn’t) know ourselves from the data structures
we have built up representing our images.

14.2 Shape
Class Shape represents the general notion of something that can appear in a
 Window on a screen:

• It is the notion that ties our graphical objects to our Window abstraction,
which in turn provides the connection to the operating system and the
physical screen.

• It is the class that deals with color and the style used to draw lines. To do
that it holds a Line_style, a Color for lines, and a Color for fi ll.

• It can hold a sequence of Points and has a basic notion of how to draw
them.

Experienced designers will recognize that a class doing three things probably has
problems with generality. However, here, we need something far simpler than the
most general solution.

Stroustrup_book.indb 493Stroustrup_book.indb 493 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN494

We’ll first present the complete class and then discuss its details:

class Shape { // deals with color and style and holds sequence of lines
public:
 void draw() const; // deal with color and draw lines
 virtual void move(int dx, int dy); // move the shape +=dx and +=dy

 void set_color(Color col);
 Color color() const;

 void set_style(Line_style sty);
 Line_style style() const;

 void set_fill_color(Color col);
 Color fill_color() const;

 Point point(int i) const; // read-only access to points
 int number_of_points() const;

 Shape(const Shape&) = delete; // prevent copying
 Shape& operator=(const Shape&) = delete;

 virtual ~Shape() { }
protected:
 Shape() { }
 Shape(initializer_list<Point> lst); // add() the Points to this Shape

 virtual void draw_lines() const; // draw the appropriate lines
 void add(Point p); // add p to points
 void set_point(int i, Point p); // points[i]=p;
private:
 vector<Point> points; // not used by all shapes
 Color lcolor {fl_color()}; // color for lines and characters (with default)
 Line_style ls {0};
 Color fcolor {Color::invisible}; // fill color
};

This is a relatively complex class designed to support a wide variety of graphics
classes and to represent the general concept of a shape on the screen. However, it
still has only four data members and 15 functions. Furthermore, those functions
are all close to trivial so that we can concentrate on design issues. For the rest of
this section we will go through the members one by one and explain their role in
the design.

Stroustrup_book.indb 494Stroustrup_book.indb 494 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 495

14.2.1 An abstract class
Consider first Shape’s constructors:

protected:
 Shape() { }
 Shape(initializer_list<Point> lst); // add() the Points to this Shape

The constructors are protected. That means that they can only be used directly
from classes derived from Shape (using the :Shape notation). In other words,
Shape can only be used as a base for classes, such as Line and Open_polyline.
The purpose of that protected: is to ensure that we don’t make Shape objects
directly. For example:

Shape ss; // error: cannot construct Shape

Shape is designed to be a base class only. In this case, nothing particularly nasty
would happen if we allowed people to create Shape objects directly, but by lim-
iting use, we keep open the possibility of modifications to Shape that would ren-
der it unsuitable for direct use. Also, by prohibiting the direct creation of Shape
objects, we directly model the idea that we cannot have/see a general shape, only
particular shapes, such as Circle and Closed_polyline. Think about it! What does
a shape look like? The only reasonable response is the counter question “What
shape?” The notion of a shape that we represent by Shape is an abstract concept.
That’s an important and frequently useful design notion, so we don’t want to
compromise it in our program. Allowing users to directly create Shape objects
would do violence to our ideal of classes as direct representations of concepts.

The default constructor sets the members to their default values. Here again,
the underlying library used for implementation, FLTK, “shines through.” How-
ever, FLTK’s notions of color and style are not mentioned directly by the uses.
They are only part of the implementation of our Shape, Color, and Line_style
classes. The vector<Points> defaults to an empty vector.

The initializer-list constructor also uses the default initializers, and then
add()s the elements of its argument list to the Shape:

Shape::Shape(initializer_list<Point> lst)
{
 for (Point p : list) add(p);
}

A class is abstract if it can be used only as a base class. The other — more com-
mon — way of achieving that is called a pure virtual function; see §14.3.5. A class that
can be used to create objects — that is, the opposite of an abstract class — is called

Stroustrup_book.indb 495Stroustrup_book.indb 495 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN496

a concrete class. Note that abstract and concrete are simply technical words for an ev-
eryday distinction. We might go to the store to buy a camera. However, we can’t
just ask for a camera and take it home. What brand of camera? Which particular
model camera? The word camera is a generalization; it refers to an abstract notion.
An Olympus E-M5 refers to a specific kind of camera, which we (in exchange for
a large amount of cash) might acquire a particular instance of: a particular camera
with a unique serial number. So, “camera” is much like an abstract (base) class;
“Olympus E-M5” is much like a concrete (derived) class, and the actual camera in
my hand (if I bought it) would be much like an object.

The declaration

virtual ~Shape() { }

defines a virtual destructor. We won’t use that for now, so we leave the explana-
tion to §17.5.2, where we show a use.

14.2.2 Access control
Class Shape declares all data members private:

private:
 vector<Point> points;
 Color lcolor {fl_color()}; // color for lines and characters (with default)
 Line_style ls {0};
 Color fcolor {Color::invisible}; // fill color

The initializers for the data members don’t depend on constructor arguments, so
I specified them in the data member declarations. As ever, the default value for a
vector is “empty” so I didn’t have to be explicit about that. The constructor will
apply those default values.

Since the data members of Shape are declared private, we need to provide ac-
cess functions. There are several possible styles for doing this. We chose one that
we consider simple, convenient, and readable. If we have a member representing a
property X, we provide a pair of functions X() and set_X() for reading and writing,
respectively. For example:

void Shape::set_color(Color col)
{
 lcolor = col;

}

Color Shape::color() const

Stroustrup_book.indb 496Stroustrup_book.indb 496 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 497

{
 return lcolor;
}

The main inconvenience of this style is that you can’t give the member variable
the same name as its readout function. As ever, we chose the most convenient
names for the functions because they are part of the public interface. It matters far
less what we call our private variables. Note the way we use const to indicate that
the readout functions do not modify their Shape (§9.7.4).

Shape keeps a vector of Points, called points, that a Shape maintains in sup-
port of its derived classes. We provide the function add() for adding Points to
points:

void Shape::add(Point p) // protected
{
 points.push_back(p);
}

Naturally, points starts out empty. We decided to provide Shape with a complete
functional interface rather than giving users — even member functions of classes
derived from Shape — direct access to data members. To some, providing a func-
tional interface is a no-brainer, because they feel that making any data member of
a class public is bad design. To others, our design seems overly restrictive because
we don’t allow direct write access to all members of derived classes.

A shape derived from Shape, such as Circle and Polygon, knows what its
points mean. The base class Shape does not “understand” the points; it only
stores them. Therefore, the derived classes need control over how points are
added. For example:

• Circle and Rectangle do not allow a user to add points; that just wouldn’t
make sense. What would be a rectangle with an extra point? (§12.7.6)

• Lines allows only pairs of points to be added (and not an individual
point; §13.3).

• Open_polyline and Marks allow any number of points to be added.
• Polygon allows a point to be added only by an add() that checks for in-

tersections (§13.8).

We made add() protected (that is, accessible from a derived class only) to ensure
that derived classes take control over how points are added. Had add() been
 public (everybody can add points) or private (only Shape can add points), this
close match of functionality to our idea of shapes would not have been possible.

Stroustrup_book.indb 497Stroustrup_book.indb 497 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN498

Similarly, we made set_point() protected. In general, only a derived class can
know what a point means and whether it can be changed without violating an
invariant. For example, if we have a Regular_hexagon class defined as a set of six
points, changing just a single point would make the resulting figure “not a regular
hexagon.” On the other hand, if we changed one of the points of a rectangle, the
result would still be a rectangle. In fact, we didn’t find a need for set_point() in
our example classes and code, so set_point() is provided just to ensure that the
rule that we can read and set every attribute of a Shape holds. For example, if
we wanted a Mutable_rectangle, we could derive it from Rectangle and provide
operations to change the points.

We made the vector of Points, points, private to protect it against undesired
modification. To make it useful, we also need to provide access to it:

void Shape::set_point(int i, Point p) // not used; not necessary so far
{
 points[i] = p;
}

Point Shape::point(int i) const
{
 return points[i];
}

int Shape::number_of_points() const
{
 return points.size();
}

In derived class member functions, these functions are used like this:

void Lines::draw_lines() const
 // draw lines connecting pairs of points
{
 for (int i=1; i<number_of_points(); i+=2)
 fl_line(point(i–1).x,point(i–1).y,point(i).x,point(i).y);
}

You might worry about all those trivial access functions. Are they not inefficient?
Do they slow down the program? Do they increase the size of the generated code?

Stroustrup_book.indb 498Stroustrup_book.indb 498 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 499

No, they will all be compiled away (“inlined”) by the compiler. Calling number_
of_points() will take up exactly as many bytes of memory and execute exactly as
many instructions as calling points.size() directly.

These access control considerations and decisions are important. We could
have provided this close-to-minimal version of Shape:

struct Shape { // close-to-minimal definition — too simple — not used
 Shape();
 Shape(initializer_list<Point>);
 void draw() const; // deal with color and call draw_lines
 virtual void draw_lines() const; // draw the appropriate lines
 virtual void move(int dx, int dy); // move the shape +=dx and +=dy
 virtual ~Shape();

 vector<Point> points; // not used by all shapes
 Color lcolor;
 Line_style ls;
 Color fcolor;
};

What value did we add by those extra 12 member functions and two lines of
access specifications (private: and protected:)? The basic answer is that pro-
tecting the representation ensures that it doesn’t change in ways unanticipated
by a class designer so that we can write better classes with less effort. This is
the argument about “invariants” (§9.4.3). Here, we’ll point out such advantages
as we define classes derived from Shape. One simple example is that earlier
versions of Shape used

Fl_Color lcolor;
int line_style;

This turned out to be too limiting (an int line style doesn’t elegantly support line
width, and Fl_Color doesn’t accommodate invisible) and led to some messy code.
Had these two variables been public and used in a user’s code, we could have
improved our interface library only at the cost of breaking that code (because it
mentioned the names lcolor and line_style).

In addition, the access functions often provide notational convenience. For
example, s.add(p) is easier to read and write than s.points.push_back(p).

Stroustrup_book.indb 499Stroustrup_book.indb 499 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN500

14.2.3 Drawing shapes
We have now described almost all but the real heart of class Shape:

void draw() const; // deal with color and call draw_lines
virtual void draw_lines() const; // draw the lines appropriately

Shape’s most basic job is to draw shapes. We could remove all other functionality
from Shape or leave it with no data of its own without doing major conceptual
harm (see §14.4), but drawing is Shape’s essential business. It does so using FLTK
and the operating system’s basic machinery, but from a user’s point of view, it
provides just two functions:

• draw() applies style and color and then calls draw_lines().
• draw_lines() puts pixels on the screen.

The draw() function doesn’t use any novel techniques. It simply calls FLTK func-
tions to set the color and style to what is specified in the Shape, calls draw_lines()
to do the actual drawing on the screen, and then tries to restore color and style to
what they were before the call:

void Shape::draw() const
{
 Fl_Color oldc = fl_color();
 // there is no good portable way of retrieving the current style
 fl_color(lcolor.as_int()); // set color
 fl_line_style(ls.style(),ls.width()); // set style
 draw_lines();
 fl_color(oldc); // reset color (to previous)
 fl_line_style(0); // reset line style to default
}

Unfortunately, FLTK doesn’t provide a way of obtaining the current style, so the
style is just set to a default. That’s the kind of compromise we sometimes have to
accept as the cost of simplicity and portability. We didn’t think it worthwhile to
try to implement that facility in our interface library.

Note that Shape::draw() doesn’t handle fill color or the visibility of lines.
Those are handled by the individual draw_lines() functions that have a better idea
of how to interpret them. In principle, all color and style handling could be dele-
gated to the individual draw_lines() functions, but that would be quite repetitive.

Now consider how we might handle draw_lines(). If you think about it for
a bit, you’ll realize that it would be hard for a Shape function to draw all that

Stroustrup_book.indb 500Stroustrup_book.indb 500 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 501

needs to be drawn for every kind of shape. To do so would require that every
last pixel of each shape should somehow be stored in the Shape object. If we kept
the vector<Point> model, we’d have to store an awful lot of points. Worse, “the
screen” (that is, the graphics hardware) already does that — and does it better.

To avoid that extra work and extra storage, Shape takes another approach: it
gives each Shape (that is, each class derived from Shape) a chance to define what
it means to draw it. A Text, Rectangle, or Circle class may have a clever way of
drawing itself. In fact, most such classes do. After all, such classes “know” exactly
what they are supposed to represent. For example, a Circle is defined by a point
and a radius, rather than, say, a lot of line segments. Generating the required
bits for a Circle from the point and radius if and when needed isn’t really all
that hard or expensive. So Circle defines its own draw_lines() which we want to
call instead of Shape’s draw_lines(). That’s what the virtual in the declaration of
Shape::draw_lines() means:

struct Shape {
 // . . .
 virtual void draw_lines() const; // let each derived class define its
 // own draw_lines() if it so chooses
 // . . .
};

struct Circle : Shape {
 // . . .
 void draw_lines() const; // “override” Shape::draw_lines()
 // . . .
};

So, Shape’s draw_lines() must somehow invoke one of Circle’s functions if the
Shape is a Circle and one of Rectangle’s functions if the Shape is a Rectangle.
That’s what the word virtual in the draw_lines() declaration ensures: if a class de-
rived from Shape has defined its own draw_lines() (with the same type as Shape’s
draw_lines()), that draw_lines() will be called rather than Shape’s draw_lines().
Chapter 13 shows how that’s done for Text, Circle, Closed_polyline, etc. Defining
a function in a derived class so that it can be used through the interfaces provided
by a base is called overriding.

Note that despite its central role in Shape, draw_lines() is protected; it is not
meant to be called by “the general user” — that’s what draw() is for — but simply
as an “implementation detail” used by draw() and the classes derived from Shape.

This completes our display model from §12.2. The system that drives the
screen knows about Window. Window knows about Shape and can call Shape’s

Stroustrup_book.indb 501Stroustrup_book.indb 501 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN502

draw(). Finally, draw() invokes the draw_lines() for the particular kind of shape. A
call of gui_main() in our user code starts the display engine.

Shape Display
engine Circle

draw_lines()

Window

Our code
Make objects
Attach objects

draw_lines()

Shape

Square
draw_lines()

draw_lines()

draw()

draw()

draw()

attach()
gui_main()

What gui_main()? So far, we haven’t actually seen gui_main() in our code. In-
stead we use wait_for_button(), which invokes the display engine in a more
simple-minded manner.

Shape’s move() function simply moves every point stored relative to the cur-
rent position:

void Shape::move(int dx, int dy) // move the shape +=dx and +=dy
{
 for (int i = 0; i<points.size(); ++i) {
 points[i].x+=dx;
 points[i].y+=dy;
 }
}

Like draw_lines(), move() is virtual because a derived class may have data that
needs to be moved and that Shape does not know about. For example, see Axis
(§12.7.3 and §15.4).

The move() function is not logically necessary for Shape; we just provided
it for convenience and to provide another example of a virtual function. Every
kind of Shape that has points that it didn’t store in its Shape must define its own
move().

Stroustrup_book.indb 502Stroustrup_book.indb 502 4/22/14 9:42 AM4/22/14 9:42 AM

14.2 SHAPE 503

14.2.4 Copying and mutability
The Shape class declared the copy constructor and the copy assignment deleted:

Shape(const Shape&) =delete; // prevent copying
Shape& operator=(const Shape&) =delete;

The effect is to eliminate the otherwise default copy operations. For example:

void my_fct(Open_polyline& op, const Circle& c)
{
 Open_polyline op2 = op; // error: Shape’s copy constructor is deleted
 vector<Shape> v;
 v.push_back(c); // error: Shape’s copy constructor is deleted
 // . . .
 op = op2; // error: Shape’s assignment is deleted
}

But copying is useful in so many places! Just look at that push_back(); without
copying, it is hard even to use vectors (push_back() puts a copy of its argument
into its vector). Why would anyone make trouble for programmers by preventing
copying? You prohibit the default copy operations for a type if they are likely to
cause trouble. As a prime example of “trouble,” look at my_fct(). We cannot copy
a Circle into a Shape-size element “slot” in v; a Circle has a radius but Shape
does not, so sizeof(Shape)<sizeof(Circle). If that v.push_back(c) were allowed,
the Circle would be “sliced” and any future use of the resulting Shape element
would most likely lead to a crash; the Circle operations would assume a radius
member (r) that hadn’t been copied:

points
lcolor
ls
fcolor

Shape: points
lcolor
ls
fcolor

r

Circle:

The copy construction of op2 and the assignment to op suffer from exactly the
same problem. Consider:

Marked_polyline mp {"x"};
Circle c(p,10);
my_fct(mp,c); // the Open_polyline argument refers to a Marked_polyline

Stroustrup_book.indb 503Stroustrup_book.indb 503 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN504

Now the copy operations of the Open_polyline would “slice” mp’s string member
mark away.

Basically, class hierarchies plus pass-by-reference and default copying do not
mix. When you design a class that is meant to be a base class in a hierarchy,
disable its copy constructor and copy assignment using =delete as was done for
Shape.

Slicing (yes, that’s really a technical term) is not the only reason to prevent
copying. There are quite a few concepts that are best represented without copy
operations. Remember that the graphics system has to remember where a Shape
is stored to display it to the screen. That’s why we “attach” Shapes to a Window,
rather than copy. For example, if a Window held only a copy of a Shape, rather
than a reference to the Shape, changes to the original would not affect the copy.
So if we changed the Shape’s color, the Window would not notice the change and
would display its copy with the unchanged color. A copy would in a very real
sense not be as good as its original.

If we want to copy objects of types where the default copy operations have
been disabled, we can write an explicit function to do the job. Such a copy function
is often called clone(). Obviously, you can write a clone() only if the functions for
reading members are sufficient for expressing what is needed to construct a copy,
but that is the case for all Shapes.

14.3 Base and derived classes
Let’s take a more technical view of base and derived classes; that is, let us for
this section (only) change the focus of discussion from programming, application
design, and graphics to programming language features. When designing our
graphics interface library, we relied on three key language mechanisms:

• Derivation: a way to build one class from another so that the new class
can be used in place of the original. For example, Circle is derived from
Shape, or in other words, “a Circle is a kind of Shape” or “Shape is a
base of Circle.” The derived class (here, Circle) gets all of the members of
its base (here, Shape) in addition to its own. This is often called inheritance
because the derived class “inherits” all of the members of its base. In
some contexts, a derived class is called a subclass and a base class is called
a superclass.

• Virtual functions: the ability to defi ne a function in a base class and have
a function of the same name and type in a derived class called when a
user calls the base class function. For example, when Window calls draw_
lines() for a Shape that is a Circle, it is the Circle’s draw_lines() that is ex-
ecuted, rather than Shape’s own draw_lines(). This is often called run-time

Stroustrup_book.indb 504Stroustrup_book.indb 504 4/22/14 9:42 AM4/22/14 9:42 AM

14.3 BASE AND DERIVED CLASSES 505

polymorphism, dynamic dispatch, or run-time dispatch because the function called
is determined at run time based on the type of the object used.

• Private and protected members: We kept the implementation details of our
classes private to protect them from direct use that could complicate main-
tenance. That’s often called encapsulation.

The use of inheritance, run-time polymorphism, and encapsulation is the most
common definition of object-oriented programming. Thus, C++ directly supports
object-oriented programming in addition to other programming styles. For ex-
ample, in Chapters 20–21, we’ll see how C++ supports generic programming.
C++ borrowed — with explicit acknowledgments — its key mechanisms from
Simula67, the first language to directly support object-oriented programming
(see Chapter 22).

That was a lot of technical terminology! But what does it all mean? And how
does it actually work on our computers? Let’s first draw a simple diagram of our
graphics interface classes showing their inheritance relationships:

Shape

Text

Axis

Mark

Marks

Line

Open_polyline

Function

Rectangle

Polygon

Marked_polyline Closed_polyline

Lines

Image

Circle Ellipse

The arrows point from a derived class to its base. Such diagrams help visualize
class relationships and often decorate the blackboards of programmers. Com-
pared to commercial frameworks this is a tiny “class hierarchy” with only 16
classes, and only in the case of Open_polyline’s many descendants is the hierar-
chy more than one deep. Clearly the common base (Shape) is the most important

Stroustrup_book.indb 505Stroustrup_book.indb 505 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN506

class here, even though it represents an abstract concept so that we never directly
make a shape.

14.3.1 Object layout
How are objects laid out in memory? As we saw in §9.4.1, members of a class de-
fine the layout of objects: data members are stored one after another in memory.
When inheritance is used, the data members of a derived class are simply added
after those of a base. For example:

points
lcolor
ls
fcolor

Shape: points
lcolor
ls
fcolor

r

Circle:

A Circle has the data members of a Shape (after all, it is a kind of Shape) and can
be used as a Shape. In addition, Circle has “its own” data member r placed after
the inherited data members.

To handle a virtual function call, we need (and have) one more piece of data
in a Shape object: something to tell which function is really invoked when we
call Shape’s draw_lines(). The way that is usually done is to add the address of a
table of functions. This table is usually referred to as the vtbl (for “virtual table”
or “virtual function table”) and its address is often called the vptr (for “virtual
pointer”). We discuss pointers in Chapters 17–18; here, they act like references. A
given implementation may use different names for vtbl and vptr. Adding the vptr
and the vtbls to the picture we get

points
lcolor
ls
fcolor
vptr

Shape::draw_lines()
(…)

Shape::move()
(…)

Circle::draw_lines()
(…)

Open_polyline:
Open_polyline’s vtbl:

Circle’s vtbl: points
lcolor
ls
fcolor
vptr
r

Circle:

Stroustrup_book.indb 506Stroustrup_book.indb 506 4/22/14 9:42 AM4/22/14 9:42 AM

14.3 BASE AND DERIVED CLASSES 507

Since draw_lines() is the first virtual function, it gets the first slot in the vtbl, fol-
lowed by that of move(), the second virtual function. A class can have as many vir-
tual functions as you want it to have; its vtbl will be as large as needed (one slot per
virtual function). Now when we call x.draw_lines(), the compiler generates a call
to the function found in the draw_lines() slot in the vtbl for x. Basically, the code
just follows the arrows on the diagram. So if x is a Circle, Circle::draw_lines() will
be called. If x is of a type, say Open_polyline, that uses the vtbl exactly as Shape
defined it, Shape::draw_lines() will be called. Similarly, Circle didn’t define its
own move() so x.move() will call Shape::move() if x is a Circle. Basically, code
generated for a virtual function call simply finds the vptr, uses that to get to the
right vtbl, and calls the appropriate function there. The cost is about two memory
accesses plus the cost of an ordinary function call. This is simple and fast.

Shape is an abstract class so you can’t actually have an object that’s just a
Shape, but an Open_polyline will have exactly the same layout as a “plain shape”
since it doesn’t add a data member or define a virtual function. There is just one
vtbl for each class with a virtual function, not one for each object, so the vtbls tend
not to add significantly to a program’s object code size.

Note that we didn’t draw any non-virtual functions in this picture. We didn’t
need to because there is nothing special about the way such functions are called
and they don’t increase the size of objects of their type.

Defining a function of the same name and type as a virtual function from a
base class (such as Circle::draw_lines()) so that the function from the derived
class is put into the vtbl instead of the version from the base is called overriding. For
example, Circle::draw_lines() overrides Shape::draw_lines().

Why are we telling you about vtbls and memory layout? Do you need to
know about that to use object-oriented programming? No. However, many peo-
ple strongly prefer to know how things are implemented (we are among those),
and when people don’t understand something, myths spring up. We have met
people who were terrified of virtual functions “because they are expensive.” Why?
How expensive? Compared to what? Where would the cost matter? We explain
the implementation model for virtual functions so that you won’t have such fears.
If you need a virtual function call (to select among alternatives at run time), you
can’t code the functionality to be any faster or to use less memory using other
language features. You can see that for yourself.

14.3.2 Deriving classes and defi ning virtual functions
We specify that a class is to be a derived class by mentioning a base after the class
name. For example:

struct Circle : Shape { /* . . . */ };

Stroustrup_book.indb 507Stroustrup_book.indb 507 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN508

By default, the members of a struct are public (§9.3), and that will include public
members of a base. We could equivalently have said

class Circle : public Shape { public: /* . . . */ };

These two declarations of Circle are completely equivalent, but you can have
many long and fruitless discussions with people about which is better. We are of
the opinion that time can be spent more productively on other topics.

Beware of forgetting public when you need it. For example:

class Circle : Shape { public: /* . . . */ }; // probably a mistake

This would make Shape a private base of Circle, making Shape’s public functions
inaccessible for a Circle. That’s unlikely to be what you meant. A good compiler
will warn about this likely error. There are uses for private base classes, but those
are beyond the scope of this book.

A virtual function must be declared virtual in its class declaration, but if you
place the function definition outside the class, the keyword virtual is neither re-
quired nor allowed out there. For example:

struct Shape {
 // . . .
 virtual void draw_lines() const;
 virtual void move();
 // . . .
};

virtual void Shape::draw_lines() const { /* . . . */ } // error
void Shape::move() { /* . . . */ } // OK

14.3.3 Overriding
When you want to override a virtual function, you must use exactly the same
name and type as in the base class. For example:

struct Circle : Shape {
 void draw_lines(int) const; // probably a mistake (int argument?)
 void drawlines() const; // probably a mistake (misspelled name?)
 void draw_lines(); // probably a mistake (const missing?)
 // . . .
};

Stroustrup_book.indb 508Stroustrup_book.indb 508 4/22/14 9:42 AM4/22/14 9:42 AM

14.3 BASE AND DERIVED CLASSES 509

Here, the compiler will see three functions that are independent of Shape::draw_
lines() (because they have a different name or a different type) and won’t override
them. A good compiler will warn about these likely mistakes. There is nothing
you can or must say in an overriding function to ensure that it actually overrides
a base class function.

The draw_lines() example is real and can therefore be hard to follow in all
details, so here is a purely technical example that illustrates overriding:

struct B {
 virtual void f() const { cout << "B::f "; }
 void g() const { cout << "B::g "; } // not virtual
};

struct D : B {
 void f() const { cout << "D::f "; } // overrides B::f
 void g() { cout << "D::g "; }
};

struct DD : D {
 void f() { cout << "DD::f "; } // doesn’t override D::f (not const)
 void g() const { cout << "DD::g "; }
};

Here, we have a small class hierarchy with (just) one virtual function f(). We can
try using it. In particular, we can try to call f() and the non-virtual g(), which is a
function that doesn’t know what type of object it had to deal with except that it is
a B (or something derived from B):

void call(const B& b)
 // a D is a kind of B, so call() can accept a D
 // a DD is a kind of D and a D is a kind of B, so call() can accept a DD
{
 b.f();
 b.g();
}

int main()
{
 B b;
 D d;
 DD dd;

Stroustrup_book.indb 509Stroustrup_book.indb 509 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN510

 call(b);
 call(d);
 call(dd);

 b.f();
 b.g();

 d.f();
 d.g();

 dd.f();
 dd.g();
}

You’ll get

B::f B::g D::f B::g D::f B::g B::f B::g D::f D::g DD::f DD::g

When you understand why, you’ll know the mechanics of inheritance and virtual
functions.

Obviously, it can be hard to keep track of which derived class functions are
meant to override which base class functions. Fortunately, we can get compiler
help to check. We can explicitly declare that a function is meant to override. As-
suming that the derived class functions were meant to override, we can say so by
adding override and the example becomes

struct B {
 virtual void f() const { cout << "B::f "; }
 void g() const { cout << "B::g "; } // not virtual
};

struct D : B {
 void f() const override { cout << "D::f "; } // overrides B::f
 void g() override { cout << "D::g "; } // error: no virtual B::g to override
};

struct DD : D {
 void f() override { cout << "DD::f "; } // error: doesn’t override
 // D::f (not const)
 void g() const override { cout << "DD::g "; } // error: no virtual D::g
 // to override
};

Stroustrup_book.indb 510Stroustrup_book.indb 510 4/22/14 9:42 AM4/22/14 9:42 AM

14.3 BASE AND DERIVED CLASSES 511

Explicit use of override is particularly useful in large, complicated class
hierarchies.

14.3.4 Access
C++ provides a simple model of access to members of a class. A member of a
class can be

• Private: If a member is private, its name can be used only by members of
the class in which it is declared.

• Protected: If a member is protected, its name can be used only by members
of the class in which it is declared and members of classes derived from that.

• Public: If a member is public, its name can be used by all functions.

Or graphically:

All users

Derived class’s members

Class’s own members

Public members
Protected members
Private members

A base can also be private, protected, or public:

• If a base of class D is private, its public and protected member names can
be used only by members of D.

• If a base of class D is protected, its public and protected member names
can be used only by members of D and members of classes derived from D.

• If a base is public, its public member names can be used by all functions.

These definitions ignore the concept of “friend” and a few minor details, which
are beyond the scope of this book. If you want to become a language lawyer you
need to study Stroustrup, The Design and Evolution of C++ and The C++ Program-
ming Language, and the ISO C++ standard. We don’t recommend becoming a
language lawyer (someone knowing every little detail of the language definition);
being a programmer (a software developer, an engineer, a user, whatever you
prefer to call someone who actually uses the language) is much more fun and
typically much more useful to society.

Stroustrup_book.indb 511Stroustrup_book.indb 511 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN512

14.3.5 Pure virtual functions
An abstract class is a class that can be used only as a base class. We use abstract
classes to represent concepts that are abstract; that is, we use abstract classes for
concepts that are generalizations of common characteristics of related entities.
Thick books of philosophy have been written trying to precisely define abstract
concept (or abstraction or generalization or . . .). However you define it philosophically,
the notion of an abstract concept is immensely useful. Examples are “animal”
(as opposed to any particular kind of animal), “device driver” (as opposed to the
driver for any particular kind of device), and “publication” (as opposed to any
particular kind of book or magazine). In programs, abstract classes usually define
interfaces to groups of related classes (class hierarchies).

In §14.2.1, we saw how to make a class abstract by declaring its constructor
protected. There is another — and much more common — way of making a class
abstract: state that one or more of its virtual functions needs to be overridden in
some derived class. For example:

class B { // abstract base class
public:
 virtual void f() =0; // pure virtual function
 virtual void g() =0;
};

B b; // error: B is abstract

The curious =0 notation says that the virtual functions B::f() and B::g() are
“pure”; that is, they must be overridden in some derived class. Since B has pure
virtual functions, we cannot create an object of class B. Overriding the pure virtual
functions solves this “problem”:

class D1 : public B {
public:
 void f() override;
 void g() override;
};

D1 d1; // OK

Note that unless all pure virtual functions are overridden, the resulting class is still
abstract:

Stroustrup_book.indb 512Stroustrup_book.indb 512 4/22/14 9:42 AM4/22/14 9:42 AM

14.4 BENEFITS OF OBJECT-ORIENTED PROGRAMMING 513

class D2 : public B {
public:
 void f() override;
 // no g()
};

D2 d2; // error: D2 is (still) abstract

class D3 : public D2 {
public:
 void g() override;
};

D3 d3; // OK

Classes with pure virtual functions tend to be pure interfaces; that is, they tend
to have no data members (the data members will be in the derived classes) and
consequently have no constructors (if there are no data members to initialize, a
constructor is unlikely to be needed).

14.4 Benefi ts of object-oriented programming
When we say that Circle is derived from Shape, or that Circle is a kind of Shape,
we do so to obtain (either or both)

• Interface inheritance: A function expecting a Shape (usually as a reference
argument) can accept a Circle (and can use a Circle through the interface
provided by Shape).

• Implementation inheritance: When we defi ne Circle and its member functions,
we can take advantage of the facilities (such as data and member func-
tions) offered by Shape.

A design that does not provide interface inheritance (that is, a design for which an
object of a derived class cannot be used as an object of its public base class) is a poor
and error-prone design. For example, we might define a class called Never_do_
this with Shape as its public base. Then we could override Shape::draw_lines()
with a function that didn’t draw the shape, but instead moved its center 100 pixels
to the left. That “design” is fatally flawed because even though Never_do_this

Stroustrup_book.indb 513Stroustrup_book.indb 513 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN514

provides the interface of a Shape, its implementation does not maintain the se-
mantics (meaning, behavior) required of a Shape. Never do that!

Interface inheritance gets its name because its benefits come from code us-
ing the interface provided by a base class (“an interface”; here, Shape) and not
having to know about the derived classes (“implementations”; here, classes de-
rived from Shape).

Implementation inheritance gets its name because the benefits come from the
simplification in the implementation of derived classes (e.g., Circle) provided by
the facilities offered by the base class (here, Shape).

Note that our graphics design critically depends on interface inheritance: the
“graphics engine” calls Shape::draw() which in turn calls Shape’s virtual function
draw_lines() to do the real work of putting images on the screen. Neither the
“graphics engine” nor indeed class Shape knows which kinds of shapes exist. In
particular, our “graphics engine” (FLTK plus the operating system’s graphics fa-
cilities) was written and compiled years before our graphics classes! We just define
particular shapes and attach() them to Windows as Shapes (Window::attach()
takes a Shape& argument; see §E.3). Furthermore, since class Shape doesn’t
know about your graphics classes, you don’t need to recompile Shape each time
you define a new graphics interface class.

In other words, we can add new Shapes to a program without modifying
existing code. This is a holy grail of software design/development/maintenance:
extension of a system without modifying it. There are limits to which changes
we can make without modifying existing classes (e.g., Shape offers a rather
limited range of services), and the technique doesn’t apply well to all program-
ming problems (see, for example, Chapters 17–19 where we define vector; in-
heritance has little to offer for that). However, interface inheritance is one of
the most powerful techniques for designing and implementing systems that are
robust in the face of change.

Similarly, implementation inheritance has much to offer, but it is no panacea.
By placing useful services in Shape, we save ourselves the bother of repeating
work over and over again in the derived classes. That can be most significant in
real-world code. However, it comes at the cost that any change to the interface of
Shape or any change to the layout of the data members of Shape necessitates a
recompilation of all derived classes and their users. For a widely used library, such
recompilation can be simply infeasible. Naturally, there are ways of gaining most
of the benefits while avoiding most of the problems; see §14.3.5.

Stroustrup_book.indb 514Stroustrup_book.indb 514 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 REVIEW 515

Drill
Unfortunately, we can’t construct a drill for the understanding of general design
principles, so here we focus on the language features that support object-oriented
programming.

 1. Define a class B1 with a virtual function vf() and a non-virtual function f().
Define both of these functions within class B1. Implement each function
to output its name (e.g., B1::vf()). Make the functions public. Make a B1
object and call each function.

 2. Derive a class D1 from B1 and override vf(). Make a D1 object and call vf()
and f() for it.

 3. Define a reference to B1 (a B1&) and initialize that to the D1 object you
just defined. Call vf() and f() for that reference.

 4. Now define a function called f() for D1 and repeat 1–3. Explain the results.
 5. Add a pure virtual function called pvf() to B1 and try to repeat 1–4. Ex-

plain the result.
 6. Define a class D2 derived from D1 and override pvf() in D2. Make an

object of class D2 and invoke f(), vf(), and pvf() for it.
 7. Define a class B2 with a pure virtual function pvf(). Define a class D21

with a string data member and a member function that overrides pvf();
D21::pvf() should output the value of the string. Define a class D22 that
is just like D21 except that its data member is an int. Define a function f()
that takes a B2& argument and calls pvf() for its argument. Call f() with a
D21 and a D22.

Review
 1. What is an application domain?
 2. What are ideals for naming?
 3. What can we name?
 4. What services does a Shape offer?
 5. How does an abstract class differ from a class that is not abstract?
 6. How can you make a class abstract?
 7. What is controlled by access control?
 8. What good can it do to make a data member private?
 9. What is a virtual function and how does it differ from a non-virtual function?
 10. What is a base class?
 11. What makes a class derived?
 12. What do we mean by object layout?
 13. What can you do to make a class easier to test?

Stroustrup_book.indb 515Stroustrup_book.indb 515 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN516

 14. What is an inheritance diagram?
 15. What is the difference between a protected member and a private one?
 16. What members of a class can be accessed from a class derived from it?
 17. How does a pure virtual function differ from other virtual functions?
 18. Why would you make a member function virtual?
 19. Why would you make a virtual member function pure?
 20. What does overriding mean?
 21. How does interface inheritance differ from implementation inheritance?
 22. What is object-oriented programming?

Terms
abstract class mutability pure virtual function
access control object layout subclass
base class object-oriented override superclass
derived class polymorphism virtual function
dispatch private virtual function call
encapsulation protected virtual function table
inheritance public

Exercises
 1. Define two classes Smiley and Frowny, which are both derived from class

Circle and have two eyes and a mouth. Next, derive classes from Smiley
and Frowny which add an appropriate hat to each.

 2. Try to copy a Shape. What happens?
 3. Define an abstract class and try to define an object of that type. What

happens?
 4. Define a class Immobile_Circle, which is just like Circle but can’t be moved.
 5. Define a Striped_rectangle where instead of fill, the rectangle is “filled”

by drawing one-pixel-wide horizontal lines across the inside of the rectan-
gle (say, draw every second line like that). You may have to play with the
width of lines and the line spacing to get a pattern you like.

 6. Define a Striped_circle using the technique from Striped_rectangle.
 7. Define a Striped_closed_polyline using the technique from Striped_

rectangle (this requires some algorithmic inventiveness).
 8. Define a class Octagon to be a regular octagon. Write a test that exercises

all of its functions (as defined by you or inherited from Shape).
 9. Define a Group to be a container of Shapes with suitable operations

applied to the various members of the Group. Hint: Vector_ref. Use a

Stroustrup_book.indb 516Stroustrup_book.indb 516 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 EXERCISES 517

Group to define a checkers (draughts) board where pieces can be moved
under program control.

 10. Define a class Pseudo_window that looks as much like a Window as you
can make it without heroic efforts. It should have rounded corners, a la-
bel, and control icons. Maybe you could add some fake “contents,” such
as an image. It need not actually do anything. It is acceptable (and indeed
recommended) to have it appear within a Simple_window.

 11. Define a Binary_tree class derived from Shape. Give the number of levels
as a parameter (levels==0 means no nodes, levels==1 means one node,
levels==2 means one top node with two sub-nodes, levels==3 means one
top node with two sub-nodes each with two sub-nodes, etc.). Let a node
be represented by a small circle. Connect the nodes by lines (as is conven-
tional). P.S. In computer science, trees grow downward from a top node
(amusingly, but logically, often called the root).

 12. Modify Binary_tree to draw its nodes using a virtual function. Then,
derive a new class from Binary_tree that overrides that virtual function to
use a different representation for a node (e.g., a triangle).

 13. Modify Binary_tree to take a parameter (or parameters) to indicate what
kind of line to use to connect the nodes (e.g., an arrow pointing down
or a red arrow pointing up). Note how this exercise and the last use two
alternative ways of making a class hierarchy more flexible and useful.

 14. Add an operation to Binary_tree that adds text to a node. You may have
to modify the design of Binary_tree to implement this elegantly. Choose
a way to identify a node; for example, you might give a string "lrrlr" for
navigating left, right, right, left, and right down a binary tree (the root
node would match both an initial l and an initial r).

 15. Most class hierarchies have nothing to do with graphics. Define a class
Iterator with a pure virtual function next() that returns a double* (see
Chapter 17). Now derive Vector_iterator and List_iterator from Iterator
so that next() for a Vector_iterator yields a pointer to the next element
of a vector<double> and List_iterator does the same for a list<double>.
You initialize a Vector_iterator with a vector<double> and the first call
of next() yields a pointer to its first element, if any. If there is no next ele-
ment, return 0. Test this by using a function void print(Iterator&) to print
the elements of a vector<double> and a list<double>.

 16. Define a class Controller with four virtual functions on(), off(), set_level(int),
and show(). Derive at least two classes from Controller. One should be a
simple test class where show() prints out whether the class is set to on or
off and what is the current level. The second derived class should some-
how control the line color of a Shape; the exact meaning of “level” is up
to you. Try to find a third “thing” to control with such a Controller class.

Stroustrup_book.indb 517Stroustrup_book.indb 517 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 14 • GRAPHICS CLASS DESIGN518

 17. The exceptions defined in the C++ standard library, such as exception,
runtime_error, and out_of_range (§5.6.3), are organized into a class hier-
archy (with a useful virtual function what() returning a string supposedly
explaining what went wrong). Search your information sources for the
C++ standard exception class hierarchy and draw a class hierarchy dia-
gram of it.

Postscript
The ideal for software is not to build a single program that does everything. The
ideal is to build a lot of classes that closely refl ect our concepts and that work to-
gether to allow us to build our applications elegantly, with minimal effort (relative
to the complexity of our task), with adequate performance, and with confi dence
that the results produced are correct. Such programs are comprehensible and
maintainable in a way that code that was simply thrown together to get a partic-
ular job done as quickly as possible is not. Classes, encapsulation (as supported
by private and protected), inheritance (as supported by class derivation), and
run-time polymorphism (as supported by virtual functions) are among our most
powerful tools for structuring systems .

Stroustrup_book.indb 518Stroustrup_book.indb 518 4/22/14 9:42 AM4/22/14 9:42 AM

519

15

Graphing Functions
and Data

“The best is the enemy of the good.”

—Voltaire

I f you are in any empirical field, you need to graph data. If you

are in any field that uses math to model phenomena, you need

to graph functions. This chapter discusses basic mechanisms for

such graphics. As usual, we show the use of the mechanisms

and also discuss their design. The key examples are graphing a

function of one argument and displaying values read from a file.

Stroustrup_book.indb 519Stroustrup_book.indb 519 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA520

15.1 Introduction
Compared to the professional software systems you’ll use if such visualization
becomes your main occupation, the facilities presented here are primitive. Our
primary aim is not elegance of output, but an understanding of how such graphi-
cal output can be produced and of the programming techniques used. You’ll find
the design techniques, programming techniques, and basic mathematical tools
presented here of longer-term value than the graphics facilities presented. There-
fore, please don’t skim too quickly over the code fragments — they contain more
of interest than just the shapes they compute and draw.

15.2 Graphing simple functions
Let’s start. Let’s look at examples of what we can draw and what code it takes to
draw them. In particular, look at the graphics interface classes used. Here, first,
are a parabola, a horizontal line, and a sloping line:

 15.1 Introduction

 15.2 Graphing simple functions

 15.3 Function
 15.3.1 Default arguments
 15.3.2 More examples
 15.3.3 Lambda expressions

 15.4 Axis

 15.5 Approximation

 15.6 Graphing data
 15.6.1 Reading a fi le
 15.6.2 General layout
 15.6.3 Scaling data
 15.6.4 Building the graph

Stroustrup_book.indb 520Stroustrup_book.indb 520 4/22/14 9:42 AM4/22/14 9:42 AM

15.2 GRAPHING SIMPLE FUNCTIONS 521

Actually, since this chapter is about graphing functions, that horizontal line isn’t
just a horizontal line; it is what we get from graphing the function

double one(double) { return 1; }

This is about the simplest function we could think of: it is a function of one ar-
gument that for every argument returns 1. Since we don’t need that argument to
compute the result, we need not name it. For every x passed as an argument to
one() we get the y value 1; that is, the line is defined by (x,y)==(x,1) for all x.

Like all beginning mathematical arguments, this is somewhat trivial and pe-
dantic, so let’s look at a slightly more complicated function:

double slope(double x) { return x/2; }

This is the function that generated the sloping line. For every x, we get the y value
x/2. In other words, (x,y)==(x,x/2). The point where the two lines cross is (2,1).

Now we can try something more interesting, the square function that seems
to reappear regularly in this book:

double square(double x) { return x*x; }

If you remember your high school geometry (and even if you don’t), this defines
a parabola with its lowest point at (0,0) and symmetric on the y axis. In other
words, (x,y)==(x,x*x). So, the lowest point where the parabola touches the sloping
line is (0,0).

Here is the code that drew those three functions:

constexpr int xmax = 600; // window size
constexpr int ymax = 400;

constexpr int x_orig = xmax/2; // position of (0,0) is center of window
constexpr int y_orig = ymax/2;
constexpr Point orig {x_orig,y_orig};

constexpr int r_min = –10; // range [–10:11)
constexpr int r_max = 11;

constexpr int n_points = 400; // number of points used in range

constexpr int x_scale = 30; // scaling factors
constexpr int y_scale = 30;

Simple_window win {Point{100,100},xmax,ymax,"Function graphing"};

Stroustrup_book.indb 521Stroustrup_book.indb 521 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA522

Function s {one,r_min,r_max,orig,n_points,x_scale,y_scale};
Function s2 {slope,r_min,r_max,orig,n_points,x_scale,y_scale};
Function s3 {square,r_min,r_max,orig,n_points,x_scale,y_scale};

win.attach(s);
win.attach(s2);
win.attach(s3);
win.wait_for_button();

First, we define a bunch of constants so that we won’t have to litter our code with
“magic constants.” Then, we make a window, define the functions, attach them to
the window, and finally give control to the graphics system to do the actual drawing.

All of this is repetition and “boilerplate” except for the definitions of the three
Functions, s, s2, and s3:

Function s {one,r_min,r_max,orig,n_points,x_scale,y_scale};
Function s2 {slope,r_min,r_max,orig,n_points,x_scale,y_scale};
Function s3 {square,r_min,r_max,orig,n_points,x_scale,y_scale};

Each Function specifies how its first argument (a function of one double argu-
ment returning a double) is to be drawn in a window. The second and third
arguments give the range of x (the argument to the function to be graphed). The
fourth argument (here, orig) tells the Function where the origin (0,0) is to be lo-
cated within the window.

If you think that the many arguments are confusing, we agree. Our ideal is to
have as few arguments as possible, because having many arguments confuses and
provides opportunities for bugs. However, here we need them. We’ll explain the
last three arguments later (§15.3). First, however, let’s label our graphs:

Stroustrup_book.indb 522Stroustrup_book.indb 522 4/22/14 9:42 AM4/22/14 9:42 AM

15.2 GRAPHING SIMPLE FUNCTIONS 523

We always try to make our graphs self-explanatory. People don’t always read the
surrounding text and good diagrams get moved around, so that the surrounding
text is “lost.” Anything we put in as part of the picture itself is most likely to be
noticed and — if reasonable — most likely to help the reader understand what we
are displaying. Here, we simply put a label on each graph. The code for “labeling”
was three Text objects (see §13.11):

Text ts {Point{100,y_orig–40},"one"};
Text ts2 {Point{100,y_orig+y_orig/2–20},"x/2"};
Text ts3 {Point{x_orig–100,20},"x*x"};
win.set_label("Function graphing: label functions");
win.wait_for_button();

From now on in this chapter, we’ll omit the repetitive code for attaching shapes to
the window, labeling the window, and waiting for the user to hit “Next.”

However, that picture is still not acceptable. We noticed that x/2 touches x*x
at (0,0) and that one crosses x/2 at (2,1) but that’s far too subtle; we need axes to
give the reader an unsubtle clue about what’s going on:

The code for the axes was two Axis objects (§15.4):

constexpr int xlength = xmax–40; // make the axis a bit smaller than the window
constexpr int ylength = ymax–40;

Axis x {Axis::x,Point{20,y_orig},
 xlength, xlength/x_scale, "one notch == 1"};
Axis y {Axis::y,Point{x_orig, ylength+20},
 ylength, ylength/y_scale, "one notch == 1"};

Stroustrup_book.indb 523Stroustrup_book.indb 523 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA524

Using xlength/x_scale as the number of notches ensures that a notch represents
the values 1, 2, 3, etc. Having the axes cross at (0,0) is conventional. If you prefer
them along the left and bottom edges as is conventional for the display of data (see
§15.6), you can of course do that instead. Another way of distinguishing the axes
from the data is to use color:

x.set_color(Color::red);
y.set_color(Color::red);

And we get

This is acceptable, though for aesthetic reasons, we’d probably want a bit of
empty space at the top to match what we have at the bottom and sides. It might
also be a better idea to push the label for the x axis further to the left. We left these
blemishes so that we could mention them — there are always more aesthetic details
that we can work on. One part of a programmer’s art is to know when to stop and
use the time saved on something better (such as learning new techniques or sleep).
Remember: “The best is the enemy of the good.”

15.3 Function
The Function graphics interface class is defined like this:

struct Function : Shape {
 // the function parameters are not stored

Stroustrup_book.indb 524Stroustrup_book.indb 524 4/22/14 9:42 AM4/22/14 9:42 AM

15.3 FUNCTION 525

 Function(Fct f, double r1, double r2, Point orig,
 int count = 100, double xscale = 25, double yscale = 25);
};

Function is a Shape with a constructor that generates a lot of line segments and
stores them in its Shape part. Those line segments approximate the values of
function f. The values of f are calculated count times for values equally spaced in
the [r1:r2) range:

Function::Function(Fct f, double r1, double r2, Point xy,
 int count, double xscale, double yscale)
// graph f(x) for x in [r1:r2) using count line segments with (0,0) displayed at xy
// x coordinates are scaled by xscale and y coordinates scaled by yscale
{
 if (r2–r1<=0) error("bad graphing range");
 if (count <=0) error("non-positive graphing count");
 double dist = (r2–r1)/count;
 double r = r1;
 for (int i = 0; i<count; ++i) {
 add(Point{xy.x+int(r*xscale),xy.y– int(f(r)*yscale)});
 r += dist;
 }
}

The xscale and yscale values are used to scale the x coordinates and the y coordi-
nates, respectively. We typically need to scale our values to make them fit appro-
priately into a drawing area of a window.

Note that a Function object doesn’t store the values given to its constructor,
so we can’t later ask a function where its origin is, redraw it with different scaling,
etc. All it does is to store points (in its Shape) and draw itself on the screen. If we
wanted the flexibility to change a Function after construction, we would have to
store the values we wanted to change (see exercise 2).

What is the type Fct that we used to represent a function argument? It is a
variant of a standard library type called std::function that can “remember” a
function to be called later. Fct requires its argument to be a double and its return
type to be a double.

15.3.1 Default Arguments
Note the way the Function constructor arguments xscale and yscale were given
initializers in the declaration. Such initializers are called default arguments and their
values are used if a caller doesn’t supply values. For example:

Function s {one, r_min, r_max,orig, n_points, x_scale, y_scale};
Function s2 {slope, r_min, r_max, orig, n_points, x_scale}; // no yscale

Stroustrup_book.indb 525Stroustrup_book.indb 525 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA526

Function s3 {square, r_min, r_max, orig, n_points}; // no xscale, no yscale
Function s4 {sqrt, r_min, r_max, orig}; // no count, no xscale, no yscale

This is equivalent to

Function s {one, r_min, r_max, orig, n_points, x_scale, y_scale};
Function s2 {slope, r_min, r_max,orig, n_points, x_scale, 25};
Function s3 {square, r_min, r_max, orig, n_points, 25, 25};
Function s4 {sqrt, r_min, r_max, orig, 100, 25, 25};

Default arguments are used as an alternative to providing several overloaded
functions. Instead of defining one constructor with three default arguments, we
could have defined four constructors:

struct Function : Shape { // alternative, not using default arguments
 Function(Fct f, double r1, double r2, Point orig,
 int count, double xscale, double yscale);
 // default scale of y:
 Function(Fct f, double r1, double r2, Point orig,
 int count, double xscale);
 // default scale of x and y:
 Function(Fct f, double r1, double r2, Point orig, int count);
 // default count and default scale of x or y:
 Function(Fct f, double r1, double r2, Point orig);
};

It would have been more work to define four constructors, and with the
four-constructor version, the nature of the default is hidden in the constructor
definitions rather than being obvious from the declaration. Default arguments are
frequently used for constructors but can be useful for all kinds of functions. You
can only define default arguments for trailing parameters. For example:

struct Function : Shape {
 Function(Fct f, double r1, double r2, Point orig,
 int count = 100, double xscale, double yscale); // error
};

If a parameter has a default argument, all subsequent parameters must also have one:

struct Function : Shape {
 Function(Fct f, double r1, double r2, Point orig,
 int count = 100, double xscale=25, double yscale=25);
};

Stroustrup_book.indb 526Stroustrup_book.indb 526 4/22/14 9:42 AM4/22/14 9:42 AM

15.3 FUNCTION 527

Sometimes, picking good default arguments is easy. Examples of that are the de-
fault for string (the empty string) and the default for vector (the empty vector). In
other cases, such as Function, choosing a default is less easy; we found the ones
we used after a bit of experimentation and a failed attempt. Remember, you don’t
have to provide default arguments, and if you find it hard to provide one, just
leave it to your user to specify that argument.

15.3.2 More examples
We added a couple more functions, a simple cosine (cos) from the standard li-
brary, and — just to show how we can compose functions — a sloping cosine that
follows the x/2 slope:

double sloping_cos(double x) { return cos(x)+slope(x); }

Here is the result:

The code is

Function s4 {cos,r_min,r_max,orig,400,30,30};
s4.set_color(Color::blue);
Function s5 {sloping_cos, r_min,r_max,orig,400,30,30};
x.label.move(–160,0);
x.notches.set_color(Color::dark_red);

Stroustrup_book.indb 527Stroustrup_book.indb 527 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA528

In addition to adding those two functions, we also moved the x axis’s label and
(just to show how) slightly changed the color of its notches.

Finally, we graph a log, an exponential, a sine, and a cosine:

Function f1 {log,0.000001,r_max,orig,200,30,30}; // log() logarithm, base e
Function f2 {sin,r_min,r_max,orig,200,30,30}; // sin()
f2.set_color(Color::blue);
Function f3 {cos,r_min,r_max,orig,200,30,30}; // cos()
Function f4 {exp,r_min,r_max,orig,200,30,30}; // exp() exponential e^x

Since log(0) is undefined (mathematically, minus infinity), we started the range for
log at a small positive number. The result is

Rather than labeling those functions we used color.
Standard mathematical functions, such as cos(), sin(), and sqrt(), are declared

in the standard library header <cmath>. See §24.8 and §B.9.2 for lists of the stan-
dard mathematical functions.

15.3.3 Lambda expressions
It can get tedious to define a function just to have it to pass as an argument to a
Function. Consequently, C++ offers a notation for defining something that acts
as a function in the argument position where it is needed. For example, we could
define the sloping_cos shape like this:

Function s5 {[](double x) { return cos(x)+slope(x); },
 r_min,r_max,orig,400,30,30};

Stroustrup_book.indb 528Stroustrup_book.indb 528 4/22/14 9:42 AM4/22/14 9:42 AM

15.4 AXIS 529

The [] (double x) { return cos(x)+slope(x); } is a lambda expression; that is, it is
an unnamed function defined right where it is needed as an argument. The [] is
called a lambda introducer. After the lambda introducer, the lambda expression spec-
ifies what arguments are required (the argument list) and what actions are to be
performed (the function body). The return type can be deduced from the lambda
body. Here, the return type is double because that’s the type of cos(x)+slope(x).
Had we wanted to, we could have specified the return type explicitly:

Function s5 {[](double x) -> double { return cos(x)+slope(x); },
 r_min,r_max,orig,400,30,30};

Specifying the return type for a lambda expression is rarely necessary. The
main reason for that is that lambda expressions should be kept simple to avoid
becoming a source of errors and confusion. If a piece of code does something
significant, it should be given a name and probably requires a comment to be
comprehensible to people other than the original programmer. We recommend
using named functions for anything that doesn’t easily fit on a line or two.

The lambda introducer can be used to give the lambda expression access to
local variables; see §15.5. See also §21.4.3.

15.4 Axis
We use Axis wherever we present data (e.g., §15.6.4) because a graph without
information that allows us to understand its scale is most often suspect. An Axis
consists of a line, a number of “notches” on that line, and a text label. The Axis
constructor computes the axis line and (optionally) the lines used as notches on
that line:

struct Axis : Shape {
 enum Orientation { x, y, z };
 Axis(Orientation d, Point xy, int length,
 int number_of_notches=0, string label = "");

 void draw_lines() const override;
 void move(int dx, int dy) override;
 void set_color(Color c);

 Text label;
 Lines notches;
};

Stroustrup_book.indb 529Stroustrup_book.indb 529 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA530

The label and notches objects are left public so that a user can manipulate them.
For example, you can give the notches a different color from the line and move()
the label to a more convenient location. Axis is an example of an object composed
of several semi-independent objects.

The Axis constructor places the lines and adds the “notches” if number_of_
notches is greater than zero:

Axis::Axis(Orientation d, Point xy, int length, int n, string lab)
 :label(Point{0,0},lab)
{
 if (length<0) error("bad axis length");
 switch (d){
 case Axis::x:
 { Shape::add(xy); // axis line
 Shape::add(Point{xy.x+length,xy.y});

 if (0<n) { // add notches
 int dist = length/n;
 int x = xy.x+dist;
 for (int i = 0; i<n; ++i) {
 notches.add(Point{x,xy.y},Point{x,xy.y–5});
 x += dist;
 }
 }

 label.move(length/3,xy.y+20); // put the label under the line
 break;
 }
 case Axis::y:
 { Shape::add(xy); // a y axis goes up
 Shape::add(Point{xy.x,xy.y– length});

 if (0<n) { // add notches
 int dist = length/n;
 int y = xy.y–dist;
 for (int i = 0; i<n; ++i) {
 notches.add(Point{xy.x,y},Point{xy.x+5,y});
 y –= dist;
 }
 }

Stroustrup_book.indb 530Stroustrup_book.indb 530 4/22/14 9:42 AM4/22/14 9:42 AM

15.4 AXIS 531

 label.move(xy.x–10,xy.y– length–10); // put the label at top
 break;
 }
 case Axis::z:
 error("z axis not implemented");
 }
}

Compared to much real-world code, this constructor is very simple, but please
have a good look at it because it isn’t quite trivial and it illustrates a few use-
ful techniques. Note how we store the line in the Shape part of the Axis (using
Shape::add()) but the notches are stored in a separate object (notches). That
way, we can manipulate the line and the notches independently; for example,
we can give each its own color. Similarly, a label is placed in a fixed position
relative to its axes, but since it is a separate object, we can always move it to a
better spot. We use the enumeration Orientation to provide a convenient and
non-error-prone notation for users.

Since an Axis has three parts, we must supply functions for when we want to
manipulate an Axis as a whole. For example:

void Axis::draw_lines() const
{
 Shape::draw_lines();
 notches.draw(); // the notches may have a different color from the line
 label.draw(); // the label may have a different color from the line
}

We use draw() rather than draw_lines() for notches and label to be able to use
the color stored in them. The line is stored in the Axis::Shape itself and uses the
color stored there.

We can set the color of the line, the notches, and the label individually, but
stylistically it’s usually better not to, so we provide a function to set all three to
the same:

void Axis::set_color(Color c)
{
 Shape::set_color(c);
 notches.set_color(c);
 label.set_color(c);
}

Stroustrup_book.indb 531Stroustrup_book.indb 531 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA532

Similarly, Axis::move() moves all the parts of the Axis together:

void Axis::move(int dx, int dy)
{
 Shape::move(dx,dy);
 notches.move(dx,dy);
 label.move(dx,dy);
}

15.5 Approximation
Here we give another small example of graphing a function: we “animate” the
calculation of an exponential function. The purpose is to help you get a feel for
mathematical functions (if you haven’t already), to show the way graphics can be
used to illustrate computations, to give you some code to read, and finally to warn
about a common problem with computations.

One way of computing an exponential function is to compute the series

ex == 1 + x + x2/2! + x3/3! + x4/4! + . . .

The more terms of this sequence we calculate, the more precise our value of ex
becomes; that is, the more terms we calculate, the more digits of the result will be
mathematically correct. What we will do is to compute this sequence and graph
the result after each term. The exclamation point here is used with the common
mathematical meaning: factorial; that is, we graph these functions in order:

exp0(x) = 0 // no terms
exp1(x) = 1 // one term
exp2(x) = 1+x // two terms; pow(x,1)/fac(1)==x
exp3(x) = 1+x+pow(x,2)/fac(2)
exp4(x) = 1+x+pow(x,2)/fac(2)+pow(x,3)/fac(3)
exp5(x) = 1+x+pow(x,2)/fac(2)+pow(x,3)/fac(3)+pow(x,4)/fac(4)
. . .

Each function is a slightly better approximation of ex than the one before it. Here,
pow(x,n) is the standard library function that returns xn. There is no factorial
function in the standard library, so we must define our own:

int fac(int n) // factorial(n); n!
{
 int r = 1;
 while (n>1) {
 r*=n;
 ––n;

Stroustrup_book.indb 532Stroustrup_book.indb 532 4/22/14 9:42 AM4/22/14 9:42 AM

15.5 APPROXIMATION 533

 }
 return r;
}

For an alternative implementation of fac(), see exercise 1. Given fac(), we can
compute the nth term of the series like this:

double term(double x, int n) { return pow(x,n)/fac(n); } // nth term of series

Given term(), calculating the exponential to the precision of n terms is now easy:

double expe(double x, int n) // sum of n terms for x
{
 double sum = 0;
 for (int i=0; i<n; ++i) sum+=term(x,i);
 return sum;
}

Let’s use that to produce some graphics. First, we’ll provide some axes and the
“real” exponential, the standard library exp(), so that we can see how close our
approximation using expe() is:

Function real_exp {exp,r_min,r_max,orig,200,x_scale,y_scale};
real_exp.set_color(Color::blue);

But how can we use expe()? From a programming point of view, the difficulty is
that our graphing class, Function, takes a function of one argument and expe()
needs two arguments. Given C++, as we have seen it so far, there is no really
elegant solution to this problem. However, lambda expressions provide a way
(§15.3.3). Consider:

for (int n = 0; n<50; ++n) {
 ostringstream ss;
 ss << "exp approximation; n==" << n ;
 win.set_label(ss.str());
 // get next approximation:
 Function e {[n](double x) { return expe(x,n); },
 r_min,r_max,orig,200,x_scale,y_scale};
 win.attach(e);
 win.wait_for_button();
 win.detach(e);
}

Stroustrup_book.indb 533Stroustrup_book.indb 533 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA534

The lambda introducer, [n], says that the lambda expression may access the local
variable n. That way, a call of expe(x,n) gets its n when its Function is created and
its x from each call from within the Function.

Note the final detach(e) in that loop. The scope of the Function object e is
the block of the for-statement. Each time we enter that block we get a new Func-
tion called e, and each time we exit the block that e goes away, to be replaced
by the next. The window must not remember the old e because it will have been
destroyed. Thus, detach(e) ensures that the window does not try to draw a de-
stroyed object.

This first gives a window with just the axes and the “real” exponential ren-
dered in blue:

We see that exp(0) is 1 so that our blue “real exponential” crosses the y axis at
(0,1).

If you look carefully, you’ll see that we actually drew the zero term approxi-
mation (exp0(x)==0) as a black line right on top of the x axis. Hitting “Next,” we
get the approximation using just one term. Note that we display the number of
terms used in the approximation in the window label:

Stroustrup_book.indb 534Stroustrup_book.indb 534 4/22/14 9:42 AM4/22/14 9:42 AM

15.5 APPROXIMATION 535

That’s the function exp1(x)==1, the approximation using just one term of the se-
quence. It matches the exponential perfectly at (0,1), but we can do better:

Stroustrup_book.indb 535Stroustrup_book.indb 535 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA536

With two terms (1+x), we get the diagonal crossing the y axis at (0,1). With three
terms (1+x+pow(x,2)/fac(2)), we can see the beginning of a convergence:

With ten terms we are doing rather well, especially for values larger than –3:

If we don’t think too much about it, we might believe that we could get better and
better approximations simply by using more and more terms. However, there are

Stroustrup_book.indb 536Stroustrup_book.indb 536 4/22/14 9:42 AM4/22/14 9:42 AM

15.6 GRAPHING DATA 537

limits, and after 13 terms something strange starts to happen. First, the approxi-
mations start to get slightly worse, and at 18 terms vertical lines appear:

Remember, the computer’s arithmetic is not pure math. Floating-point numbers
are simply as good an approximation to real numbers as we can get with a fixed
number of bits. An int overflows if you try to place a too-large integer in it,
whereas a double stores an approximation. When I saw the strange output for
larger numbers of terms, I first suspected that our calculation started to produce
values that couldn’t be represented as doubles, so that our results started to di-
verge from the mathematically correct answers. Later, I realized that fac() was
producing values that couldn’t be stored in an int. Modifying fac() to produce a
double solved the problem. For more information, see exercise 11 of Chapter 5
and §24.2.

This last picture is also a good illustration of the principle that “it looks OK”
isn’t the same as “tested.” Before giving a program to someone else to use, first
test it beyond what at first seems reasonable. Unless you know better, running a
program slightly longer or with slightly different data could lead to a real mess —
as in this case.

15.6 Graphing data
Displaying data is a highly skilled and highly valued craft. When done well, it
combines technical and artistic aspects and can add significantly to our under-
standing of complex phenomena. However, that also makes graphing a huge area

Stroustrup_book.indb 537Stroustrup_book.indb 537 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA538

that for the most part is unrelated to programming techniques. Here, we’ll just
show a simple example of displaying data read from a file. The data shown rep-
resents the age groups of Japanese people over almost a century. The data to the
right of the 2008 line is a projection:

We’ll use this example to discuss the programming problems involved in present-
ing such data:

• Reading a fi le
• Scaling data to fi t the window
• Displaying the data
• Labeling the graph

We will not go into artistic details. Basically, this is “graphs for geeks,” not “graph-
ical art.” Clearly, you can do better artistically when you need to.

Given a set of data, we must consider how best to display it. To simplify, we
will only deal with data that is easy to display using two dimensions, but that’s
a huge part of the data most people deal with. Note that bar graphs, pie charts,
and similar popular displays really are just two-dimensional data displayed in a
fancy way. Three-dimensional data can often be handled by producing a series of
two-dimensional images, by superimposing several two-dimensional graphs onto
a single window (as is done in the “Japanese age” example), or by labeling indi-

Stroustrup_book.indb 538Stroustrup_book.indb 538 4/22/14 9:42 AM4/22/14 9:42 AM

15.6 GRAPHING DATA 539

vidual points with information. If we want to go beyond that, we’ll have to write
new graphics classes or adopt another graphics library.

So, our data is basically pairs of values, such as (year,number of children). If
we have more data, such as (year,number of children, number of adults,number
of elderly), we simply have to decide which pair of values — or pairs of values —
we want to draw. In our example, we simply graphed (year,number of children),
(year,number of adults), and (year,number of elderly).

There are many ways of looking at a set of (x,y) pairs. When considering how
to graph such a set it is important to consider whether one value is in some way
a function of the other. For example, for a (year,steel production) pair it would
be quite reasonable to consider the steel production a function of the year and
display the data as a continuous line. Open_polyline (§13.6) is the obvious choice
for graphing such data. If y should not be seen as a function of x, for example
(gross domestic product per person,population of country), Marks (§13.15) can
be used to plot unconnected points.

Now, back to our Japanese age distribution example.

15.6.1 Reading a fi le
The file of age distributions consists of lines like this:

(1960 : 30 64 6)
(1970 : 24 69 7)
(1980 : 23 68 9)

The first number after the colon is the percentage of children (age 0–14) in the
population, the second is the percentage of adults (age 15–64), and the third is the
percentage of the elderly (age 65+). Our job is to read those. Note that the format-
ting of the data is slightly irregular. As usual, we have to deal with such details.

To simplify that task, we first define a type Distribution to hold a data item
and an input operator to read such data items:

struct Distribution {
 int year, young, middle, old;
};

istream& operator>>(istream& is, Distribution& d)
 // assume format: (year : young middle old)
{
 char ch1 = 0;
 char ch2 = 0;

Stroustrup_book.indb 539Stroustrup_book.indb 539 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA540

 char ch3 = 0;
 Distribution dd;

 if (is >> ch1 >> dd.year
 >> ch2 >> dd.young >> dd.middle >> dd.old
 >> ch3) {
 if (ch1!= '(' || ch2!=':' || ch3!=')') {
 is.clear(ios_base::failbit);
 return is;
 }
 }
 else
 return is;
 d = dd;
 return is;
}

This is a straightforward application of the ideas from Chapter 10. If this code
isn’t clear to you, please review that chapter. We didn’t need to define a Distri-
bution type and a >> operator. However, it simplifies the code compared to a
brute-force approach of “just read the numbers and graph them.” Our use of
Distribution splits the code up into logical parts to help comprehension and de-
bugging. Don’t be shy about introducing types “just to make the code clearer.”
We define classes to make the code correspond more directly to the way we think
about the concepts in our code. Doing so even for “small” concepts that are used
only very locally in our code, such as a line of data representing the age distribu-
tion for a year, can be most helpful.

Given Distribution, the read loop becomes

string file_name = "japanese-age-data.txt";
ifstream ifs {file_name};
if (!ifs) error("can't open ",file_name);

// . . .

for (Distribution d; ifs>>d;) {
 if (d.year<base_year || end_year<d.year)
 error("year out of range");
 if (d.young+d.middle+d.old != 100)
 error("percentages don't add up");
 // . . .
}

Stroustrup_book.indb 540Stroustrup_book.indb 540 4/22/14 9:42 AM4/22/14 9:42 AM

15.6 GRAPHING DATA 541

That is, we try to open the file japanese-age-data.txt and exit the program if
we don’t find that file. It is often a good idea not to “hardwire” a file name into
the source code the way we did here, but we consider this program an exam-
ple of a small “one-off” effort, so we don’t burden the code with facilities that
are more appropriate for long-lived applications. On the other hand, we did put
japanese-age-data.txt into a named string variable so the program is easy to mod-
ify if we want to use it — or some of its code — for something else.

The read loop checks that the year read is in the expected range and that
the percentages add up to 100. That’s a basic sanity check for the data. Since >>
checks the format of each individual data item, we didn’t bother with further
checks in the main loop.

15.6.2 General layout
So what do we want to appear on the screen? You can see our answer at the be-
ginning of §15.6. The data seems to ask for three Open_polylines — one for each
age group. These graphs need to be labeled, and we decided to write a “caption”
for each line at the left-hand side of the window. In this case, that seemed clearer
than the common alternative: to place the label somewhere along the line itself. In
addition, we use color to distinguish the graphs and associate their labels.

We want to label the x axis with the years. The vertical line through the year
2008 indicates where the graph goes from hard data to projected data.

We decided to just use the window’s label as the title for our graph.
Getting graphing code both correct and good-looking can be surprisingly

tricky. The main reason is that we have to do a lot of fiddly calculations of sizes
and offsets. To simplify that, we start by defining a set of symbolic constants that
defines the way we use our screen space:

constexpr int xmax = 600; // window size
constexpr int ymax = 400;

constexpr int xoffset = 100; // distance from left-hand side of window to y axis
constexpr int yoffset = 60; // distance from bottom of window to x axis

constexpr int xspace = 40; // space beyond axis
constexpr int yspace = 40;

constexpr int xlength = xmax–xoffset–xspace; // length of axes
constexpr int ylength = ymax–yoffset–yspace;

Stroustrup_book.indb 541Stroustrup_book.indb 541 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA542

Basically this defines a rectangular space (the window) with another rectangle
(defined by the axes) within it:

xmax

xspace

xlength

ymax ylength

yspace

yoffset

xoffset

We find that without such a “schematic view” of where things are in our window
and the symbolic constants that define it, we get lost and become frustrated when
our output doesn’t reflect our wishes.

15.6.3 Scaling data
Next we need to define how to fit our data into that space. We do that by scaling
the data so that it fits into the space defined by the axes. To do that we need the
scaling factors that are the ratio between the data range and the axis range:

constexpr int base_year = 1960;
constexpr int end_year = 2040;

constexpr double xscale = double(xlength)/(end_year–base_year);
constexpr double yscale = double(ylength)/100;

We want our scaling factors (xscale and yscale) to be floating-point numbers —
or our calculations could be subject to serious rounding errors. To avoid integer
division, we convert our lengths to double before dividing (§4.3.3).

We can now place a data point on the x axis by subtracting its base value
(1960), scaling with xscale, and adding the xoffset. A y value is dealt with simi-
larly. We find that we can never remember to do that quite right when we try to
do it repeatedly. It may be a trivial calculation, but it is fiddly and verbose. To

Stroustrup_book.indb 542Stroustrup_book.indb 542 4/22/14 9:42 AM4/22/14 9:42 AM

15.6 GRAPHING DATA 543

simplify the code and minimize that chance of error (and minimize frustrating
debugging), we define a little class to do the calculation for us:

class Scale { // data value to coordinate conversion
 int cbase; // coordinate base
 int vbase; // base of values
 double scale;
public:
 Scale(int b, int vb, double s) :cbase{b}, vbase{vb}, scale{s} { }
 int operator()(int v) const { return cbase + (v–vbase)*scale; } // see §21.4
};

We want a class because the calculation depends on three constant values that we
wouldn’t like to unnecessarily repeat. Given that, we can define

Scale xs {xoffset,base_year,xscale};
Scale ys {ymax–yoffset,0,–yscale};

Note how we make the scaling factor for ys negative to reflect the fact that y
coordinates grow downward whereas we usually prefer higher values to be rep-
resented by higher points on a graph. Now we can use xs to convert a year to an
x coordinate. Similarly, we can use ys to convert a percentage to a y coordinate.

15.6.4 Building the graph
Finally, we have all the prerequisites for writing the graphing code in a reasonably
elegant way. We start creating a window and placing the axes:

Window win {Point{100,100},xmax,ymax,"Aging Japan"};

Axis x {Axis::x, Point{xoffset,ymax–yoffset}, xlength,
 (end_year–base_year)/10,
 "year 1960 1970 1980 1990 "
 "2000 2010 2020 2030 2040"};
x.label.move(–100,0);

Axis y {Axis::y, Point{xoffset,ymax–yoffset}, ylength, 10,"% of population"};

Line current_year {Point{xs(2008),ys(0)},Point{xs(2008),ys(100)}};
current_year.set_style(Line_style::dash);

Stroustrup_book.indb 543Stroustrup_book.indb 543 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA544

The axes cross at Point{xoffset,ymax–yoffset} representing (1960,0). Note how the
notches are placed to reflect the data. On the y axis, we have ten notches each rep-
resenting 10% of the population. On the x axis, each notch represents ten years,
and the exact number of notches is calculated from base_year and end_year so
that if we change that range, the axis would automatically be recalculated. This
is one benefit of avoiding “magic constants” in the code. The label on the x axis
violates that rule: it is simply the result of fiddling with the label string until the
numbers were in the right position under the notches. To do better, we would
have to look to a set of individual labels for individual “notches.”

Please note the curious formatting of the label string. We used two adjacent
string literals:

"year 1960 1970 1980 1990 "
"2000 2010 2020 2030 2040"

Adjacent string literals are concatenated by the compiler, so that’s equivalent to

"year 1960 1970 1980 1990 2000 2010 2020 2030 2040"

That can be a useful “trick” for laying out long string literals to make our code
more readable.

The current_year is a vertical line that separates hard data from projected
data. Note how xs and ys are used to place and scale the line just right.

Given the axes, we can proceed to the data. We define three Open_polylines
and fill them in the read loop:

Open_polyline children;
Open_polyline adults;
Open_polyline aged;

for (Distribution d; ifs>>d;) {
 if (d.year<base_year || end_year<d.year) error("year out of range");
 if (d.young+d.middle+d.old != 100)
 error("percentages don't add up");
 const int x = xs{d.year};
 children.add(Point{x,ys(d.young)});
 adults.add(Point{x,ys(d.middle)});
 aged.add(Point{x,ys(d.old)});
}

Stroustrup_book.indb 544Stroustrup_book.indb 544 4/22/14 9:42 AM4/22/14 9:42 AM

15.6 GRAPHING DATA 545

The use of xs and ys makes scaling and placement of the data trivial. “Little
classes,” such as Scale, can be immensely important for simplifying notation and
avoiding unnecessary repetition — thereby increasing readability and increasing
the likelihood of correctness.

To make the graphs more readable, we label each and apply color:

Text children_label {Point{20,children.point(0).y},"age 0-14"};
children.set_color(Color::red);
children_label.set_color(Color::red);

Text adults_label {Point{20,adults.point(0).y},"age 15-64"};
adults.set_color(Color::blue);
adults_label.set_color(Color::blue);

Text aged_label {Point{20,aged.point(0).y},"age 65+"};
aged.set_color(Color::dark_green);
aged_label.set_color(Color::dark_green);

Finally, we need to attach the various Shapes to the Window and start the GUI
system (§14.2.3):

win.attach(children);
win.attach(adults);
win.attach(aged);

win.attach(children_label);
win.attach(adults_label);
win.attach(aged_label);

win.attach(x);
win.attach(y);
win.attach(current_year);

gui_main();

All the code could be placed inside main(), but we prefer to keep the helper classes
Scale and Distribution outside together with Distribution’s input operator.

Stroustrup_book.indb 545Stroustrup_book.indb 545 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA546

In case you have forgotten what we were producing, here is the output again:

Drill
Function graphing drill:

 1. Make an empty 600-by-600 Window labeled “Function graphs.”
 2. Note that you’ll need to make a project with the properties specified in the

“installation of FLTK” note from the course website.
 3. You’ll need to move Graph.cpp and Window.cpp into your project.
 4. Add an x axis and a y axis each of length 400, labeled “1 = = 20 pixels”

and with a notch every 20 pixels. The axes should cross at (300,300).
 5. Make both axes red.

In the following, use a separate Shape for each function to be graphed:

 1. Graph the function double one(double x) { return 1; } in the range [–10,11]
with (0,0) at (300,300) using 400 points and no scaling (in the window).

 2. Change it to use x scale 20 and y scale 20.
 3. From now on use that range, scale, etc. for all graphs.
 4. Add double slope(double x) { return x/2; } to the window.
 5. Label the slope with a Text "x/2" at a point just above its bottom left end

point.

Stroustrup_book.indb 546Stroustrup_book.indb 546 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 REVIEW 547

 6. Add double square(double x) { return x*x; } to the window.
 7. Add a cosine to the window (don’t write a new function).
 8. Make the cosine blue.
 9. Write a function sloping_cos() that adds a cosine to slope() (as defined

above) and add it to the window.

Class defi nition drill:

 1. Define a struct Person containing a string name and an int age.
 2. Define a variable of type Person, initialize it with “Goofy” and 63, and

write it to the screen (cout).
 3. Define an input (>>) and an output (<<) operator for Person; read in a

Person from the keyboard (cin) and write it out to the screen (cout).
 4. Give Person a constructor initializing name and age.
 5. Make the representation of Person private, and provide const member

functions name() and age() to read the name and age.
 6. Modify >> and << to work with the redefined Person.
 7. Modify the constructor to check that age is [0:150) and that name doesn’t

contain any of the characters ; : " ' [] * & ^ % $ # @ !. Use error() in case
of error. Test.

 8. Read a sequence of Persons from input (cin) into a vector<Person>;
write them out again to the screen (cout). Test with correct and errone-
ous input.

 9. Change the representation of Person to have first_name and second_name
instead of name. Make it an error not to supply both a first and a second
name. Be sure to fix >> and << also. Test.

Review
 1. What is a function of one argument?
 2. When would you use a (continuous) line to represent data? When do you

use (discrete) points?
 3. What function (mathematical formula) defines a slope?
 4. What is a parabola?
 5. How do you make an x axis? A y axis?
 6. What is a default argument and when would you use one?
 7. How do you add functions together?
 8. How do you color and label a graphed function?
 9. What do we mean when we say that a series approximates a function?
 10. Why would you sketch out the layout of a graph before writing the code

to draw it?
 11. How would you scale your graph so that the input will fit?
 12. How would you scale the input without trial and error?

Stroustrup_book.indb 547Stroustrup_book.indb 547 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA548

 13. Why would you format your input rather than just having the file contain
“the numbers”?

 14. How do you plan the general layout of a graph? How do you reflect that
layout in your code?

Terms
approximation function scaling
default argument lambda screen layout

Exercises
 1. Here is another way of defining a factorial function:

int fac(int n) { return n>1 ? n*fac(n–1) : 1; } // factorial n!

 It will d o fac(4) by first deciding that since 4>1 it must be 4*fac(3), and
that’s obviously 4*3*fac(2), which again is 4*3*2*fac(1), which is 4*3*2*1.
Try to see that it works. A function that calls itself is said to be recursive.
The alternative implementation in §15.5 is called iterative because it iter-
ates through the values (using while). Verify that the recursive fac() works
and gives the same results as the iterative fac() by calculating the factorial
of 0, 1, 2, 3, 4, up until and including 20. Which implementation of fac()
do you prefer, and why?

 2. Define a class Fct that is just like Function except that it stores its con-
structor arguments. Provide Fct with “reset” operations, so that you can
use it repeatedly for different ranges, different functions, etc.

 3. Modify Fct from the previous exercise to take an extra argument to con-
trol precision or whatever. Make the type of that argument a template
parameter for extra flexibility.

 4. Graph a sine (sin()), a cosine (cos()), the sum of those (sin(x)+cos(x)), and
the sum of the squares of those (sin(x)*sin(x)+cos(x)*cos(x)) on a single
graph. Do provide axes and labels.

 5. “Animate” (as in §15.5) the series 1–1/3+1/5–1/7+1/9–1/11+ It is
known as Leibniz’s series and converges to pi/4.

 6. Design and implement a bar graph class. Its basic data is a vector<double>
holding N values, and each value should be represented by a “bar” that is
a rectangle where the height represents the value.

 7. Elaborate the bar graph class to allow labeling of the graph itself and its
individual bars. Allow the use of color.

 8. Here is a collection of heights in centimeters together with the number
of people in a group of that height (rounded to the nearest 5cm): (170,7),
(175,9), (180,23), (185,17), (190,6), (195,1). How would you graph that

Stroustrup_book.indb 548Stroustrup_book.indb 548 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 15 POSTSCRIPT 549

data? If you can’t think of anything better, do a bar graph. Remember to
provide axes and labels. Place the data in a file and read it from that file.

 9. Find another data set of heights (an inch is 2.54cm) and graph them with
your program from the previous exercise. For example, search the web
for “height distribution” or “height of people in the United States” and
ignore a lot of rubbish or ask your friends for their heights. Ideally, you
don’t have to change anything for the new data set. Calculating the scal-
ing from the data is a key idea. Reading in labels from input also helps
minimize changes when you want to reuse code.

 10. What kind of data is unsuitable for a line graph or a bar graph? Find an ex-
ample and find a way of displaying it (e.g., as a collection of labeled points).

 11. Find the average maximum temperatures for each month of the year for
two or more locations (e.g., Cambridge, England, and Cambridge, Mas-
sachusetts; there are lots of towns called “Cambridge”) and graph them
together. As ever, be careful with axes, labels, use of color, etc.

Postscript
Graphical representation of data is important. We simply understand a well-
crafted graph better than the set of numbers that was used to make it. Most
people, when they need to draw a graph, use someone else’s code — a library.
How are such libraries constructed and what do you do if you don’t have one
handy? What are the fundamental ideas underlying “an ordinary graphing tool”?
Now you know: it isn’t magic or brain surgery. We covered only two-dimensional
graphs; three-dimensional graphing is also very useful in science, engineering,
marketing, etc. and can be even more fun. Explore it someday!

Stroustrup_book.indb 549Stroustrup_book.indb 549 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 550Stroustrup_book.indb 550 4/22/14 9:42 AM4/22/14 9:42 AM

551

16

Graphical User Interfaces

“Computing is not about
computers any more.

It is about living.”

—Nicholas Negroponte

A graphical user interface (GUI) allows a user to interact

with a program by pressing buttons, selecting from menus,

entering data in various ways, and displaying textual and graph-

ical entities on a screen. That’s what we are used to when we

interact with our computers and with websites. In this chapter,

we show the basics of how code can be written to define and con-

trol a GUI application. In particular, we show how to write code

that interacts with entities on the screen using callbacks. Our

GUI facilities are built “on top of” system facilities. The low-level

features and interfaces are presented in Appendix E, which uses

features and techniques presented in Chapters 17 and 18. Here

we focus on usage.

Stroustrup_book.indb 551Stroustrup_book.indb 551 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES552

16.1 User interface alternatives
Every program has a user interface. A program running on a small gadget may be
limited to input from a couple of push buttons and to a blinking light for output.
Other computers are connected to the outside world only by a wire. Here, we
will consider the common case in which our program communicates with a user
who is watching a screen and using a keyboard and a pointing device (such as a
mouse). In this case, we as programmers have three main choices:

• Use console input and output: This is a strong contender for technical/pro-
fessional work where the input is simple and textual, consisting of com-
mands and short data items (such as fi le names and simple data values). If
the output is textual, we can display it on the screen or store it in fi les. The
C++ standard library iostreams (Chapters 10–11) provide suitable and
convenient mechanisms for this. If graphical output is needed, we can use
a graphics display library (as shown in Chapters 12–15) without making
dramatic changes to our programming style.

• Use a graphical user interface (GUI) library: This is what we do when we want
our user interaction to be based on the metaphor of manipulating ob-
jects on the screen (pointing, clicking, dragging and dropping, hovering,
etc.). Often (but not always), that style goes together with a high degree
of graphically displayed information. Anyone who has used a modern
computer knows examples where that is convenient. Anyone who wants
to match the “feel” of Windows/Mac applications must use a GUI style
of interaction.

• Use a web browser interface: For that, we need to use a markup (layout) lan-
guage, such as HTML, and usually a scripting language. Showing how to

 16.1 User interface alternatives

 16.2 The “Next” button

 16.3 A simple window
 16.3.1 A callback function
 16.3.2 A wait loop
 16.3.3 A lambda expression as

a callback

 16.4 Button and other Widgets
 16.4.1 Widgets
 16.4.2 Buttons
 16.4.3 In_box and Out_box
 16.4.4 Menus

 16.5 An example

 16.6 Control inversion

 16.7 Adding a menu

 16.8 Debugging GUI code

Stroustrup_book.indb 552Stroustrup_book.indb 552 4/22/14 9:42 AM4/22/14 9:42 AM

16.2 THE “NEXT” BUTTON 553

do this is beyond the scope of this book, but it is often the ideal for applica-
tions that require remote access. In that case, the communication between
the program and the screen is again textual (using streams of characters). A
browser is a GUI application that translates some of that text into graphi-
cal elements and translates the mouse clicks, etc. into textual data that can
be sent back to the program.

To many, the use of GUI is the essence of modern programming, and sometimes
the interaction with objects on the screen is considered the central concern of
programming. We disagree: GUI is a form of I/O, and separation of the main
logic of an application from I/O is among our major ideals for software. Wherever
possible, we prefer to have a clean interface between our main program logic and
the parts of the program we use to get input and produce output. Such a sepa-
ration allows us to change the way a program is presented to a user, to port our
programs to use different I/O systems, and — most importantly — to think about
the logic of the program and its interaction with users separately.

That said, GUI is important and interesting from several perspectives. This
chapter explores both the ways we can integrate graphical elements into our ap-
plications and how we can keep interface concerns from dominating our thinking.

16.2 The “Next” button
How did we provide that “Next” button that we used to drive the graphics ex-
amples in Chapters 12–15? There, we do graphics in a window using a button.
Obviously, that is a simple form of GUI programming. In fact, it is so simple that
some would argue that it isn’t “true GUI.” However, let’s see how it was done be-
cause it will lead directly into the kind of programming that everyone recognizes
as GUI programming.

Our code in Chapters 12–15 is conventionally structured like this:

// create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

// create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

// create objects and/or manipulate objects, display them in Window win:
win.wait_for_button();

Each time we reach wait_for_button(), we can look at our objects on the screen
until we hit the button to get the output from the next part of the program. From
the point of view of program logic, this is no different from a program that writes

Stroustrup_book.indb 553Stroustrup_book.indb 553 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES554

lines of output to a screen (a console window), stopping now and then to receive
input from the keyboard. For example:

// define variables and/or compute values, produce output
cin >> var; // wait for input

// define variables and/or compute values, produce output
cin >> var; // wait for input

// define variables and/or compute values, produce output
cin >> var; // wait for input

From an implementation point of view, these two kinds of programs are quite
different. When your program executes cin >> var, it stops and waits for “the
system” to bring back characters you typed. However, the system (the graphical
user interface system) that looks after your screen and tracks the mouse as you
use it works on a rather different model: the GUI keeps track of where the mouse
is and what the user is doing with the mouse (clicking, etc.). When your program
wants an action, it must

• Tell the GUI what to look for (e.g., “Someone clicked the ‘Next’ button”)
• Tell what is to be done when someone does that
• Wait until the GUI detects an action that the program is interested in

What is new and different here is that the GUI does not just return to our pro-
gram; it is designed to respond in different ways to different user actions, such as
clicking on one of many buttons, resizing windows, redrawing the window after it
has been obscured by another, and popping up pop-up menus.

For starters, we just want to say, “Please wake me up when someone clicks
my button”; that is, “Please continue executing my program when someone clicks
the mouse button and the cursor is in the rectangular area where the image of my
button is displayed.” This is just about the simplest action we could imagine. How-
ever, such an operation isn’t provided by “the system” so we wrote one ourselves.
Seeing how that is done is the first step in understanding GUI programming.

16.3 A simple window
Basically, “the system” (which is a combination of a GUI library and the operat-
ing system) continuously tracks where the mouse is and whether its buttons are
pressed or not. A program can express interest in an area of the screen and ask “the
system” to call a function when “something interesting” happens. In this particular

Stroustrup_book.indb 554Stroustrup_book.indb 554 4/22/14 9:42 AM4/22/14 9:42 AM

16.3 A SIMPLE WINDOW 555

case, we ask the system to call one of our functions (a “callback function”) when
the mouse button is clicked “on our button.” To do that we must

• Defi ne a button
• Get it displayed
• Defi ne a function for the GUI to call
• Tell the GUI about that button and that function
• Wait for the GUI to call our function

Let’s do that. A button is part of a Window, so (in Simple_window.h) we define
our class Simple_window to contain a member next_button:

struct Simple_window : Graph_lib::Window {
 Simple_window(Point xy, int w, int h, const string& title);

 void wait_for_button(); // simple event loop
private:
 Button next_button; // the “Next” button
 bool button_pushed; // implementation detail

 static void cb_next(Address, Address); // callback for next_button
 void next(); // action to be done when next_button is pressed
};

Obviously, Simple_window is derived from Graph_lib’s Window. All our win-
dows must be derived directly or indirectly from Graph_lib::Window because it
is the class that (through FLTK) connects our notion of a window with the sys-
tem’s window implementation. For details of Window’s implementation, see §E.3.

Our button is initialized in Simple_window’s constructor:

Simple_window::Simple_window(Point xy, int w, int h, const string& title)
 :Window{xy,w,h,title},
 next_button{Point{x_max()–70,0}, 70, 20, "Next", cb_next},
 button_pushed{false}
{
 attach(next_button);
}

Unsurprisingly, Simple_window passes its location (xy), size (w,h), and title (title)
on to Graph_lib’s Window to deal with. Next, the constructor initializes next_but-
ton with a location (Point{x_max()–70,0}; that’s roughly the top right corner), a
size (70,20), a label ("Next"), and a “callback” function (cb_next). The first four

Stroustrup_book.indb 555Stroustrup_book.indb 555 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES556

parameters exactly parallel what we do for a Window: we place a rectangular
shape on the screen and label it.

Finally, we attach() our next_button to our Simple_window; that is, we tell
the window that it must display the button in its position and make sure that the
GUI system knows about it.

The button_pushed member is a pretty obscure implementation detail; we
use it to keep track of whether the button has been pushed since last we executed
next(). In fact, just about everything here is implementation details, and therefore
declared private. Ignoring the implementation details, we see

struct Simple_window : Graph_lib::Window {
 Simple_window(Point xy, int w, int h, const string& title);

 void wait_for_button(); // simple event loop

 // . . .
};

That is, a user can make a window and wait for its button to be pushed.

16.3.1 A callback function
The function cb_next() is the new and interesting bit here. This is the function
that we want the GUI system to call when it detects a click on our button. Since
we give the function to the GUI for the GUI to “call back to us,” it’s commonly
called a callback function. We indicate cb_next()’s intended use with the prefix cb_
for “callback.” That’s just to help us — no language or library requires that naming
convention. Obviously, we chose the name cb_next because it is to be the callback
for our “Next” button. The definition of cb_next is an ugly piece of “boilerplate.”

Before showing that code, let’s consider what is going on here:

Our program

Our graphics/GUI interface library

FLTK

The operating system graphics/GUI facilities

Device driver layer

Example of a layer

Stroustrup_book.indb 556Stroustrup_book.indb 556 4/22/14 9:42 AM4/22/14 9:42 AM

16.3 A SIMPLE WINDOW 557

Our program runs on top of several “layers” of code. It uses our graphics library
that we implement using the FLTK library, which is implemented using operat-
ing system facilities. In a system, there may be even more layers and sub-layers.
Somehow, a click detected by the mouse’s device driver has to cause our function
cb_next() to be called. We pass the address of cb_next() and the address of our
Simple_window down through the layers of software; some code “down there”
then calls cb_next() when the “Next” button is pressed.

The GUI system (and the operating system) can be used by programs written
in a variety of languages, so it cannot impose some nice C++ style on all users.
In particular, it does not know about our Simple_window class or our Button
class. In fact, it doesn’t know about classes or member functions at all. The type
required for a callback function is chosen so that it is usable from the lowest level
of programming, including C and assembler. A callback function returns no value
and takes two addresses as its arguments. We can declare a C++ member func-
tion that obeys those rules like this:

static void cb_next(Address, Address); // callback for next_button

The keyword static is there to make sure that cb_next() can be called as an ordi-
nary function, that is, not as a C++ member function invoked for a specific object.
Having the system call a proper C++ member function would have been much
nicer. However, the callback interface has to be usable from many languages, so
this is what we get: a static member function. The Address arguments specify that
cb_next() takes arguments that are addresses of “something in memory.” C++
references are unknown to most languages, so we can’t use those. The compiler
isn’t told what the types of those “somethings” are. We are close to the hardware
here and don’t get the usual help from the language. “The system” will invoke
a callback function with the first argument being the address of the GUI entity
(Widget) for which the callback was triggered. We won’t use that first argument,
so we don’t bother to name it. The second argument is the address of the window
containing that Widget; for cb_next(), that will be our Simple_window. We can
use that information like this:

void Simple_window::cb_next(Address, Address pw)
// call Simple_window::next() for the window located at pw
{
 reference_to<Simple_window>(pw).next();
}

The reference_to<Simple_window>(pw) tells the compiler that the address in
pw is to be considered the address of a Simple_window; that is, we can use
reference_to<Simple_window>(pw) as a reference to a Simple_window. In

Stroustrup_book.indb 557Stroustrup_book.indb 557 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES558

Chapters 17 and 18, we will return to the issue of addressing memory. In §E.1,
we present the (by then, trivial) definition of reference_to. For now, we are just
glad that we finally obtained a reference to our Simple_window so that we can
access our data and functions exactly as we like and are used to. Finally, we get
out of this system-dependent code as quickly as possible by calling our member
function next().

We could have written all the code we wanted to execute in cb_next(), but
we — like most good GUI programmers — prefer to keep messy low-level stuff
separate from our nice user code, so we handle a callback with two functions:

• cb_next() simply maps the system conventions for a callback into a call to
an ordinary member function (next()).

• next() does what we want done (without having to know about the messy
conventions of callbacks).

The fundamental reason for using two functions here is the general principle that
“a function should perform a single logical action”: cb_next() gets us out of the
low-level system-dependent part of the system and next() performs our desired
action. Whenever we want a callback (from “the system”) to one of our windows,
we define such a pair of functions; for example, see §16.5–7. Before going further,
let’s repeat what is going on here:

• We defi ne our Simple_window.
• Simple_window’s constructor registers its next_button with the GUI

system.
• When we click the image of next_button on the screen, the GUI calls

cb_next().
• cb_next() converts the low-level system information into a call of our

member function next() for our window.
• next() performs whatever action we want done in response to the button

click.

That’s a rather elaborate way of getting a function called. But remember that we
are dealing with the basic mechanism for communicating an action of a mouse (or
other hardware device) to a program. In particular:

• There are typically many programs running.
• The program is written long after the operating system.
• The program is written long after the GUI library.
• The program can be written in a language that is different from that used

in the operating system.

Stroustrup_book.indb 558Stroustrup_book.indb 558 4/22/14 9:42 AM4/22/14 9:42 AM

16.3 A SIMPLE WINDOW 559

• The technique deals with all kinds of interactions (not just our little but-
ton push).

• A window can have many buttons; a program can have many windows.

However, once we understand how next() is called, we basically understand how
to deal with every action in a program with a GUI interface.

16.3.2 A wait loop
So, in this — our simplest — case, what do we want done by Simple_window’s
next() each time the button is “pressed”? Basically, we want an operation that
stops the execution of our program at some point, giving us a chance to see what
has been done so far. And, we want next() to restart our program after that wait:

// create some objects and/or manipulate some objects, display them in a window
win.wait_for_button(); // next() causes the program to proceed from here
// create some objects and/or manipulate some objects

Actually, that’s easily done. Let’s first define wait_for_button():

void Simple_window::wait_for_button()
 // modified event loop:

// handle all events (as per default), quit when button_pushed becomes true
 // this allows graphics without control inversion
{

 while (!button_pushed) Fl::wait();
 button_pushed = false;
 Fl::redraw();
}

Like most GUI systems, FLTK provides a function that stops a program until
something happens. The FLTK version is called wait(). Actually, wait() takes care
of lots of things because our program gets woken up whenever anything that af-
fects it happens. For example, when running under Microsoft Windows, it is the
job of a program to redraw its window when it is being moved or becomes visible
after having been hidden by another window. It is also the job of the Window to
handle resizing. The Fl::wait() handles all of these tasks in the default manner.
Each time wait() has dealt with something, it returns to give our code a chance to
do something.

Stroustrup_book.indb 559Stroustrup_book.indb 559 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES560

So, when someone clicks our “Next” button, wait() calls cb_next() and re-
turns (to our “wait loop”). To proceed in wait_for_button(), next() just has to set
the Boolean variable button_pushed to true. That’s easy:

void Simple_window::next()
{
 button_pushed = true;
}

Of course we also need to define button_pushed somewhere:

bool button_pushed; // initialized to false in the constructor

After waiting, wait_for_button() needs to reset button_pushed and redraw() the
window to make sure that any changes we made can be seen on the screen. So
that’s what it did.

16.3.3 A lambda expression as a callback
So for each action on a Widget, we have to define two functions: one to map from
the system’s notion of a callback and one to do our desired action. Consider:

struct Simple_window : Graph_lib::Window {
 Simple_window{Point xy, int w, int h, const string& title};

 void wait_for_button(); // simple event loop
private:
 Button next_button; // the “Next” button
 bool button_pushed; // implementation detail

 static void cb_next(Address, Address); // callback for next_button
 void next(); // action to be done when next_button is pressed
};

By using a lambda expression (§15.3.3), we can eliminate the need to explic-
itly declare the mapping function cb_next(). Instead, we define the mapping in
Simple_window’s constructor:

Simple_window::Simple_window(Point xy, int w, int h, const string& title)
 :Window{xy,w,h,title},
 next_button{Point{x_max()–70,0}, 70, 20, "Next",
 [] (Address, Address pw) { reference_to<Simple_window>
 (pw).next(); }

Stroustrup_book.indb 560Stroustrup_book.indb 560 4/22/14 9:42 AM4/22/14 9:42 AM

16.4 BUTTON AND OTHER WIDGETS 561

},
button_pushed{false}

{
 attach(next_button);
}

16.4 Button and other Widgets
We define a Button like this:

struct Button : Widget {
 Button(Point xy, int w, int h, const string& label, Callback cb);
 void attach(Window&);
};

So, a Button is a Widget with a location (xy), a size (w,h), a text label (label), and
a callback (cb). Basically, anything that appears on a screen with an action (e.g., a
callback) associated is a Widget.

16.4.1 Widgets
Yes, widget really is a technical term. A more descriptive, but less evocative, name
for a widget is a control. We use widgets to define forms of interaction with a pro-
gram through a GUI (graphical user interface). Our Widget interface class looks
like this:

class Widget {
 // Widget is a handle to an Fl_widget — it is *not* an Fl_widget
 // we try to keep our interface classes at arm’s length from FLTK
public:
 Widget(Point xy, int w, int h, const string& s, Callback cb);

 virtual void move(int dx,int dy);
 virtual void hide();
 virtual void show();
 virtual void attach(Window&) = 0;

 Point loc;
 int width;
 int height;
 string label;
 Callback do_it;

Stroustrup_book.indb 561Stroustrup_book.indb 561 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES562

protected:
 Window* own; // every Widget belongs to a Window
 Fl_Widget* pw; // connection to the FLTK Widget
};

A Widget has two interesting functions that we can use for Button (and also for
any other class derived from Widget, e.g., a Menu; see §16.7):

• hide() makes the Widget invisible.
• show() makes the Widget visible again.

A Widget starts out visible.
Just like a Shape, we can move() a Widget in its Window, and we must at-

tach() it to a Window before it can be used. Note that we declared attach() to be
a pure virtual function (§14.3.5): every class derived from Widget must define
what it means for it to be attached to a Window. In fact, it is in attach() that the
system-level widgets are created. The attach() function is called from Window
as part of its implementation of Window’s own attach(). Basically, connecting a
window and a widget is a delicate little dance where each has to do its own part.
The result is that a window knows about its widgets and that each widget knows
about its window:

Window

Widget

Widget

Note that a Window doesn’t know what kind of Widgets it deals with. As de-
scribed in §14.4, we are using basic object-oriented programming to ensure that
a Window can deal with every kind of Widget. Similarly, a Widget doesn’t know
what kind of Window it deals with.

We have been slightly sloppy, leaving data members accessible. The own and
pw members are strictly for the implementation of derived classes so we have
declared them protected.

Stroustrup_book.indb 562Stroustrup_book.indb 562 4/22/14 9:42 AM4/22/14 9:42 AM

16.4 BUTTON AND OTHER WIDGETS 563

The definitions of Widget and of the widgets we use here (Button, Menu, etc.)
are found in GUI.h.

16.4.2 Buttons
A Button is the simplest Widget we deal with. All it does is to invoke a callback
when we click on it:

class Button : public Widget {
public:
 Button(Point xy, int ww, int hh, const string& s, Callback cb)
 :Widget{xy,ww,hh,s,cb} { }

 void attach(Window& win);
};

That’s all. The attach() function contains all the (relatively) messy FLTK code.
We have banished the explanation to Appendix E (not to be read until after Chap-
ters 17 and 18). For now, please just note that defining a simple Widget isn’t par-
ticularly difficult.

We do not deal with the somewhat complicated and messy issue of how but-
tons (and other Widgets) look on the screen. The problem is that there is a near
infinity of choices and that some styles are mandated by certain systems. Also,
from a programming technique point of view, nothing really new is needed for
expressing the looks of buttons. If you get desperate, we note that placing a Shape
on top of a button doesn’t affect the button’s ability to function — and you know
how to make a shape look like anything at all.

16.4.3 In_box and Out_box
We provide two Widgets for getting text in and out of our program:

struct In_box : Widget {
 In_box(Point xy, int w, int h, const string& s)
 :Widget{xy,w,h,s,0} { }
 int get_int();
 string get_string();

 void attach(Window& win);
};

Stroustrup_book.indb 563Stroustrup_book.indb 563 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES564

struct Out_box : Widget {
 Out_box(Point xy, int w, int h, const string& s)
 :Widget{xy,w,h,s,0} { }
 void put(int);
 void put(const string&);

 void attach(Window& win);
};

An In_box can accept text typed into it, and we can read that text as a string using
get_string() or as an integer using get_int(). If you want to know if text has been
entered, you can read using get_string() and see if you get the empty string:

string s = some_inbox.get_string();
if (s =="") {
 // deal with missing input
}

An Out_box is used to present some message to a user. In analogy to In_box, we
can put() either integers or strings. §16.5 gives examples of the use of In_box and
Out_box.

We could have provided get_floating_point(), get_complex(), etc., but we did
not bother because you can take the string, stick it into a stringstream, and do any
input formatting you like that way (§11.4).

16.4.4 Menus
We offer a very simple notion of a menu:

struct Menu : Widget {
 enum Kind { horizontal, vertical };
 Menu(Point xy, int w, int h, Kind kk, const string& label);
 Vector_ref<Button> selection;
 Kind k;
 int offset;
 int attach(Button& b); // attach Button to Menu
 int attach(Button* p); // attach new Button to Menu

 void show() // show all buttons
 {
 for (Button& b : selection) b.show();
 }

Stroustrup_book.indb 564Stroustrup_book.indb 564 4/22/14 9:42 AM4/22/14 9:42 AM

16.5 AN EXAMPLE 565

 void hide(); // hide all buttons
 void move(int dx, int dy); // move all buttons

 void attach(Window& win); // attach all buttons to Window win
};

A Menu is basically a vector of buttons. As usual, the Point xy is the top left
corner. The width and height are used to resize buttons as they are added to the
menu. For examples, see §16.5 and §16.7. Each menu button (“a menu item”)
is an independent Widget presented to the Menu as an argument to attach(). In
turn, Menu provides an attach() operation to attach all of its Buttons to a Win-
dow. The Menu keeps track of its Buttons using a Vector_ref (§13.10, §E.4). If
you want a “pop-up” menu, you have to make it yourself; see §16.7.

16.5 An example
To get a better feel for the basic GUI facilities, consider the window for a simple
application involving input, output, and a bit of graphics:

This program allows a user to display a sequence of lines (an open polyline;
§13.6) specified as a sequence of coordinate pairs. The idea is that the user repeat-
edly enters (x,y) coordinates in the “next x” and “next y” boxes; after each pair
the user hits the “Next point” button.

Initially, the “current (x,y)” box is empty and the program waits for the user
to enter the first coordinate pair. That done, the starting point appears in the

Stroustrup_book.indb 565Stroustrup_book.indb 565 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES566

“current (x,y)” box, and each new coordinate pair entered results in a line being
drawn: a line from the current point (which has its coordinates displayed in the
“current (x,y)” box) to the newly entered (x,y) is drawn, and that (x,y) becomes
the new current point.

This draws an open polyline. When the user tires of this activity, there is the
“Quit” button for exiting. That’s pretty straightforward, and the program exer-
cises several useful GUI facilities: text input and output, line drawing, and mul-
tiple buttons. The window above shows the result after entering two coordinate
pairs; after seven we can get this:

Let’s define a class for representing such windows. It is pretty straightforward:

struct Lines_window : Window {
 Lines_window(Point xy, int w, int h, const string& title);
 Open_polyline lines;
private:
 Button next_button; // add (next_x,next_y) to lines
 Button quit_button;
 In_box next_x;
 In_box next_y;
 Out_box xy_out;

 void next();
 void quit();
};

Stroustrup_book.indb 566Stroustrup_book.indb 566 4/22/14 9:42 AM4/22/14 9:42 AM

16.5 AN EXAMPLE 567

The line is represented as an Open_polyline. The buttons and boxes are declared
(as Buttons, In_boxes, and Out_boxes), and for each button a member function
implementing the desired action is defined. We decided to eliminate the “boiler-
plate” callback function and use lambdas instead.

Lines_window’s constructor initializes everything:

Lines_window::Lines_window(Point xy, int w, int h, const string& title)
 :Window{xy,w,h,title},
 next_button{Point{x_max()–150,0}, 70, 20, "Next point",
 [] (Address, Address pw) {reference_to<Lines_window>(pw).next();},
 quit_button{Point{x_max()–70,0}, 70, 20, "Quit",
 [] (Address, Address pw) {reference_to<Lines_window>(pw).quit();},
 next_x{Point{x_max()–310,0}, 50, 20, "next x:"},
 next_y{Point{x_max()–210,0}, 50, 20, "next y:"},
 xy_out{Point{100,0}, 100, 20, "current (x,y):"}
{
 attach(next_button);
 attach(quit_button);
 attach(next_x);
 attach(next_y);
 attach(xy_out);
 attach(lines);
}

That is, each widget is constructed and then attached to the window.
The “Quit” button deletes the Window. That’s done using the curious FLTK

idiom of simply hiding it:

void Lines_window::quit()
{
 hide(); // curious FLTK idiom to delete window
}

All the real work is done in the “Next point” button: it reads a pair of coordi-
nates, updates the Open_polyline, updates the position readout, and redraws the
window:

void Lines_window::next()
{
 int x = next_x.get_int();
 int y = next_y.get_int();

Stroustrup_book.indb 567Stroustrup_book.indb 567 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES568

 lines.add(Point{x,y});

 // update current position readout:
 ostringstream ss;
 ss << '(' << x << ',' << y << ')';
 xy_out.put(ss.str());

 redraw();
}

That’s all pretty obvious. We get integer coordinates from the In_boxes using get_
int(). We use an ostringstream to format the string to be put into the Out_box;
the str() member function lets us get to the string within the ostringstream. The
final redraw() here is needed to present the results to the user; until a Window’s
redraw() is called, the old image remains on the screen.

So what’s odd and different about this program? Let’s see its main():

#include "GUI.h"

int main()
try {
 Lines_window win {Point{100,100},600,400,"lines"};
 return gui_main();
}
catch(exception& e) {
 cerr << "exception: " << e.what() << '\n';
 return 1;
}
catch (. . .) {
 cerr << "Some exception\n";
 return 2;
}

There is basically nothing there! The body of main() is just the definition of our
window, win, and a call to a function gui_main(). There is not another function,
if, switch, or loop — nothing of the kind of code we saw in Chapters 6 and 7 —
just a definition of a variable and a call to the function gui_main(), which is itself
just a call of FLTK’s run(). Looking further, we can find that run() is simply the
infinite loop

while(wait());

Stroustrup_book.indb 568Stroustrup_book.indb 568 4/22/14 9:42 AM4/22/14 9:42 AM

16.6 CONTROL INVERSION 569

Except for a few implementation details postponed to Appendix E, we have seen
all of the code that makes our “lines” program run. We have seen all of the funda-
mental logic. So what happens?

16.6 Control inversion
What happened was that we moved the control of the order of execution from the
program to the widgets: whichever widget the user activates, runs. For example,
click on a button and its callback runs. When that callback returns, the program
settles back, waiting for the user to do something else. Basically, wait() tells “the
system” to look out for the widgets and invoke the appropriate callbacks. In the-
ory, wait() could tell you, the programmer, which widget requested attention and
leave it to you to call the appropriate function. However, in FLTK and most
other GUI systems, wait() simply invokes the appropriate callback, saving you
the bother of writing code to select it.

A “conventional program” is organized like this:

Application
Input
function

User
responds

Call

Prompt

A “GUI program” is organized like this:

Application
System

User
invokes
action

Callback

“Clicks”

Stroustrup_book.indb 569Stroustrup_book.indb 569 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES570

One implication of this “control inversion” is that the order of execution is com-
pletely determined by the actions of the user. This complicates both program
organization and debugging. It is hard to imagine what a user will do and hard
to imagine every possible effect of a random sequence of callbacks. This makes
systematic testing a nightmare (see Chapter 26). The techniques for dealing with
that are beyond the scope of this book, but we encourage you to be extra careful
with code driven by users through callbacks. In addition to the obvious control
flow problems, there are also problems of visibility and difficulties with keeping
track of which widget is connected to what data. To minimize hassle, it is essential
to keep the GUI portion of a program simple and to build a GUI program in-
crementally, testing at each stage. When working on a GUI program, it is almost
essential to draw little diagrams of the objects and their interactions.

How does the code triggered by the various callbacks communicate? The
simplest way is for the functions to operate on data stored in the window, as was
done in the example in §16.5. There, the Lines_window’s next() function, in-
voked by pressing the “Next point” button, reads data from the In_boxes (next_x
and next_y) and updates the lines member variable and the Out_box (xy_out).
Obviously, a function invoked by a callback can do anything: it could open files,
connect to the web, etc. However, for now, we’ll just consider the simple case in
which we hold our data in a window.

16.7 Adding a menu
Let’s explore the control and communication issues raised by “control inversion”
by providing a menu for our “lines” program. First, we’ll simply provide a menu
that allows the user to change the color of all lines in the lines member variable.
We add the menu color_menu and its callbacks:

struct Lines_window : Window {
 Lines_window(Point xy, int w, int h, const string& title);

 Open_polyline lines;
 Menu color_menu;

 static void cb_red(Address, Address); // callback for red button
 static void cb_blue(Address, Address); // callback for blue button
 static void cb_black(Address, Address); // callback for black button

 // the actions:
 void red_pressed() { change(Color::red); }
 void blue_pressed() { change(Color::blue); }
 void black_pressed() { change(Color::black); }

Stroustrup_book.indb 570Stroustrup_book.indb 570 4/22/14 9:42 AM4/22/14 9:42 AM

16.7 ADDING A MENU 571

 void change(Color c) { lines.set_color(c); }

 // . . . as before . . .
};

Writing all of those almost identical callback functions and “action” functions is
tedious. However, it is conceptually simple, and offering something that’s signifi-
cantly simpler to type in is beyond the scope of this book. If you prefer, you can
eliminate the cb_ functions by using lambdas (§16.3.3). When a menu button is
pressed, it changes the lines to the requested color.

Having defined the color_menu member, we need to initialize it:

Lines_window::Lines_window(Point xy, int w, int h, const string& title)
 :Window(xy,w,h,title),
 // . . . as before . . .
 color_menu{Point{x_max()–70,40},70,20,Menu::vertical,"color"}
{
 // . . . as before . . .
 color_menu.attach(new Button{Point{0,0},0,0,"red",cb_red});
 color_menu. attach(new Button{Point{0,0},0,0,"blue",cb_blue});
 color_menu. attach(new Button{Point{0,0},0,0,"black",cb_black});
 attach(color_menu);
}

The buttons are dynamically attached to the menu (using attach()) and can be
removed and/or replaced as needed. Menu::attach() adjusts the size and location
of the button and attaches it to the window. That’s all, and we get

Stroustrup_book.indb 571Stroustrup_book.indb 571 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES572

Having played with this for a while, we decided that what we really wanted was a
“pop-up menu”; that is, we didn’t want to spend precious screen space on a menu
except when we are using it. So, we added a “color menu” button. When we press
that, up pops the color menu, and when we have made a selection, the menu is
again hidden and the button appears.

Here first is the window after we have added a few lines:

We see the new “color menu” button and some (black) lines. Press “color menu”
and the menu appears:

Stroustrup_book.indb 572Stroustrup_book.indb 572 4/22/14 9:42 AM4/22/14 9:42 AM

16.7 ADDING A MENU 573

Note that the “color menu” button is now hidden. We don’t need it until we are
finished with the menu. Press “blue” and we get

The lines are now blue and the “color menu” button has reappeared.
To achieve this we added the “color menu” button and modified the “pressed”

functions to adjust the visibility of the menu and the button. Here is the complete
Lines_window after all of our modifications:

struct Lines_window : Window {
 Lines_window(Point xy, int w, int h, const string& title);
private:
 // data:
 Open_polyline lines;

 // widgets:
 Button next_button; // add (next_x,next_y) to lines
 Button quit_button; // end program
 In_box next_x;
 In_box next_y;
 Out_box xy_out;
 Menu color_menu;
 Button menu_button;

 void change(Color c) { lines.set_color(c); }

 void hide_menu() { color_menu.hide(); menu_button.show(); }

Stroustrup_book.indb 573Stroustrup_book.indb 573 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES574

 // actions invoked by callbacks:
 void red_pressed() { change(Color::red); hide_menu(); }
 void blue_pressed() { change(Color::blue); hide_menu(); }
 void black_pressed() { change(Color::black); hide_menu(); }
 void menu_pressed() { menu_button.hide(); color_menu.show(); }
 void next();
 void quit();

 // callback functions:
 static void cb_red(Address, Address);
 static void cb_blue(Address, Address);
 static void cb_black(Address, Address);
 static void cb_menu(Address, Address);
 static void cb_next(Address, Address);
 static void cb_quit(Address, Address);
};

Note how all but the constructor is private. Basically, that Window class is the
program. All that happens, happens through its callbacks, so no code from outside
the window is needed. We sorted the declarations a bit hoping to make the class
more readable. The constructor provides arguments to all of its sub-objects and
attaches them to the window:

Lines_window::Lines_window(Point xy, int w, int h, const string& title)
 :Window{xy,w,h,title},
 next_button{Point{x_max()–150,0}, 70, 20, "Next point", cb_next},
 quit_button{Point{x_max()–70,0}, 70, 20, "Quit", cb_quit},
 next_x{Point{x_max()–310,0}, 50, 20, "next x:"},
 next_y{Point{x_max()–210,0}, 50, 20, "next y:"},
 xy_out{Point{100,0}, 100, 20, "current (x,y):"},
 color_menu{Point{x_max()–70,30},70,20,Menu::vertical,"color"},
 menu_button{Point{x_max()–80,30}, 80, 20, "color menu", cb_menu}
{
 attach(next_button);
 attach(quit_button);
 attach(next_x);
 attach(next_y);
 attach(xy_out);
 xy_out.put("no point");
 color_menu.attach(new Button{Point{0,0},0,0,"red",cb_red));
 color_menu.attach(new Button{Point{0,0},0,0,"blue",cb_blue));
 color_menu.attach(new Button{Point{0,0},0,0,"black",cb_black));
 attach(color_menu);

Stroustrup_book.indb 574Stroustrup_book.indb 574 4/22/14 9:42 AM4/22/14 9:42 AM

16.8 DEBUGGING GUI CODE 575

 color_menu.hide();
 attach(menu_button);
 attach(lines);
}

Note that the initializers are in the same order as the data member definitions.
That’s the proper order in which to write the initializers. In fact, member initial-
izers are always executed in the order their data members were declared. Some
compilers (helpfully) give a warning if a base or member constructor is specified
out of order.

16.8 Debugging GUI code
Once a GUI program starts working it is often quite easy to debug: what you see
is what you get. However, there is often a most frustrating period before the first
shapes and widgets start appearing in a window or even before a window appears
on the screen. Try this main():

int main()
{
 Lines_window {Point{100,100},600,400,"lines"};
 return gui_main();
}

Do you see the error? Whether you see it or not, you should try it; the program
will compile and run, but instead of the Lines_window giving you a chance to
draw lines, you get at most a flicker on the screen. How do you find errors in
such a program?

• By carefully using well-tried program parts (classes, function, libraries)
• By simplifying all new code, by slowly “growing” a program from its sim-

plest version, by carefully looking over the code line by line
• By checking all linker settings
• By comparing the code to already working programs
• By explaining the code to a friend

The one thing that you will find it hard to do is to trace the execution of the code.
If you have learned to use a debugger, you have a chance, but just inserting “out-
put statements” will not work in this case — the problem is that no output appears.
Even debuggers will have problems because there are several things going on at
once (“multi-threading”) — your code is not the only code trying to interact with
the screen. Simplification of the code and a systematic approach to understanding
the code are key.

Stroustrup_book.indb 575Stroustrup_book.indb 575 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES576

So what was the problem? Here is the correct version (from §16.5):

int main()
{
 Lines_window win{Point{100,100},600,400,"lines"};
 return gui_main();
}

We “forgot” the name of the Lines_window, win. Since we didn’t actually need
that name that seemed reasonable, but the compiler then decided that since we
didn’t use that window, it could immediately destroy it. Oops! That window ex-
isted for something on the order of a millisecond. No wonder we missed it.

Another common problem is to put one window exactly on top of another.
This obviously (or rather not at all obviously) looks as if there is only one win-
dow. Where did the other window go? We can spend significant time looking for
nonexistent bugs in the code. The same problem can occur if we put one shape
on top of another.

Finally — to make matters still worse — exceptions don’t always work as we
would like them to when we use a GUI library. Since our code is managed by a
GUI library, an exception we throw may never reach our handler — the library or
the operating system may “eat” it (that is, they may rely on error-handling mech-
anisms that differ from C++ exceptions and may indeed be completely oblivious
of C++).

Common problems found during debugging include Shapes and Widgets
not showing because they were not attached and objects misbehaving because
they have gone out of scope. Consider how a programmer might factor out the
creation and attachment of buttons in a menu:

// helper function for loading buttons into a menu
void load_disaster_menu(Menu& m)
{
 Point orig {0,0};
 Button b1 {orig,0,0,"flood",cb_flood};
 Button b2 {orig,0,0,"fire",cb_fire};
 // . . .
 m.attach(b1);
 m.attach(b2);
 // . . .
}

Stroustrup_book.indb 576Stroustrup_book.indb 576 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 DRILL 577

int main()
{
 // . . .
 Menu disasters {Point{100,100},60,20,Menu::horizontal,"disasters"};
 load_disaster_menu(disasters);
 win.attach(disasters);
 // . . .
}

This will not work. All those buttons are local to the load_disaster_menu function
and attaching them to a menu will not change that. An explanation can be found
in §18.6.4 (Don’t return a pointer to a local variable), and an illustration of the memory
layout for local variables is presented in §8.5.8. The essence of the story is that
after load_disaster_menu() has returned, those local objects have been destroyed
and the disasters menu refers to nonexistent (destroyed) objects. The result is
likely to be surprising and not pretty. The solution is to use unnamed objects
created by new instead of named local objects:

// helper function for loading buttons into a menu
void load_disaster_menu(Menu& m)
{
 Point orig {0,0};
 m.attach(new Button{orig,0,0,"flood",cb_flood});
 m.attach(new Button{orig,0,0,"fire",cb_fire});
 // . . .
}

The correct solution is even simpler than the (all too common) bug.

Drill
 1. Make a completely new project with linker settings for FLTK (as de-

scribed in Appendix D).
 2. Using the facilities of Graph_lib, type in the line-drawing program from

§16.5 and get it to run.
 3. Modify the program to use a pop-up menu as described in §16.7 and get

it to run.
 4. Modify the program to have a second menu for choosing line styles and

get it to run.

Stroustrup_book.indb 577Stroustrup_book.indb 577 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES578

Review
 1. Why would you want a graphical user interface?
 2. When would you want a non-graphical user interface?
 3. What is a software layer?
 4. Why would you want to layer software?
 5. What is the fundamental problem when communicating with an operat-

ing system from C++?
 6. What is a callback?
 7. What is a widget?
 8. What is another name for widget?
 9. What does the acronym FLTK mean?
 10. How do you pronounce FLTK?
 11. What other GUI toolkits have you heard of?
 12. Which systems use the term widget and which prefer control?
 13. What are examples of widgets?
 14. When would you use an inbox?
 15. What is the type of the value stored in an inbox?
 16. When would you use a button?
 17. When would you use a menu?
 18. What is control inversion?
 19. What is the basic strategy for debugging a GUI program?
 20. Why is debugging a GUI program harder than debugging an “ordinary

program using streams for I/O”?

Terms
button dialog box visible/hidden
callback GUI waiting for input
console I/O menu wait loop
control software layer widget
control inversion user interface

Exercises
 1. Make a My_window that’s a bit like Simple_window except that it has

two buttons, next and quit.
 2. Make a window (based on My_window) with a 4-by-4 checkerboard of

square buttons. When pressed, a button performs a simple action, such as
printing its coordinates in an output box, or turns a slightly different color
(until another button is pressed).

Stroustrup_book.indb 578Stroustrup_book.indb 578 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 POSTSCRIPT 579

 3. Place an Image on top of a Button; move both when the button is pushed.
Use this random number generator from std_lib_facilities.h to pick a
new location for the “image button”:

#include<random>

inline int rand_int(int min, int max)
{
 static default_random_engine ran;
 return uniform_int_distribution<>{min,max}(ran);
}

 It returns a random int in the range [min,max).
 4. Make a menu with items that make a circle, a square, an equilateral trian-

gle, and a hexagon, respectively. Make an input box (or two) for giving a
coordinate pair, and place the shape made by pressing a menu item at that
coordinate. Sorry, no drag and drop.

 5. Write a program that draws a shape of your choice and moves it to a new
point each time you click “Next.” The new point should be determined
by a coordinate pair read from an input stream.

 6. Make an “analog clock,” that is, a clock with hands that move. You get the
time of day from the operating system through a library call. A major part
of this exercise is to find the functions that give you the time of day and
a way of waiting for a short period of time (e.g., a second for a clock tick)
and to learn to use them based on the documentation you found. Hint:
clock(), sleep().

 7. Using the techniques developed in the previous exercises, make an image of
an airplane “fly around” in a window. Have a “Start” and a “Stop” button.

 8. Provide a currency converter. Read the conversion rates from a file on
startup. Enter an amount in an input window and provide a way of select-
ing currencies to convert to and from (e.g., a pair of menus).

 9. Modify the calculator from Chapter 7 to get its input from an input box
and return its results in an output box.

 10. Provide a program where you can choose among a set of functions (e.g.,
sin() and log()), provide parameters for those functions, and then graph
them.

Postscript
GUI is a huge topic. Much of it has to do with style and compatibility with exist-
ing systems. Furthermore, much has to do with a bewildering variety of widgets
(such as a GUI library offering many dozens of alternative button styles) that

Stroustrup_book.indb 579Stroustrup_book.indb 579 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 16 • GRAPHICAL USER INTERFACES580

would make a traditional botanist feel quite at home. However, little of that has
to do with fundamental programming techniques, so we won’t proceed in that
direction. Other topics, such as scaling, rotation, morphing, three-dimensional
objects, shadowing, etc., require sophistication in graphical and/or mathematical
topics which we don’t assume here.

One thing you should be aware of is that most GUI systems provide a “GUI
builder” that allows you to design your window layouts graphically and attach
callbacks and actions to buttons, menus, etc. specified graphically. For many ap-
plications, such a GUI builder is well worth using to reduce the tedium of writing
“scaffolding code” such as our callbacks. However, always try to understand how
the resulting programs work. Sometimes, the generated code is equivalent to what
you have seen in this chapter. Sometimes more elaborate and/or expensive mech-
anisms are used.

Stroustrup_book.indb 580Stroustrup_book.indb 580 4/22/14 9:42 AM4/22/14 9:42 AM

Part III
Data and Algorithms

Stroustrup_book.indb 581Stroustrup_book.indb 581 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 582Stroustrup_book.indb 582 4/22/14 9:42 AM4/22/14 9:42 AM

583

17

Vector and Free Store

“Use vector as the default!”

—Alex Stepanov

This chapter and the next four describe the containers and

algorithms part of the C++ standard library, traditionally

called the STL. We describe the key facilities from the STL and

some of their uses. In addition, we present the key design and

programming techniques used to implement the STL and some

low-level language features used for that. Among those are point-

ers, arrays, and free store. The focus of this chapter and the next

two is the design and implementation of the most common and

most useful STL container: vector.

Stroustrup_book.indb 583Stroustrup_book.indb 583 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE584

17.1 Introduction
The most useful container in the C++ standard library is vector. A vector provides
a sequence of elements of a given type. You can refer to an element by its index
(subscript), extend the vector by using push_back(), ask a vector for the number
of its elements using size(), and have access to the vector checked against attempts
to access out-of-range elements. The standard library vector is a convenient, flex-
ible, efficient (in time and space), statically type-safe container of elements. The
standard string has similar properties, as have other useful standard container
types, such as list and map, which we will describe in Chapter 20. However, a
computer’s memory doesn’t directly support such useful types. All that the hard-
ware directly supports is sequences of bytes. For example, for a vector<double>,
the operation v.push_back(2.3) adds 2.3 to a sequence of doubles and increases the
element count of v (v.size()) by 1. At the lowest level, the computer knows nothing
about anything as sophisticated as push_back(); all it knows is how to read and
write a few bytes at a time.

In this and the following two chapters, we show how to build vector from
the basic language facilities available to every programmer. Doing so allows us to
illustrate useful concepts and programming techniques, and to see how they are
expressed using C++ language features. The language facilities and programming
techniques we encounter in the vector implementation are generally useful and
very widely used.

Once we have seen how vector is designed, implemented, and used, we can
proceed to look at other standard library containers, such as map, and examine
the elegant and efficient facilities for their use provided by the C++ standard
library (Chapters 20 and 21). These facilities, called algorithms, save us from
programming common tasks involving data ourselves. Instead, we can use what
is available as part of every C++ implementation to ease the writing and testing

17.1 Introduction
17.2 vector basics
17.3 Memory, addresses, and pointers

 17.3.1 The sizeof operator

17.4 Free store and pointers
 17.4.1 Free-store allocation
 17.4.2 Access through pointers
 17.4.3 Ranges
 17.4.4 Initialization
 17.4.5 The null pointer
 17.4.6 Free-store deallocation

17.5 Destructors
 17.5.1 Generated destructors
 17.5.2 Destructors and free store

17.6 Access to elements
17.7 Pointers to class objects
17.8 Messing with types: void* and casts
17.9 Pointers and references
 17.9.1 Pointer and reference

parameters

 17.9.2 Pointers, references, and
inheritance

 17.9.3 An example: lists

 17.9.4 List operations

 17.9.5 List use

17.10 The this pointer
 17.10.1 More link use

Stroustrup_book.indb 584Stroustrup_book.indb 584 4/22/14 9:42 AM4/22/14 9:42 AM

17.1 INTRODUCTION 585

of our libraries. We have already seen and used one of the standard library’s most
useful algorithms: sort().

We approach the standard library vector through a series of increasingly so-
phisticated vector implementations. First, we build a very simple vector. Then,
we see what’s undesirable about that vector and fix it. When we have done that
a few times, we reach a vector implementation that is roughly equivalent to the
standard library vector — shipped with your C++ compiler, the one that you have
been using in the previous chapters. This process of gradual refinement closely
mirrors the way we typically approach a new programming task. Along the way,
we encounter and explore many classical problems related to the use of memory
and data structures. The basic plan is this:

• Chapter 17 (this chapter): How can we deal with varying amounts of mem-
ory? In particular, how can different vectors have different numbers of
elements and how can a single vector have different numbers of elements
at different times? This leads us to examine free store (heap storage),
pointers, casts (explicit type conversion), and references.

• Chapter 18: How can we copy vectors? How can we provide a subscript
operation for them? We also introduce arrays and explore their relation
to pointers.

• Chapter 19: How can we have vectors with different element types? And
how can we deal with out-of-range errors? To answer those questions, we
explore the C++ template and exception facilities.

In addition to the new language facilities and techniques that we introduce to
handle the implementation of a flexible, efficient, and type-safe vector, we will
also (re)use many of the language facilities and programming techniques we have
already seen. Occasionally, we’ll take the opportunity to give those a slightly more
formal and technical definition.

So, this is the point at which we finally get to deal directly with memory. Why
do we have to? Our vector and string are extremely useful and convenient; we
can just use those. After all, containers, such as vector and string, are designed to
insulate us from some of the unpleasant aspects of real memory. However, unless
we are content to believe in magic, we must examine the lowest level of memory
management. Why shouldn’t you “just believe in magic”? Or — to put a more
positive spin on it — why shouldn’t you “just trust that the implementers of vector
knew what they were doing”? After all, we don’t suggest that you examine the
device physics that allows our computer’s memory to function.

Well, we are programmers (computer scientists, software developers, or what-
ever) rather than physicists. Had we been studying device physics, we would have
had to look into the details of computer memory design. However, since we are
studying programming, we must look into the detailed design of programs. In
theory, we could consider the low-level memory access and management facilities

Stroustrup_book.indb 585Stroustrup_book.indb 585 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE586

“implementation details” just as we do the device physics. However, if we did
that, you would not just have to “believe in magic”; you would be unable to im-
plement a new container (should you need one, and that’s not uncommon). Also,
you would be unable to read huge amounts of C and C++ code that directly
uses memory. As we will see over the next few chapters, pointers (a low-level and
direct way of referring to an object) are also useful for a variety of reasons not re-
lated to memory management. It is not easy to use C++ well without sometimes
using pointers.

More philosophically, I am among the large group of computer professionals
who are of the opinion that if you lack a basic and practical understanding of
how a program maps onto a computer’s memory and operations, you will have
problems getting a solid grasp of higher-level topics, such as data structures, algo-
rithms, and operating systems.

17.2 vector basics
We start our incremental design of vector by considering a very simple use:

vector<double> age(4); // a vector with 4 elements of type double
age[0]=0.33;
age[1]=22.0;
age[2]=27.2;
age[3]=54.2;

Obviously, this creates a vector with four elements of type double and gives those
four elements the values 0.33, 22.0, 27.2, and 54.2. The four elements are num-
bered 0, 1, 2, 3. The numbering of elements in C++ standard library containers
always starts from 0 (zero). Numbering from 0 is very common, and it is a univer-
sal convention among C++ programmers. The number of elements of a vector
is called its size. So, the size of age is 4. The elements of a vector are numbered
(indexed) from 0 to size–1. For example, the elements of age are numbered 0 to
age.size()–1. We can represent age graphically like this:

4

age:

0.33

age[0]:

22.0

age[1]:

27.2

age[2]:

54.2

age[3]:

How do we make this “graphical design” real in a computer’s memory? How do
we get the values stored and accessed like that? Obviously, we have to define a
class and we want to call this class vector. Furthermore, it needs a data member to

Stroustrup_book.indb 586Stroustrup_book.indb 586 4/22/14 9:42 AM4/22/14 9:42 AM

17.2 VECTOR BASICS 587

hold its size and one to hold its elements. But how do we represent a set of elements
where the number of elements can vary? We could use a standard library vector,
but that would — in this context — be cheating: we are building a vector here.

So, how do we represent that arrow in the drawing above? Consider doing
without it. We could define a fixed-size data structure:

class vector {
 int size, age0, age1, age2, age3;
 // . . .
};

Ignoring some notational details, we’ll have something like this:

4

age:

0.33

age[0]: size:

22.0

age[1]:

27.2

age[2]:

54.2

age[3]:

That’s simple and nice, but the first time we try to add an element with push_
back() we are sunk: we have no way of adding an element; the number of ele-
ments is fixed to four in the program text. We need something more than a data
structure holding a fixed number of elements. Operations that change the number
of elements of a vector, such as push_back(), can’t be implemented if we defined
vector to have a fixed number of elements. Basically, we need a data member
that points to the set of elements so that we can make it point to a different set of
elements when we need more space. We need something like the memory address
of the first element. In C++, a data type that can hold an address is called a pointer
and is syntactically distinguished by the suffix *, so that double* means “pointer
to double.” Given that, we can define our first version of a vector class:

// a very simplified vector of doubles (like vector<double>)
class vector {
 int sz; // the size
 double* elem; // pointer to the first element (of type double)
public:
 vector(int s); // constructor: allocate s doubles,
 // let elem point to them
 // store s in sz
 int size() const { return sz; } // the current size
};

Before proceeding with the vector design, let us study the notion of “pointer” in
some detail. The notion of “pointer” — together with its closely related notion of
“array” — is key to C++’s notion of “memory.”

Stroustrup_book.indb 587Stroustrup_book.indb 587 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE588

17.3 Memory, addresses, and pointers
A computer’s memory is a sequence of bytes. We can number the bytes from 0
to the last one. We call such “a number that indicates a location in memory” an
address. You can think of an address as a kind of integer value. The first byte of
memory has the address 0, the next the address 1, and so on. We can visualize a
megabyte of memory like this:

0 1 2 220—1

Everything we put in memory has an address. For example:

int var = 17;

This will set aside an “int-size” piece of memory for var somewhere and put the
value 17 into that memory. We can also store and manipulate addresses. An object
that holds an address value is called a pointer. For example, the type needed to
hold the address of an int is called a “pointer to int” or an “int pointer” and the
notation is int*:

int* ptr = &var; // ptr holds the address of var

The “address of” operator, unary &, is used to get the address of an object. So, if var
happens to start at address 4096 (also known as 212), ptr will hold the value 4096:

0 1 2 ptr
4096

220—1 212

17

Basically, we view our computer’s memory as a sequence of bytes numbered from
0 to the memory size minus 1. On some machines that’s a simplification, but as an
initial programming model of the memory, it will suffice.

Each type has a corresponding pointer type. For example:

int x = 17;
int* pi = &x; // pointer to int

double e = 2.71828;
double* pd = &e; // pointer to double

If we want to see the value of the object pointed to, we can do that using the “con-
tents of” operator, unary *. For example:

Stroustrup_book.indb 588Stroustrup_book.indb 588 4/22/14 9:42 AM4/22/14 9:42 AM

17.3 MEMORY, ADDRESSES, AND POINTERS 589

cout << "pi==" << pi << "; contents of pi==" << *pi << "\n";
cout << "pd==" << pd << "; contents of pd==" << *pd << "\n";

The output for *pi will be the integer 17 and the output for *pd will be the double
2.71828. The output for pi and pd will vary depending on where the compiler
allocated our variables x and e in memory. The notation used for the pointer
value (address) may also vary depending on which conventions your system uses;
hexadecimal notation (§A.2.1.1) is popular for pointer values.

The contents of operator (often called the dereference operator) can also be used
on the left-hand side of an assignment:

*pi = 27; // OK: you can assign 27 to the int pointed to by pi
*pd = 3.14159; // OK: you can assign 3.14159 to the double pointed to by pd
*pd = *pi; // OK: you can assign an int (*pi) to a double (*pd)

Note that even though a pointer value can be printed as an integer, a pointer is not
an integer. “What does an int point to?” is not a well-formed question; ints do not
point, pointers do. A pointer type provides the operations suitable for addresses,
whereas int provides the (arithmetic and logical) operations suitable for integers.
So pointers and integers do not implicitly mix:

int i = pi; // error: can’t assign an int* to an int
pi = 7; // error: can’t assign an int to an int*

Similarly, a pointer to char (a char*) is not a pointer to int (an int*). For example:

char* pc = pi; // error: can’t assign an int* to a char*
pi = pc; // error: can’t assign a char* to an int*

Why is it an error to assign pc to pi? Consider one answer: a char is usually much
smaller than an int, so consider this:

char ch1 = 'a';
char ch2 = 'b';
char ch3 = 'c';
char ch4 = 'd';
int* pi = &ch3; // point to ch3, a char-size piece of memory
 // error: we cannot assign a char* to an int*
 // but let’s pretend we could
*pi = 12345; // write to an int-size piece of memory
*pi = 67890;

Stroustrup_book.indb 589Stroustrup_book.indb 589 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE590

Exactly how the compiler allocates variables in memory is implementation de-
fined, but we might very well get something like this:

ch3: pi:
'a' 'b' 'c' 'd' &ch3

Now, had the compiler allowed the code, we would have been writing 12345 to the
memory starting at &ch3. That would definitely have changed the value of some
nearby memory, such as ch2 or ch4. If we were really unlucky (which is likely),
we would have overwritten part of pi itself! In that case, the next assignment
*pi=67890 would place 67890 in some completely different part of memory. Be
glad that such assignment is disallowed, but this is one of the very few protections
offered by the compiler at this low level of programming.

In the unlikely case that you really need to convert an int to a pointer or to
convert one pointer type to another, you can use reinterpret_cast; see §17.8.

We are really close to the hardware here. This is not a particularly com-
fortable place to be for a programmer. We have only a few primitive operations
available and hardly any support from the language or the standard library. How-
ever, we had to get here to know how higher-level facilities, such as vector, are
implemented. We need to understand how to write code at this level because not
all code can be “high-level” (see Chapter 25). Also, we might better appreciate the
convenience and relative safety of the higher levels of software once we have expe-
rienced their absence. Our aim is always to work at the highest level of abstraction
that is possible given a problem and the constraints on its solution. In this chapter
and in Chapters 18–19, we show how to get back to a more comfortable level of
abstraction by implementing a vector.

17.3.1 The sizeof operator
So how much memory does an int really take up? A pointer? The operator sizeof
answers such questions:

void sizes(char ch, int i, int* p)
{
 cout << "the size of char is " << sizeof(char) << ' ' << sizeof (ch) << '\n';
 cout << "the size of int is " << sizeof(int) << ' ' << sizeof (i) << '\n';
 cout << "the size of int* is " << sizeof(int*) << ' ' << sizeof (p) << '\n';
}

Stroustrup_book.indb 590Stroustrup_book.indb 590 4/22/14 9:42 AM4/22/14 9:42 AM

17.4 FREE STORE AND POINTERS 591

As you can see, we can apply sizeof either to a type name or to an expression; for
a type, sizeof gives the size of an object of that type, and for an expression, it gives
the size of the type of the result. The result of sizeof is a positive integer and the
unit is sizeof(char), which is defined to be 1. Typically, a char is stored in a byte,
so sizeof reports the number of bytes.

TRY THIS

Execute the example above and see what you get. Then extend the example
to determine the size of bool, double, and some other type.

The size of a type is not guaranteed to be the same on every implementation
of C++. These days, sizeof(int) is typically 4 on a laptop or desktop machine.
With an 8-bit byte, that means that an int is 32 bits. However, embedded systems
processors with 16-bit ints and high-performance architectures with 64-bit ints
are common.

How much memory is used by a vector? We can try

vector<int> v(1000); // vector with 1000 elements of type int
cout << "the size of vector<int>(1000) is " << sizeof (v) << '\n';

The output will be something like

the size of vector<int>(1000) is 20

The explanation will become obvious over this chapter and the next (see also
§19.2.1), but clearly, sizeof is not counting the elements.

17.4 Free store and pointers
Consider the implementation of vector from the end of §17.2. From where does
the vector get the space for the elements? How do we get the pointer elem to
point to them? When you start a C++ program, the compiler sets aside mem-
ory for your code (sometimes called code storage or text storage) and for the global
variables you define (called static storage). It also sets aside some memory to be
used when you call functions, and they need space for their arguments and local
variables (that’s called stack storage or automatic storage). The rest of the computer’s

T

Stroustrup_book.indb 591Stroustrup_book.indb 591 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE592

memory is potentially available for other uses; it is “free.” We can illustrate
that graphically:

Stack

Free store

Static data

Codememory layout:

The C++ language makes this “free store” (also called the heap) available through
an operator called new. For example:

double* p = new double[4]; // allocate 4 doubles on the free store

This asks the C++ run-time system to allocate four doubles on the free store
and return a pointer to the first double to us. We use that pointer to initialize our
pointer variable p. We can represent this graphically:

p:

The free store:

The new operator returns a pointer to the object it creates. If it created several
objects (an array), it returns a pointer to the first of those objects. If that object is
of type X, the pointer returned by new is of type X*. For example:

char* q = new double[4]; // error: double* assigned to char*

That new returns a pointer to a double and a double isn’t a char, so we should
not (and cannot) assign it to the pointer to char variable q.

Stroustrup_book.indb 592Stroustrup_book.indb 592 4/22/14 9:42 AM4/22/14 9:42 AM

17.4 FREE STORE AND POINTERS 593

17.4.1 Free-store allocation
We request memory to be allocated on the free store by the new operator:

• The new operator returns a pointer to the allocated memory.
• A pointer value is the address of the fi rst byte of the memory.
• A pointer points to an object of a specifi ed type.
• A pointer does not know how many elements it points to.

The new operator can allocate individual elements or sequences (arrays) of ele-
ments. For example:

int* pi = new int; // allocate one int
int* qi = new int[4]; // allocate 4 ints (an array of 4 ints)

double* pd = new double; // allocate one double
double* qd = new double[n]; // allocate n doubles (an array of n doubles)

Note that the number of objects allocated can be a variable. That’s important
because that allows us to select how many objects we allocate at run time. If n is
2, we get

pi:

qi:

pd:

qd:

Pointers to objects of different types are different types. For example:

pi = pd; // error: can’t assign a double* to an int*
pd = pi; // error: can’t assign an int* to a double*

Why not? After all, we can assign an int to a double and a double to an int. The
reason is the [] operator. It relies on the size of the element type to figure out
where to find an element. For example, qi[2] is two int sizes further on in memory
than qi[0], and qd[2] is two double sizes further on in memory than qd[0]. If the
size of an int is different from the size of double, as it is on many computers, we

Stroustrup_book.indb 593Stroustrup_book.indb 593 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE594

could get some rather strange results if we allowed qi to point to the memory
allocated for qd.

That’s the “practical explanation.” The theoretical explanation is simply “Al-
lowing assignment of pointers to different types would allow type errors.”

17.4.2 Access through pointers
In addition to using the dereference operator * on a pointer, we can use the sub-
script operator []. For example:

double* p = new double[4]; // allocate 4 doubles on the free store
double x = *p; // read the (first) object pointed to by p
double y = p[2]; // read the 3rd object pointed to by p

Unsurprisingly, the subscript operator counts from 0 just like vector’s subscript
operator, so p[2] refers to the third element; p[0] is the first element so p[0] means
exactly the same as *p. The [] and * operators can also be used for writing:

*p = 7.7; // write to the (first) object pointed to by p
p[2] = 9.9; // write to the 3rd object pointed to by p

A pointer points to an object in memory. The “contents of” operator (also called
the dereference operator) allows us to read and write the object pointed to by a
pointer p:

double x = *p; // read the object pointed to by p
*p = 8.8; // write to the object pointed to by p

When applied to a pointer, the [] operator treats memory as a sequence of objects
(of the type specified by the pointer declaration) with the first one pointed to by
a pointer p:

double x = p[3]; // read the 4th object pointed to by p
p[3] = 4.4; // write to the 4th object pointed to by p
double y = p[0]; // p[0] is the same as *p

That’s all. There is no checking, no implementation cleverness, just simple access
to our computer’s memory:

8.8

p[0]: p[1]:

9.9

p[2]:

4.4

p[3]:

This is exactly the simple and optimally efficient mechanism for accessing mem-
ory that we need to implement a vector.

Stroustrup_book.indb 594Stroustrup_book.indb 594 4/22/14 9:42 AM4/22/14 9:42 AM

17.4 FREE STORE AND POINTERS 595

17.4.3 Ranges
The major problem with pointers is that a pointer doesn’t “know” how many
elements it points to. Consider:

double* pd = new double[3];
pd[2] = 2.2;
pd[4] = 4.4;
pd[–3] = –3.3;

Does pd have a third element pd[2]? Does it have a fifth element pd[4]? If we
look at the definition of pd, we find that the answers are yes and no, respectively.
However, the compiler doesn’t know that; it does not keep track of pointer values.
Our code will simply access memory as if we had allocated enough memory. It
will even access pd[–3] as if the location three doubles before what pd points to
was part of our allocation:

–3.3

pd[–3]: pd[–2]: pd[–1]:

pd:

pd[0]: pd[1]:

2.2

pd[2]: pd[3]:

4.4

pd[4]:

We have no idea what the memory locations marked pd[–3] and pd[4] are used
for. However, we do know that they weren’t meant to be used as part of our array
of three doubles pointed to by pd. Most likely, they are parts of other objects and
we just scribbled all over those. That’s not a good idea. In fact, it is typically a
disastrously poor idea: “disastrous” as in “My program crashes mysteriously” or
“My program gives wrong output.” Try saying that aloud; it doesn’t sound nice at
all. We’ll go a long way to avoid that. Out-of-range access is particularly nasty be-
cause apparently unrelated parts of a program are affected. An out-of-range read
gives us a “random” value that may depend on some completely unrelated com-
putation. An out-of-range write can put some object into an “impossible” state or
simply give it a totally unexpected and wrong value. Such writes typically aren’t
noticed until long after they occurred, so they are particularly hard to find. Worse
still: run a program with an out-of-range error twice with slightly different input
and it may give different results. Bugs of this kind (“transient bugs”) are some of
the most difficult bugs to find.

We have to ensure that such out-of-range access doesn’t happen. One of the
reasons we use vector rather than directly using memory allocated by new is that
a vector knows its size so that it (or we) can easily prevent out-of-range access.

One thing that can make it hard to prevent out-of-range access is that we
can assign one double* to another double* independently of how many objects

Stroustrup_book.indb 595Stroustrup_book.indb 595 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE596

each points to. A pointer really doesn’t know how many objects it points to.
For example:

double* p = new double; // allocate a double
double* q = new double[1000]; // allocate 1000 doubles

q[700] = 7.7; // fine
q = p; // let q point to the same as p
double d = q[700]; // out-of-range access!

Here, in just three lines of code, q[700] refers to two different memory locations,
and the last use is an out-of-range access and a likely disaster.

p

q

Second value of q

First value of q

...

By now, we hope that you are asking, “But why can’t pointers remember the size?”
Obviously, we could design a “pointer” that did exactly that — a vector is almost
that, and if you look through the C++ literature and libraries, you’ll find many
“smart pointers” that compensate for weaknesses of the low-level built-in point-
ers. However, somewhere we need to reach the hardware level and understand
how objects are addressed — and a machine address does not “know” what it
addresses. Also, understanding pointers is essential for understanding lots of
real-world code.

17.4.4 Initialization
As ever, we would like to ensure that an object has been given a value before we
use it; that is, we want to be sure that our pointers are initialized and also that the
objects they point to have been initialized. Consider:

double* p0; // uninitialized: likely trouble
double* p1 = new double; // get (allocate) an uninitialized double
double* p2 = new double{5.5}; // get a double initialized to 5.5
double* p3 = new double[5]; // get (allocate) 5 uninitialized doubles

Obviously, declaring p0 without initializing it is asking for trouble. Consider:

*p0 = 7.0;

Stroustrup_book.indb 596Stroustrup_book.indb 596 4/22/14 9:42 AM4/22/14 9:42 AM

17.4 FREE STORE AND POINTERS 597

This will assign 7.0 to some location in memory. We have no idea which part of
memory that will be. It could be harmless, but never, never ever, rely on that.
Sooner or later, we get the same result as for an out-of-range access: “My program
crashed mysteriously” or “My program gives wrong output.” A scary percentage
of serious problems with old-style C++ programs (“C-style programs”) is caused
by access through uninitialized pointers and out-of-range access. We must do all
we can to avoid such access, partly because we aim at professionalism, partly
because we don’t care to waste our time searching for that kind of error. There
are few activities as frustrating and tedious as tracking down this kind of bug. It is
much more pleasant and productive to prevent bugs than to hunt for them.

Memory allocated by new is not initialized for built-in types. If you don’t like
that for a single object, you can specify a value, as we did for p2: *p2 is 5.5. Note
the use of () for initialization. This contrasts to the use of [] to indicate “array.”

We can specify an initializer list for an array of objects allocated by new. For
example:

double* p4 = new double[5] {0,1,2,3,4};
double* p5 = new double[] {0,1,2,3,4};

Now p4 points to objects of type double containing the values 0.0, 1.0, 2.0, 3.0,
and 4.0. So does p5; the number of elements can be left out when a set of elements
is provided.

As usual, we should worry about uninitialized objects and make sure we give
them a value before we read them. Beware that compilers often have a “debug
mode” where they by default initialize every variable to a predictable value (often
0). That implies that when turning off the debug features to ship a program, when
running an optimizer, or simply when compiling on a different machine, a pro-
gram with uninitialized variables may suddenly run differently. Don’t get caught
with an uninitialized variable.

When we define our own types, we have better control of initialization. If a
type X has a default constructor, we get

X* px1 = new X; // one default-initialized X
X* px2 = new X[17]; // 17 default-initialized Xs

If a type Y has a constructor, but not a default constructor, we have to explicitly
initialize:

Y* py1 = new Y; // error: no default constructor
Y* py2 = new Y{13}; // OK: initialized to Y{13}
Y* py3 = new Y[17]; // error: no default constructor
Y* py4 = new Y[17] {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

Stroustrup_book.indb 597Stroustrup_book.indb 597 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE598

Long initializer lists for new can be impractical, but they can come in very handy
when we want just a few elements, and that is typically the most common case.

17.4.5 The null pointer
If you have no other pointer to use for initializing a pointer, use the null pointer,
nullptr:

double* p0 = nullptr; // the null pointer

When assigned to a pointer, the value zero is called the null pointer, and often we
test whether a pointer is valid (i.e., whether it points to something) by checking
whether it is nullptr. For example:

if (p0 != nullptr) // consider p0 valid

This is not a perfect test, because p0 may contain a “random” value that happens
to be nonzero (e.g., if we forgot to initialize) or the address of an object that has
been deleted (see §17.4.6). However, that’s often the best we can do. We don’t
actually have to mention nullptr explicitly because an if-statement really checks
whether its condition is nullptr:

if (p0) // consider p0 valid; equivalent to p0!=nullptr

We prefer this shorter form, considering it a more direct expression of the idea “p0
is valid,” but opinions vary.

We need to use the null pointer when we have a pointer that sometimes points
to an object and sometimes not. That’s rarer than many people think; consider:
If you don’t have an object for a pointer to point to, why did you define that
pointer? Couldn’t you wait until you have an object?

The name nullptr for the null pointer is new in C++11, so in older code,
people often use 0 (zero) or NULL instead of nullptr. Both older alternatives can
lead to confusion and/or errors, so prefer the more specific nullptr.

17.4.6 Free-store deallocation
The new operator allocates (“gets”) memory from the free store. Since a comput-
er’s memory is limited, it is usually a good idea to return memory to the free store
once we are finished using it. That way, the free store can reuse that memory for
a new allocation. For large programs and for long-running programs such freeing
of memory for reuse is essential. For example:

double* calc(int res_size, int max) // leaks memory
{

Stroustrup_book.indb 598Stroustrup_book.indb 598 4/22/14 9:42 AM4/22/14 9:42 AM

17.4 FREE STORE AND POINTERS 599

 double* p = new double[max];
 double* res = new double[res_size];
 // use p to calculate results to be put in res
 return res;
}

double* r = calc(100,1000);

As written, each call of calc() “leaks” the doubles allocated for p. For example,
the call calc(100,1000) will render the space needed for 1000 doubles unusable for
the rest of the program.

The operator for returning memory to the free store is called delete. We ap-
ply delete to a pointer returned by new to make the memory available to the free
store for future allocation. The example now becomes

double* calc(int res_size, int max)
 // the caller is responsible for the memory allocated for res
{
 double* p = new double[max];
 double* res = new double[res_size];
 // use p to calculate results to be put in res
 delete[] p; // we don’t need that memory anymore: free it
 return res;
}

double* r = calc(100,1000);
// use r
delete[] r; // we don’t need that memory anymore: free it

Incidentally, this example demonstrates one of the major reasons for using the
free store: we can create objects in a function and pass them back to a caller.

There are two forms of delete:

• delete p frees the memory for an individual object allocated by new.
• delete[] p frees the memory for an array of objects allocated by new.

It is the programmer’s tedious job to use the right version.
Deleting an object twice is a bad mistake. For example:

int* p = new int{5};
delete p; // fine: p points to an object created by new
// . . . no use of p here . . .
delete p; // error: p points to memory owned by the free-store manager

Stroustrup_book.indb 599Stroustrup_book.indb 599 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE600

There are two problems with the second delete p:

• You don’t own the object pointed to anymore so the free-store manager
may have changed its internal data structure in such a way that it can’t
correctly execute delete p again.

• The free-store manager may have “recycled” the memory pointed to by p
so that p now points to another object; deleting that other object (owned
by some other part of the program) will cause errors in your program.

Both problems occur in a real program; they are not just theoretical possibilities.
Deleting the null pointer doesn’t do anything (because the null pointer doesn’t

point to an object), so deleting the null pointer is harmless. For example:

int* p = nullptr;
delete p; // fine: no action needed
delete p; // also fine (still no action needed)

Why do we have to bother with freeing memory? Can’t the compiler figure out
when we don’t need a piece of memory anymore and just recycle it without hu-
man intervention? It can. That’s called automatic garbage collection or just garbage
collection. Unfortunately, automatic garbage collection is not cost-free and not ideal
for all kinds of applications. If you really need automatic garbage collection, you
can plug a garbage collector into your C++ program. Good garbage collectors
are available (see www.stroustrup.com/C++.html). However, in this book we as-
sume that you have to deal with your own “garbage,” and we show how to do so
conveniently and efficiently.

When is it important not to leak memory? A program that needs to run
“forever” can’t afford any memory leaks. An operating system is an example of
a program that “runs forever,” and so are most embedded systems (see Chapter
25). A library should not leak memory because someone might use it as part of
a system that shouldn’t leak memory. In general, it is simply a good idea not to
leak. Many programmers consider leaks as proof of sloppiness. However, that’s
slightly overstating the point. When you run a program under an operating sys-
tem (Unix, Windows, whatever), all memory is automatically returned to the sys-
tem at the end of the program. It follows that if you know that your program will
not use more memory than is available, you might reasonably decide to “leak”
until the operating system does the deallocation for you. However, if you decide
to do that, be sure that your memory consumption estimate is correct, or people
will have good reason to consider you sloppy.

Stroustrup_book.indb 600Stroustrup_book.indb 600 4/22/14 9:42 AM4/22/14 9:42 AM

17.5 DESTRUCTORS 601

17.5 Destructors
Now we know how to store the elements for a vector. We simply allocate suffi-
cient space for the elements on the free store and access them through a pointer:

// a very simplified vector of doubles
class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, // initialize sz
 elem{new double[s]} // initialize elem
 {
 for (int i=0; i<s; ++i) elem[i]=0; // initialize elements
 }
 int size() const { return sz; } // the current size
 // . . .
};

So, sz is the number of elements. We initialize it in the constructor, and a user of
vector can get the number of elements by calling size(). Space for the elements
is allocated using new in the constructor, and the pointer returned from the free
store is stored in the member pointer elem.

Note that we initialize the elements to their default value (0.0). The standard
library vector does that, so we thought it best to do the same from the start.

Unfortunately, our first primitive vector leaks memory. In the constructor, it
allocates memory for the elements using new. To follow the rule stated in §17.4,
we must make sure that this memory is freed using delete. Consider:

void f(int n)
{
 vector v(n); // allocate n doubles
 // . . .
}

When we leave f(), the elements created on the free store by v are not freed. We
could define a clean_up() operation for vector and call that:

void f2(int n)
{

Stroustrup_book.indb 601Stroustrup_book.indb 601 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE602

 vector v(n); // define a vector (which allocates another n ints)
 // . . . use v . . .
 v.clean_up(); // clean_up() deletes elem
}

That would work. However, one of the most common problems with the free
store is that people forget to delete. The equivalent problem would arise for
clean_up(); people would forget to call it. We can do better than that. The basic
idea is to have the compiler know about a function that does the opposite of a con-
structor, just as it knows about the constructor. Inevitably, such a function is called
a destructor. In the same way that a constructor is implicitly called when an object
of a class is created, a destructor is implicitly called when an object goes out of
scope. A constructor makes sure that an object is properly created and initialized.
Conversely, a destructor makes sure that an object is properly cleaned up before
it is destroyed. For example:

// a very simplified vector of doubles
class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, elem{new double[s]} // allocate memory
 {
 for (int i=0; i<s; ++i) elem[i]=0; // initialize elements
 }

 ~vector() // destructor
 { delete[] elem; } // free memory
 // . . .
};

Given that, we can write

void f3(int n)
{
 double* p = new double[n]; // allocate n doubles
 vector v(n); // the vector allocates n doubles
 // . . . use p and v . . .
 delete[] p; // deallocate p’s doubles
} // vector automatically cleans up after v

Stroustrup_book.indb 602Stroustrup_book.indb 602 4/22/14 9:42 AM4/22/14 9:42 AM

17.5 DESTRUCTORS 603

Suddenly, that delete[] looks rather tedious and error-prone! Given vector,
there is no reason to allocate memory using new just to deallocate it using
delete[] at the end of a function. That’s what vector does and does better. In
particular, a vector cannot forget to call its destructor to deallocate the memory
used for the elements.

We are not going to go into great detail about the uses of destructors here,
but they are great for handling resources that we need to first acquire (from
somewhere) and later give back: files, threads, locks, etc. Remember how
iostreams clean up after themselves? They flush buffers, close files, free buffer
space, etc. That’s done by their destructors. Every class that “owns” a resource
needs a destructor.

17.5.1 Generated destructors
If a member of a class has a destructor, then that destructor will be called when
the object containing the member is destroyed. For example:

struct Customer {
 string name;
 vector<string> addresses;
 // . . .
};

void some_fct()
{
 Customer fred;
 // initialize fred
 // use fred
}

When we exit some_fct(), so that fred goes out of scope, fred is destroyed; that
is, the destructors for name and addresses are called. This is obviously necessary
for destructors to be useful and is sometimes expressed as “The compiler gener-
ated a destructor for Customer, which calls the members’ destructors.” That is
indeed often how the obvious and necessary guarantee that destructors are called
is implemented.

The destructors for members — and for bases — are implicitly called from
a derived class destructor (whether user-defined or generated). Basically, all the
rules add up to: “Destructors are called when the object is destroyed” (by going
out of scope, by delete, etc.).

Stroustrup_book.indb 603Stroustrup_book.indb 603 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE604

17.5.2 Destructors and free store
Destructors are conceptually simple but are the foundation for many of the most
effective C++ programming techniques. The basic idea is simple:

• Whatever resources a class object needs to function, it acquires in a
constructor.

• During the object’s lifetime it may release resources and acquire new ones.
• At the end of the object’s lifetime, the destructor releases all resources still

owned by the object.

The matched constructor/destructor pair handling free-store memory for vector
is the archetypical example. We’ll get back to that idea with more examples in
§19.5. Here, we will examine an important application that comes from the use of
free-store and class hierarchies in combination. Consider:

Shape* fct()
{
 Text tt {Point{200,200},"Annemarie"};
 // . . .
 Shape* p = new Text{Point{100,100},"Nicholas"};
 return p;
}

void f()
{
 Shape* q = fct();
 // . . .
 delete q;
}

This looks fairly plausible — and it is. It all works, but let’s see how, because that
exposes an elegant, important, simple technique. Inside fct(), the Text (§13.11)
object tt is properly destroyed at the exit from fct(). Text has a string member,
which obviously needs to have its destructor called — string handles its memory
acquisition and release exactly like vector. For tt, that’s easy; the compiler just
calls Text’s generated destructor as described in §17.5.1. But what about the Text
object that was returned from fct()? The calling function f() has no idea that q
points to a Text; all it knows is that it points to a Shape. Then how does delete q
get to call Text’s destructor?

In §14.2.1, we breezed past the fact that Shape has a destructor. In fact, Shape
has a virtual destructor. That’s the key. When we say delete q, delete looks at
q’s type to see if it needs to call a destructor, and if so it calls it. So, delete q

Stroustrup_book.indb 604Stroustrup_book.indb 604 4/22/14 9:42 AM4/22/14 9:42 AM

17.6 ACCESS TO ELEMENTS 605

calls Shape’s destructor ~Shape(). But ~Shape() is virtual, so — using the virtual
call mechanism (§14.3.1) — that call invokes the destructor of Shape’s derived
class, in this case ~Text(). Had Shape::~Shape() not been virtual, Text::~Text()
would not have been called and Text’s string member wouldn’t have been prop-
erly destroyed.

As a rule of thumb: if you have a class with a virtual function, it needs a vir-
tual destructor. The reason is:

 1. If a class has a virtual function it is likely to be used as a base class, and
 2. If it is a base class its derived class is likely to be allocated using new, and
 3. If a derived class object is allocated using new and manipulated through

a pointer to its base, then
 4. It is likely to be deleted through a pointer to its base

Note that destructors are invoked implicitly or indirectly through delete. They
are not called directly. That saves a lot of tricky work.

TRY THIS

Write a little program using base classes and members where you define the
constructors and destructors to output a line of information when they are
called. Then, create a few objects and see how their constructors and destruc-
tors are called.

17.6 Access to elements
For vector to be usable, we need a way to read and write elements. For starters,
we can provide simple get() and set() member functions:

// a very simplified vector of doubles
class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) :sz{s}, elem{new double[s]} { /* . . . */ } // constructor
 ~vector() { delete[] elem; } // destructor

 int size() const { return sz; } // the current size

 double get(int n) const { return elem[n]; } // access: read
 void set(int n, double v) { elem[n]=v; } // access: write
};

T

Stroustrup_book.indb 605Stroustrup_book.indb 605 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE606

Both get() and set() access the elements using the [] operator on the elem pointer:
elem[n].

Now we can make a vector of doubles and use it:

vector v(5);
for (int i=0; i<v.size(); ++i) {
 v.set(i,1.1*i);
 cout << "v[" << i << "]==" << v.get(i) << '\n';
}

This will output

v[0]==0
v[1]==1.1
v[2]==2.2
v[3]==3.3
v[4]==4.4

This is still an overly simple vector, and the code using get() and set() is rather
ugly compared to the usual subscript notation. However, we aim to start small
and simple and then grow our programs step by step, testing along the way. As
ever, this strategy of growth and repeated testing minimizes errors and debugging.

17.7 Pointers to class objects
The notion of “pointer” is general, so we can point to just about anything we can
place in memory. For example, we can use pointers to vectors exactly as we use
pointers to chars:

vector* f(int s)
{
 vector* p = new vector(s); // allocate a vector on free store
 // fill *p
 return p;
}

void ff()
{
 vector* q = f(4);
 // use *q
 delete q; // free vector on free store
}

Stroustrup_book.indb 606Stroustrup_book.indb 606 4/22/14 9:42 AM4/22/14 9:42 AM

17.7 POINTERS TO CLASS OBJECTS 607

Note that when we delete a vector, its destructor is called. For example:

vector* p = new vector(s); // allocate a vector on free store
delete p; // deallocate

Creating the vector on the free store, the new operator

• First allocates memory for a vector

• Then invokes the vector’s constructor to initialize that vector; the con-
structor allocates memory for the vector’s elements and initializes those
elements

Deleting the vector, the delete operator

• First invokes the vector’s destructor; the destructor invokes the destruc-
tors for the elements (if they have destructors) and then deallocates the
memory used for the vector’s elements

• Then deallocates the memory used for the vector

Note how nicely that works recursively (see §8.5.8). Using the real (standard
library) vector we can also do

vector<vector<double>>* p = new vector<vector<double>>(10);
delete p;

Here, delete p invokes the destructor for vector<vector<double>>; this destruc-
tor in turn invokes the destructor for its vector<double> elements, and all is
neatly cleaned up, leaving no object undestroyed and leaking no memory.

Because delete invokes destructors (for types, such as vector, that have one),
delete is often said to destroy objects, not just deallocate them.

As usual, please remember that a “naked” new outside a constructor is an
opportunity to forget to delete the object that new created. Unless you have a
good (that is, really simple, such as Vector_ref from §13.10 and §E.4) strategy for
deleting objects, try to keep news in constructors and deletes in destructors.

So far, so good, but how do we access the members of a vector, given only a
pointer? Note that all classes support the operator . (dot) for accessing members,
given the name of an object:

vector v(4);
int x = v.size();
double d = v.get(3);

Stroustrup_book.indb 607Stroustrup_book.indb 607 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE608

Similarly, all classes support the operator –> (arrow) for accessing members, given
a pointer to an object:

vector* p = new vector(4);
int x = p–>size();
double d = p–>get(3);

Like . (dot), –> (arrow) can be used for both data members and function mem-
bers. Since built-in types, such as int and double, have no members, –> doesn’t
apply to built-in types. Dot and arrow are often called member access operators.

17.8 Messing with types: void* and casts
Using pointers and free-store-allocated arrays, we are very close to the hardware.
Basically, our operations on pointers (initialization, assignment, *, and []) map
directly to machine instructions. At this level, the language offers only a bit of no-
tational convenience and the compile-time consistency offered by the type system.
Occasionally, we have to give up even that last bit of protection.

Naturally, we don’t want to make do without the protection of the type sys-
tem, but sometimes there is no logical alternative (e.g., we need to interact with
another language that doesn’t know about C++’s types). There are also an un-
fortunate number of cases where we need to interface with old code that wasn’t
designed with static type safety in mind. For that, we need two things:

• A type of pointer that points to memory without knowing what kinds of
objects reside in that memory

• An operation to tell the compiler what kind of type to assume (without
proof) for memory pointed to by one of those pointers

The type void* means “pointer to some memory that the compiler doesn’t know
the type of.” We use void* when we want to transmit an address between pieces
of code that really don’t know each other’s types. Examples are the “address” ar-
guments of a callback function (§16.3.1) and the lowest level of memory allocators
(such as the implementation of the new operator).

There are no objects of type void, but as we have seen, we use void to mean
“no value returned”:

void v; // error: there are no objects of type void
void f(); // f() returns nothing — f() does not return an object of type void

A pointer to any object type can be assigned to a void*. For example:

void* pv1 = new int; // OK: int* converts to void*
void* pv2 = new double[10]; // OK: double* converts to void*

Stroustrup_book.indb 608Stroustrup_book.indb 608 4/22/14 9:42 AM4/22/14 9:42 AM

17.8 MESSING WITH TYPES: VOID* AND CASTS 609

Since the compiler doesn’t know what a void* points to, we must tell it:

void f(void* pv)
{
 void* pv2 = pv; // copying is OK (copying is what void*s are for)
 double* pd = pv; // error: cannot convert void* to double*
 pv = 7; // error: cannot dereference a void
 // (we don’t know what type of object it points to)
 pv[2] = 9; // error: cannot subscript a void*
 int* pi = static_cast<int*>(pv); // OK: explicit conversion
 // . . .
}

A static_cast can be used to explicitly convert between related pointer types, such
as void* and double* (§A.5.7). The name static_cast is a deliberately ugly name
for an ugly (and dangerous) operation — use it only when absolutely necessary.
You shouldn’t find it necessary very often — if at all. An operation such as static_
cast is called an explicit type conversion (because that’s what it does) or colloquially a
cast (because it is used to support something that’s broken).

C++ offers two casts that are potentially even nastier than static_cast:

• reinterpret_cast can cast between unrelated types, such as int and double*.
• const_cast can “cast away const.”

For example:

Register* in = reinterpret_cast<Register*>(0xff);

void f(const Buffer* p)
{
 Buffer* b = const_cast<Buffer*>(p);
 // . . .
}

The first example is the classical necessary and proper use of a reinterpret_cast.
We tell the compiler that a certain part of memory (the memory starting with
location 0xFF) is to be considered a Register (presumably with special semantics).
Such code is necessary when you write things like device drivers.

in: 0xFF

0xFF:

Stroustrup_book.indb 609Stroustrup_book.indb 609 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE610

In the second example, const_cast strips the const from the const Buffer* called
p. Presumably, we know what we are doing.

At least static_cast can’t mess with the pointer/integer distinction or with
“const-ness,” so prefer static_cast if you feel the need for a cast. When you think
you need a cast, reconsider: Is there a way to write the code without the cast? Is
there a way to redesign that part of the program so that the cast is not needed?
Unless you are interfacing to other people’s code or to hardware, there usually
is a way. If not, expect subtle and nasty bugs. Don’t expect code using reinter-
pret_cast to be portable.

17.9 Pointers and references
You can think of a reference as an automatically dereferenced immutable pointer or
as an alternative name for an object. Pointers and references differ in these ways:

• Assignment to a pointer changes the pointer’s value (not the pointed-to
value).

• To get a pointer you generally need to use new or &.
• To access an object pointed to by a pointer you use * or [].
• Assignment to a reference changes the value of the object referred to (not

the reference itself).
• You cannot make a reference refer to a different object after initialization.
• Assignment of references does deep copy (assigns to the referred-to ob-

ject); assignment of pointers does not (assigns to the pointer object itself).
• Beware of null pointers.

For example:

int x = 10;
int* p = &x; // you need & to get a pointer
*p = 7; // use * to assign to x through p
int x2 = *p; // read x through p
int* p2 = &x2; // get a pointer to another int
p2 = p; // p2 and p both point to x
p = &x2; // make p point to another object

The corresponding example for references is

int y = 10;
int& r = y; // the & is in the type, not in the initializer
r = 7; // assign to y through r (no * needed)
int y2 = r; // read y through r (no * needed)

Stroustrup_book.indb 610Stroustrup_book.indb 610 4/22/14 9:42 AM4/22/14 9:42 AM

17.9 POINTERS AND REFERENCES 611

int& r2 = y2; // get a reference to another int
r2 = r; // the value of y is assigned to y2
r = &y2; // error: you can’t change the value of a reference
 // (no assignment of an int* to an int&)

Note the last example; it is not just this construct that will fail — there is no way to
get a reference to refer to a different object after initialization. If you need to point
to something different, use a pointer. For ideas of how to use pointers, see §17.9.3.

A reference and a pointer are both implemented by using a memory address.
They just use that address differently to provide you — the programmer — slightly
different facilities.

17.9.1 Pointer and reference parameters
When you want to change the value of a variable to a value computed by a func-
tion, you have three choices. For example:

int incr_v(int x) { return x+1; } // compute a new value and return it
void incr_p(int* p) { ++*p; } // pass a pointer
 // (dereference it and increment the result)
void incr_r(int& r) { ++r; } // pass a reference

How do you choose? We think returning the value often leads to the most obvi-
ous (and therefore least error-prone) code; that is:

int x = 2;
x = incr_v(x); // copy x to incr_v(); then copy the result out and assign it

We prefer that style for small objects, such as an int. In addition, if a “large object”
has a move constructor (§18.3.4) we can efficiently pass it back and forth.

How do we choose between using a reference argument and using a pointer
argument? Unfortunately, either way has both attractions and problems, so again
the answer is less than clear-cut. You have to make a decision based on the indi-
vidual function and its likely uses.

Using a pointer argument alerts the programmer that something might be
changed. For example:

int x = 7;
incr_p(&x) // the & is needed
incr_r(x);

The need to use & in incr_p(&x) alerts the user that x might be changed. In contrast,
incr_r(x) “looks innocent.” This leads to a slight preference for the pointer version.

Stroustrup_book.indb 611Stroustrup_book.indb 611 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE612

On the other hand, if you use a pointer as a function argument, the function
has to beware that someone might call it with a null pointer, that is, with a nullptr.
For example:

incr_p(nullptr); // crash: incr_p() will try to dereference the null pointer
int* p = nullptr;
incr_p(p); // crash: incr_p() will try to dereference the null pointer

This is obviously nasty. The person who writes incr_p() can protect against this:

void incr_p(int* p)
{
 if (p==nullptr) error("null pointer argument to incr_p()");
 ++*p; // dereference the pointer and increment the object pointed to
}

But now incr_p() suddenly doesn’t look as simple and attractive as before. Chap-
ter 5 discusses how to cope with bad arguments. In contrast, users of a reference
(such as incr_r()) are entitled to assume that a reference refers to an object.

If “passing nothing” (passing no object) is acceptable from the point of view of
the semantics of the function, we must use a pointer argument. Note: That’s not
the case for an increment operation — hence the need for throwing an exception
for p==nullptr.

So, the real answer is: “The choice depends on the nature of the function”:

• For tiny objects prefer pass-by-value.
• For functions where “no object” (represented by nullptr) is a valid argu-

ment use a pointer parameter (and remember to test for nullptr).
• Otherwise, use a reference parameter.

See also §8.5.6.

17.9.2 Pointers, references, and inheritance
In §14.3, we saw how a derived class, such as Circle, could be used where an
object of its public base class Shape was required. We can express that idea in
terms of pointers or references: a Circle* can be implicitly converted to a Shape*
because Shape is a public base of Circle. For example:

void rotate(Shape* s, int n); // rotate *s n degrees

Shape* p = new Circle{Point{100,100},40};
Circle c {Point{200,200},50};

Stroustrup_book.indb 612Stroustrup_book.indb 612 4/22/14 9:42 AM4/22/14 9:42 AM

17.9 POINTERS AND REFERENCES 613

rotate(p,35);
rotate(&c,45);

And similarly for references:

void rotate(Shape& s, int n); // rotate s n degrees

Shape& r = c;
rotate(r,55);
rotate(*p,65);
rotate(c,75);

This is crucial for most object-oriented programming techniques (§14.3–4).

17.9.3 An example: lists
Lists are among the most common and useful data structures. Usually, a list is
made out of “links” where each link holds some information and pointers to other
links. This is one of the classical uses of pointers. For example, we could represent
a short list of Norse gods like this:

norse_gods

Freia Odin Thor

A list like this is called a doubly-linked list because given a link, we can find both
the predecessor and the successor. A list where we can find only the successor is
called a singly-linked list. We use doubly-linked lists when we want to make it easy
to remove an element. We can define these links like this:

struct Link {
 string value;
 Link* prev;
 Link* succ;
 Link(const string& v, Link* p = nullptr, Link* s = nullptr)
 : value{v}, prev{p}, succ{s} { }
};

That is, given a Link, we can get to its successor using the succ pointer and to its
predecessor using the prev pointer. We use the null pointer to indicate that a Link

Stroustrup_book.indb 613Stroustrup_book.indb 613 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE614

doesn’t have a successor or a predecessor. We can build our list of Norse gods
like this:

Link* norse_gods = new Link{"Thor",nullptr,nullptr};
norse_gods = new Link{"Odin",nullptr,norse_gods};
norse_gods–>succ–>prev = norse_gods;
norse_gods = new Link{"Freia",nullptr,norse_gods};
norse_gods–>succ–>prev = norse_gods;

We built that list by creating the Links and tying them together as in the picture:
first Thor, then Odin as the predecessor of Thor, and finally Freia as the prede-
cessor of Odin. You can follow the pointer to see that we got it right, so that each
succ and prev points to the right god. However, the code is obscure because we
didn’t explicitly define and name an insert operation:

Link* insert(Link* p, Link* n) // insert n before p (incomplete)
{
 n–>succ = p; // p comes after n
 p–>prev–>succ = n; // n comes after what used to be p’s predecessor
 n–>prev = p–>prev; // p’s predecessor becomes n’s predecessor
 p–>prev = n; // n becomes p’s predecessor
 return n;
}

This works provided that p really points to a Link and that the Link pointed to by
p really has a predecessor. Please convince yourself that this really is so. When
thinking about pointers and linked structures, such as a list made out of Links,
we invariably draw little box-and-arrow diagrams on paper to verify that our
code works for small examples. Please don’t be too proud to rely on this effective
low-tech design technique.

That version of insert() is incomplete because it doesn’t handle the cases where
n, p, or p–>prev is nullptr. We add the appropriate tests for the null pointer and
get the messier, but correct, version:

Link* insert(Link* p, Link* n) // insert n before p; return n
{
 if (n==nullptr) return p;
 if (p==nullptr) return n;
 n–>succ = p; // p comes after n
 if (p–>prev) p–>prev–>succ = n;
 n–>prev = p–>prev; // p’s predecessor becomes n’s predecessor
 p–>prev = n; // n becomes p’s predecessor
 return n;
}

Stroustrup_book.indb 614Stroustrup_book.indb 614 4/22/14 9:42 AM4/22/14 9:42 AM

17.9 POINTERS AND REFERENCES 615

Given that, we could write

Link* norse_gods = new Link{"Thor"};
norse_gods = insert(norse_gods,new Link{"Odin"});
norse_gods = insert(norse_gods,new Link{"Freia"});

Now all the error-prone fiddling with the prev and succ pointers has disappeared
from sight. Pointer fiddling is tedious and error-prone and should be hidden in
well-written and well-tested functions. In particular, many errors in conventional
code come from people forgetting to test pointers against nullptr — just as we (de-
liberately) did in the first version of insert().

Note that we used default arguments (§15.3.1, §A.9.2) to save users from
mentioning predecessors and successors in every constructor use.

17.9.4 List operations
The standard library provides a list class, which we will describe in §20.4. It hides
all link manipulation, but here we will elaborate on our notion of list based on the
Link class to get a feel for what goes on “under the covers” of list classes and see
more examples of pointer use.

What operations does our Link class need to allow its users to avoid “pointer
fiddling”? That’s to some extent a matter of taste, but here is a useful set:

• The constructor
• insert: insert before an element
• add: insert after an element
• erase: remove an element
• fi nd: fi nd a Link with a given value
• advance: get the nth successor

We could write these operations like this:

Link* add(Link* p, Link* n) // insert n after p; return n
{
 // much like insert (see exercise 11)
}

Link* erase(Link* p) // remove *p from list; return p’s successor
{
 if (p==nullptr) return nullptr;
 if (p–>succ) p–>succ–>prev = p–>prev;
 if (p–>prev) p–>prev–>succ = p–>succ;
 return p–>succ;
}

Stroustrup_book.indb 615Stroustrup_book.indb 615 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE616

Link* find(Link* p, const string& s) // find s in list;
 // return nullptr for “not found”
{
 while (p) {
 if (p–>value == s) return p;
 p = p–>succ;
 }
 return nullptr;
}

Link* advance(Link* p, int n) // move n positions in list
 // return nullptr for “not found”
 // positive n moves forward, negative backward
{
 if (p==nullptr) return nullptr;
 if (0<n) {
 while (n––) {
 if (p–>succ == nullptr) return nullptr;
 p = p–>succ;
 }
 }
 else if (n<0) {
 while (n++) {
 if (p–>prev == nullptr) return nullptr;
 p = p–>prev;
 }
 }
 return p;
}

Note the use of the postfix n++. This form of increment (“post-increment”) yields
the value before the increment as its value.

17.9.5 List use
As a little exercise, let’s build two lists:

Link* norse_gods = new Link("Thor");
norse_gods = insert(norse_gods,new Link{"Odin"});
norse_gods = insert(norse_gods,new Link{"Zeus"});
norse_gods = insert(norse_gods,new Link{"Freia"});

Link* greek_gods = new Link("Hera");
greek_gods = insert(greek_gods,new Link{"Athena"});

Stroustrup_book.indb 616Stroustrup_book.indb 616 4/22/14 9:42 AM4/22/14 9:42 AM

17.9 POINTERS AND REFERENCES 617

greek_gods = insert(greek_gods,new Link{"Mars"});
greek_gods = insert(greek_gods,new Link{"Poseidon"});

“Unfortunately,” we made a couple of mistakes: Zeus is a Greek god, rather than a
Norse god, and the Greek god of war is Ares, not Mars (Mars is his Latin/Roman
name). We can fix that:

Link* p = find(greek_gods, "Mars");
if (p) p–>value = "Ares";

Note how we were cautious about find() returning a nullptr. We think that we
know that it can’t happen in this case (after all, we just inserted Mars into greek_
gods), but in a real example someone might change that code.

Similarly, we can move Zeus into his correct Pantheon:

Link* p = find(norse_gods,"Zeus");
if (p) {
 erase(p);
 insert(greek_gods,p);
}

Did you notice the bug? It’s quite subtle (unless you are used to working directly
with links). What if the Link we erase() is the one pointed to by norse_gods?
Again, that doesn’t actually happen here, but to write good, maintainable code,
we have to take that possibility into account:

Link* p = find(norse_gods, "Zeus");
if (p) {
 if (p==norse_gods) norse_gods = p–>succ;
 erase(p);
 greek_gods = insert(greek_gods,p);
}

While we were at it, we also corrected the second bug: when we insert Zeus before
the first Greek god, we need to make greek_gods point to Zeus’s Link. Pointers
are extremely useful and flexible, but subtle.

Finally, let’s print out those lists:

void print_all(Link* p)
{
 cout << "{ ";
 while (p) {

Stroustrup_book.indb 617Stroustrup_book.indb 617 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE618

 cout << p–>value;
 if (p=p–>succ) cout << ", ";
 }
 cout << " }";
}

print_all(norse_gods);
cout<<"\n";

print_all(greek_gods);
cout<<"\n";

This should give

{ Freia, Odin, Thor }
{ Zeus, Poseidon, Ares, Athena, Hera }

17.10 The this pointer
Note that each of our list functions takes a Link* as its first argument and accesses
data in that object. That’s the kind of function that we often make member func-
tions. Could we simplify Link (or link use) by making the operations members?
Could we maybe make the pointers private so that only the member functions
have access to them? We could:

class Link {
public:
 string value;

 Link(const string& v, Link* p = nullptr, Link* s = nullptr)
 : value{v}, prev{p}, succ{s} { }

 Link* insert(Link* n) ; // insert n before this object
 Link* add(Link* n) ; // insert n after this object
 Link* erase() ; // remove this object from list
 Link* find(const string& s); // find s in list
 const Link* find(const string& s) const; // find s in const list (see §18.5.1)

 Link* advance(int n) const; // move n positions in list

 Link* next() const { return succ; }
 Link* previous() const { return prev; }

Stroustrup_book.indb 618Stroustrup_book.indb 618 4/22/14 9:42 AM4/22/14 9:42 AM

17.10 THE THIS POINTER 619

private:
 Link* prev;
 Link* succ;
};

This looks promising. We defined the operations that don’t change the state of a
Link into const member functions. We added (nonmodifying) next() and previ-
ous() functions so that users could iterate over lists (of Links) — those are needed
now that direct access to succ and prev is prohibited. We left value as a public
member because (so far) we have no reason not to; it is “just data.”

Now let’s try to implement Link::insert() by copying our previous global in-
sert() and modifying it suitably:

Link* Link::insert(Link* n) // insert n before p; return n
{
 Link* p = this; // pointer to this object
 if (n==nullptr) return p; // nothing to insert
 if (p==nullptr) return n; // nothing to insert into
 n–>succ = p; // p comes after n
 if (p–>prev) p–>prev–>succ = n;
 n–>prev = p–>prev; // p’s predecessor becomes n’s predecessor
 p–>prev = n; // n becomes p’s predecessor
 return n;
}

But how do we get a pointer to the object for which Link::insert() was called?
Without help from the language we can’t. However, in every member function,
the identifier this is a pointer that points to the object for which the member func-
tion was called. Alternatively, we could simply use this instead of p:

Link* Link::insert(Link* n) // insert n before this object; return n
{
 if (n==nullptr) return this;
 if (this==nullptr) return n;
 n–>succ = this; // this object comes after n
 if (this–>prev) this–>prev–>succ = n;
 n–>prev = this–>prev; // this object’s predecessor
 // becomes n’s predecessor
 this–>prev = n; // n becomes this object’s predecessor
 return n;
}

Stroustrup_book.indb 619Stroustrup_book.indb 619 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE620

This is a bit verbose, but we don’t need to mention this to access a member, so
we can abbreviate:

Link* Link::insert(Link* n) // insert n before this object; return n
{
 if (n==nullptr) return this;
 if (this==nullptr) return n;
 n–>succ = this; // this object comes after n
 if (prev) prev–>succ = n;
 n–>prev = prev; // this object’s predecessor becomes n’s predecessor
 prev = n; // n becomes this object’s predecessor
 return n;
}

In other words, we have been using the this pointer — the pointer to the current
object — implicitly every time we accessed a member. It is only when we need to
refer to the whole object that we need to mention it explicitly.

Note that this has a specific meaning: it points to the object for which a mem-
ber function is called. It does not point to any old object. The compiler ensures
that we do not change the value of this in a member function. For example:

struct S {
 // . . .
 void mutate(S* p)
 {
 this = p; // error: this is immutable
 // . . .
 }
};

17.10.1 More link use
Having dealt with the implementation issues, we can see how the use now looks:

Link* norse_gods = new Link{"Thor"};
norse_gods = norse_gods–>insert(new Link{"Odin"});
norse_gods = norse_gods–>insert(new Link{"Zeus"});
norse_gods = norse_gods–>insert(new Link{"Freia"});

Link* greek_gods = new Link{"Hera"};
greek_gods = greek_gods–>insert(new Link{"Athena"});
greek_gods = greek_gods–>insert(new Link{"Mars"});
greek_gods = greek_gods–>insert(new Link{"Poseidon"});

Stroustrup_book.indb 620Stroustrup_book.indb 620 4/22/14 9:42 AM4/22/14 9:42 AM

17.10 THE THIS POINTER 621

That’s very much like before. As before, we correct our “mistakes.” Correct the
name of the god of war:

Link* p = greek_gods–>find("Mars");
if (p) p–>value = "Ares";

Move Zeus into his correct Pantheon:

Link* p2 = norse_gods–>find("Zeus");
if (p2) {
 if (p2==norse_gods) norse_gods = p2–>next();
 p2–>erase();
 greek_gods = greek_gods–>insert(p2);
}

Finally, let’s print out those lists:

void print_all(Link* p)
{
 cout << "{ ";
 while (p) {
 cout << p–>value;
 if (p=p–>next()) cout << ", ";
 }
 cout << " }";
}

print_all(norse_gods);
cout<<"\n";

print_all(greek_gods);
cout<<"\n";

This should again give

{ Freia, Odin, Thor }
{ Zeus, Poseidon, Ares, Athena, Hera }

So, which version do you like better: the one where insert(), etc. are member func-
tions or the one where they are freestanding functions? In this case the differences
don’t matter much, but see §9.7.5.

Stroustrup_book.indb 621Stroustrup_book.indb 621 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE622

One thing to observe here is that we still don’t have a list class, only a link
class. That forces us to keep worrying about which pointer is the pointer to the
first element. We can do better than that — by defining a class List — but designs
along the lines presented here are very common. The standard library list is pre-
sented in §20.4.

Drill
This drill has two parts. The fi rst exercises/builds your understanding of free-
store-allocated arrays and contrasts arrays with vectors:

 1. Allocate an array of ten ints on the free store using new.
 2. Print the values of the ten ints to cout.
 3. Deallocate the array (using delete[]).
 4. Write a function print_array10(ostream& os, int* a) that prints out the

values of a (assumed to have ten elements) to os.
 5. Allocate an array of ten ints on the free store; initialize it with the values

100, 101, 102, etc.; and print out its values.
 6. Allocate an array of 11 ints on the free store; initialize it with the values

100, 101, 102, etc.; and print out its values.
 7. Write a function print_array(ostream& os, int* a, int n) that prints out the

values of a (assumed to have n elements) to os.
 8. Allocate an array of 20 ints on the free store; initialize it with the values

100, 101, 102, etc.; and print out its values.
 9. Did you remember to delete the arrays? (If not, do it.)
 10. Do 5, 6, and 8 using a vector instead of an array and a print_vector()

instead of print_array().

The second part focuses on pointers and their relation to arrays. Using print_array()
from the last drill:

 1. Allocate an int, initialize it to 7, and assign its address to a variable p1.
 2. Print out the value of p1 and of the int it points to.
 3. Allocate an array of seven ints; initialize it to 1, 2, 4, 8, etc.; and assign its

address to a variable p2.
 4. Print out the value of p2 and of the array it points to.
 5. Declare an int* called p3 and initialize it with p2.
 6. Assign p1 to p2.
 7. Assign p3 to p2.
 8. Print out the values of p1 and p2 and of what they point to.
 9. Deallocate all the memory you allocated from the free store.

Stroustrup_book.indb 622Stroustrup_book.indb 622 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 TERMS 623

 10. Allocate an array of ten ints; initialize it to 1, 2, 4, 8, etc.; and assign its
address to a variable p1.

 11. Allocate an array of ten ints, and assign its address to a variable p2.
 12. Copy the values from the array pointed to by p1 into the array pointed to

by p2.
 13. Repeat 10–12 using a vector rather than an array.

Review
 1. Why do we need data structures with varying numbers of elements?
 2. What four kinds of storage do we have for a typical program?
 3. What is the free store? What other name is commonly used for it? What

operators support it?
 4. What is a dereference operator and why do we need one?
 5. What is an address? How are memory addresses manipulated in C++?
 6. What information about a pointed-to object does a pointer have? What

useful information does it lack?
 7. What can a pointer point to?
 8. What is a leak?
 9. What is a resource?
 10. How can we initialize a pointer?
 11. What is a null pointer? When do we need to use one?
 12. When do we need a pointer (instead of a reference or a named object)?
 13. What is a destructor? When do we want one?
 14. When do we want a virtual destructor?
 15. How are destructors for members called?
 16. What is a cast? When do we need to use one?
 17. How do we access a member of a class through a pointer?
 18. What is a doubly-linked list?
 19. What is this and when do we need to use it?

Terms
address
address of: &
allocation
cast
container
contents of: *
deallocation
delete
delete[]
dereference

destructor
free store
link
list
member access: –>
member destructor
memory
memory leak
new
null pointer

nullptr
pointer
range
resource leak
subscripting
subscript: []
this
type conversion
virtual destructor
void*

Stroustrup_book.indb 623Stroustrup_book.indb 623 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 • VECTOR AND FREE STORE624

Exercises
 1. What is the output format of pointer values on your implementation?

Hint: Don’t read the documentation.
 2. How many bytes are there in an int? In a double? In a bool? Do not use

sizeof except to verify your answer.
 3. Write a function, void to_lower(char* s), that replaces all uppercase char-

acters in the C-style string s with their lowercase equivalents. For ex-
ample, Hello, World! becomes hello, world!. Do not use any standard
library functions. A C-style string is a zero-terminated array of characters,
so if you find a char with the value 0 you are at the end.

 4. Write a function, char* strdup(const char*), that copies a C-style string
into memory it allocates on the free store. Do not use any standard library
functions.

 5. Write a function, char* findx(const char* s, const char* x), that finds the
first occurrence of the C-style string x in s.

 6. This chapter does not say what happens when you run out of memory
using new. That’s called memory exhaustion. Find out what happens. You have
two obvious alternatives: look for documentation, or write a program with
an infinite loop that allocates but never deallocates. Try both. Approxi-
mately how much memory did you manage to allocate before failing?

 7. Write a program that reads characters from cin into an array that you
allocate on the free store. Read individual characters until an exclamation
mark (!) is entered. Do not use a std::string. Do not worry about mem-
ory exhaustion.

 8. Do exercise 7 again, but this time read into a std::string rather than to
memory you put on the free store (string knows how to use the free store
for you).

 9. Which way does the stack grow: up (toward higher addresses) or down (to-
ward lower addresses)? Which way does the free store initially grow (that
is, before you use delete)? Write a program to determine the answers.

 10. Look at your solution of exercise 7. Is there any way that input could
get the array to overflow; that is, is there any way you could enter more
characters than you allocated space for (a serious error)? Does anything
reasonable happen if you try to enter more characters than you allocated?

 11. Complete the “list of gods” example from §17.10.1 and run it.
 12. Why did we define two versions of find()?
 13. Modify the Link class from §17.10.1 to hold a value of a struct God.

struct God should have members of type string: name, mythology, ve-
hicle, and weapon. For example, God{"Zeus", "Greek", "", "lightning"}
and God{"Odin", "Norse", "Eight-legged flying horse called Sleipner",
"Spear called Gungnir"}. Write a print_all() function that lists gods with

Stroustrup_book.indb 624Stroustrup_book.indb 624 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 17 POSTSCRIPT 625

their attributes one per line. Add a member function add_ordered() that
places its new element in its correct lexicographical position. Using the
Links with the values of type God, make a list of gods from three mythol-
ogies; then move the elements (gods) from that list to three lexicographi-
cally ordered lists — one for each mythology.

 14. Could the “list of gods” example from §17.10.1 have been written using a
singly-linked list; that is, could we have left the prev member out of Link?
Why might we want to do that? For what kind of examples would it make
sense to use a singly-linked list? Re-implement that example using only a
singly-linked list.

Postscript
Why bother with messy low-level stuff like pointers and free store when we can
simply use vector? Well, one answer is that someone has to design and implement
vector and similar abstractions, and we’d like to know how that’s done. There are
programming languages that don’t provide facilities equivalent to pointers and
thus dodge the problems with low-level programming. Basically, programmers of
such languages delegate the tasks that involve direct access to hardware to C++
programmers (and programmers of other languages suitable for low-level pro-
gramming). Our favorite reason, however, is simply that you can’t really claim to
understand computers and programming until you have seen how software meets
hardware. People who don’t know about pointers, memory addresses, etc. often
have the strangest ideas of how their programming language facilities work; such
wrong ideas can lead to code that’s “interestingly poor.”

Stroustrup_book.indb 625Stroustrup_book.indb 625 4/22/14 9:42 AM4/22/14 9:42 AM

Stroustrup_book.indb 626Stroustrup_book.indb 626 4/22/14 9:42 AM4/22/14 9:42 AM

627

18

Vectors and Arrays

“Caveat emptor!”

—Good advice

This chapter describes how vectors are copied and accessed

through subscripting. To do that, we discuss copying in

general and consider vector’s relation to the lower-level notion of

arrays. We present arrays’ relation to pointers and consider the

problems arising from their use. We also present the five essential

operations that must be considered for every type: construction,

default construction, copy construction, copy assignment, and

destruction. In addition, a container needs a move constructor

and a move assignment.

Stroustrup_book.indb 627Stroustrup_book.indb 627 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS628

18.1 Introduction
To get into the air, a plane has to accelerate along the runway until it moves fast
enough to “jump” into the air. While the plane is lumbering along the runway,
it is little more than a particularly heavy and awkward truck. Once in the air, it
soars to become an altogether different, elegant, and efficient vehicle. It is in its
true element.

In this chapter, we are in the middle of a “run” to gather enough program-
ming language features and techniques to get away from the constraints and dif-
ficulties of plain computer memory. We want to get to the point where we can
program using types that provide exactly the properties we want based on logical
needs. To “get there” we have to overcome a number of fundamental constraints
related to access to the bare machine, such as the following:

• An object in memory is of fi xed size.
• An object in memory is in one specifi c place.
• The computer provides only a few fundamental operations on such ob-

jects (such as copying a word, adding the values from two words, etc.).

Basically, those are the constraints on the built-in types and operations of C++ (as
inherited through C from hardware; see §22.2.5 and Chapter 27). In Chapter 17,
we saw the beginnings of a vector type that controls all access to its elements and
provides us with operations that seem “natural” from the point of view of a user,
rather than from the point of view of hardware.

This chapter focuses on the notion of copying. This is an important but rather
technical point: What do we mean by copying a nontrivial object? To what extent

 18.1 Introduction

 18.2 Initialization

 18.3 Copying
 18.3.1 Copy constructors
 18.3.2 Copy assignments
 18.3.3 Copy terminology
 18.3.4 Moving

 18.4 Essential operations
 18.4.1 Explicit constructors
 18.4.2 Debugging constructors and

destructors

 18.5 Access to vector elements
 18.5.1 Overloading on const

 18.6 Arrays
 18.6.1 Pointers to array elements
 18.6.2 Pointers and arrays
 18.6.3 Array initialization
 18.6.4 Pointer problems

 18.7 Examples: palindrome
 18.7.1 Palindromes using string
 18.7.2 Palindromes using arrays
 18.7.3 Palindromes using pointers

Stroustrup_book.indb 628Stroustrup_book.indb 628 4/22/14 9:42 AM4/22/14 9:42 AM

18.2 INITIALIZATION 629

are the copies independent after a copy operation? What copy operations are
there? How do we specify them? And how do they relate to other fundamental
operations, such as initialization and cleanup?

Inevitably, we get to discuss how memory is manipulated when we don’t
have higher-level types such as vector and string. We examine arrays and point-
ers, their relationship, their use, and the traps and pitfalls of their use. This is
essential information to anyone who gets to work with low-level uses of C++
or C code.

Please note that the details of vector are peculiar to vectors and the C++
ways of building new higher-level types from lower-level ones. However, every
“higher-level” type (string, vector, list, map, etc.) in every language is somehow
built from the same machine primitives and reflects a variety of resolutions to the
fundamental problems described here.

18.2 Initialization
Consider our vector as it was at the end of Chapter 17:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, elem{new double[s]} { /* . . . */ } // allocates memory
 ~vector() // destructor
 { delete[] elem; } // deallocates memory
 // . . .
};

That’s fine, but what if we want to initialize a vector to a set of values that are not
defaults? For example:

vector v1 = {1.2, 7.89, 12.34 };

We can do that, and it is much better than initializing to default values and then
assigning the values we really want:

vector v2(2); // tedious and error-prone
v2[0] = 1.2;
v2[1] = 7.89;
v2[2] = 12.34;

Stroustrup_book.indb 629Stroustrup_book.indb 629 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS630

Compared to v1, the “initialization” of v2 is tedious and error-prone (we delib-
erately got the number of elements wrong in that code fragment). Using push_
back() can save us from mentioning the size:

vector v3; // tedious and repetitive
v2.push_back(1.2);
v2.push_back(7.89);
v2.push_back(12.34);

But this is still repetitive, so how do we write a constructor that accepts an initial-
izer list as its argument? A { }-delimited list of elements of type T is presented to
the programmer as an object of the standard library type initializer_list<T>, a list
of Ts, so we can write

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor (s is the element count)
 :sz{s}, elem{new double[sz]} // uninitialized memory for elements
 {
 for (int i = 0; i<sz; ++i) elem[i] = 0.0; // initialize
 }

 vector(initializer_list<double> lst) // initializer-list constructor
 :sz{lst.size()}, elem{new double[sz]} // uninitialized memory
 // for elements
 {
 copy(lst.begin(),lst.end(),elem); // initialize (using std::copy(); §B.5.2)
 }
 // . . .
};

We used the standard library copy algorithm (§B.5.2). It copies a sequence of ele-
ments specified by its first two arguments (here, the beginning and the end of the
initializer_list) to a sequence of elements starting with its third argument (here,
the vector’s elements starting at elem).

Now we can write

vector v1 = {1,2,3}; // three elements 1.0, 2.0, 3.0
vector v2(3); // three elements each with the (default) value 0.0

Stroustrup_book.indb 630Stroustrup_book.indb 630 4/22/14 9:42 AM4/22/14 9:42 AM

18.3 COPYING 631

Note how we use () for an element count and { } for element lists. We need a
notation to distinguish them. For example:

vector v1 {3}; // one element with the value 3.0
vector v2(3); // three elements each with the (default) value 0.0

This is not very elegant, but it is effective. If there is a choice, the compiler will in-
terpret a value in a { } list as an element value and pass it to the initializer-list con-
structor as an element of an initializer_list.

In most cases — including all cases we will encounter in this book — the =
before an { } initializer list is optional, so we can write

vector v11 = {1,2,3}; // three elements 1.0, 2.0, 3.0
vector v12 {1,2,3}; // three elements 1.0, 2.0, 3.0

The difference is purely one of style.
Note that we pass initializer_list<double> by value. That was deliberate and

required by the language rules: an initializer_list is simply a handle to elements
allocated “elsewhere” (see §B.6.4).

18.3 Copying
Consider again our incomplete vector:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 vector(int s) // constructor
 :sz{s}, elem{new double[s]} { /* . . . */ } // allocates memory
 ~vector() // destructor
 { delete[] elem; } // deallocates memory
 // . . .
};

Let’s try to copy one of these vectors:

void f(int n)
{
 vector v(3); // define a vector of 3 elements
 v.set(2,2.2); // set v[2] to 2.2

Stroustrup_book.indb 631Stroustrup_book.indb 631 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS632

 vector v2 = v; // what happens here?
 // . . .
}

Ideally, v2 becomes a copy of v (that is, = makes copies); that is, v2.size()==v.size()
and v2[i]==v[i] for all is in the range [0:v.size()). Furthermore, all memory is re-
turned to the free store upon exit from f(). That’s what the standard library vector
does (of course), but it’s not what happens for our still-far-too-simple vector. Our
task is to improve our vector to get it to handle such examples correctly, but first
let’s figure out what our current version actually does. Exactly what does it do
wrong? How? And why? Once we know that, we can probably fix the problems.
More importantly, we have a chance to recognize and avoid similar problems
when we see them in other contexts.

The default meaning of copying for a class is “Copy all the data members.”
That often makes perfect sense. For example, we copy a Point by copying its co-
ordinates. But for a pointer member, just copying the members causes problems.
In particular, for the vectors in our example, it means that after the copy, we have
v.sz==v2.sz and v.elem==v2.elem so that our vectors look like this:

3 2.2 v:

3 v2:

0.00.0

That is, v2 doesn’t have a copy of v’s elements; it shares v’s elements. We could
write

v.set(1,99); // set v[1] to 99
v2.set(0,88); // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

The result would be the output 88 99. That wasn’t what we wanted. Had there
been no “hidden” connection between v and v2, we would have gotten the output
0 0, because we never wrote to v[0] or to v2[1]. You could argue that the behavior
we got is “interesting,” “neat!” or “sometimes useful,” but that is not what we
intended or what the standard library vector provides. Also, what happens when
we return from f() is an unmitigated disaster. Then, the destructors for v and v2
are implicitly called; v’s destructor frees the storage used for the elements using

delete[] elem;

and so does v2’s destructor. Since elem points to the same memory location in both
v and v2, that memory will be freed twice with likely disastrous results (§17.4.6).

Stroustrup_book.indb 632Stroustrup_book.indb 632 4/22/14 9:42 AM4/22/14 9:42 AM

18.3 COPYING 633

18.3.1 Copy constructors
So, what do we do? We’ll do the obvious: provide a copy operation that copies
the elements and make sure that this copy operation gets called when we initialize
one vector with another.

Initialization of objects of a class is done by a constructor. So, we need a con-
structor that copies. Unsurprisingly, such a constructor is called a copy constructor.
It is defined to take as its argument a reference to the object from which to copy.
So, for class vector we need

vector(const vector&);

This constructor will be called when we try to initialize one vector with another.
We pass by reference because we (obviously) don’t want to copy the argument of
the constructor that defines copying. We pass by const reference because we don’t
want to modify our argument (§8.5.6). So we refine vector like this:

class vector {
 int sz;
 double* elem;
public:
 vector(const vector&) ; // copy constructor: define copy
 // . . .
};

The copy constructor sets the number of elements (sz) and allocates memory for
the elements (initializing elem) before copying element values from the argument
vector:

vector:: vector(const vector& arg)
// allocate elements, then initialize them by copying
 :sz{arg.sz}, elem{new double[arg.sz]}
{
 copy(arg,arg+sz,elem); // std::copy(); see §B.5.2
}

Given this copy constructor, consider again our example:

vector v2 = v;

This definition will initialize v2 by a call of vector’s copy constructor with v as its
argument. Again given a vector with three elements, we now get

3 2.2v:

3 2.2v2:

Stroustrup_book.indb 633Stroustrup_book.indb 633 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS634

Given that, the destructor can do the right thing. Each set of elements is correctly
freed. Obviously, the two vectors are now independent so that we can change the
value of elements in v without affecting v2 and vice versa. For example:

v.set(1,99); // set v[1] to 99
v2.set(0,88); // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

This will output 0 0.
Instead of saying

vector v2 = v;

we could equally well have said

vector v2 {v};

When v (the initializer) and v2 (the variable being initialized) are of the same type
and that type has copying conventionally defined, those two notations mean ex-
actly the same thing and you can use whichever notation you like better.

18.3.2 Copy assignments
We handle copy construction (initialization), but we can also copy vectors by as-
signment. As with copy initialization, the default meaning of copy assignment is
memberwise copy, so with vector as defined so far, assignment will cause a double
deletion (exactly as shown for copy constructors in §18.3.1) plus a memory leak.
For example:

void f2(int n)
{
 vector v(3); // define a vector
 v.set(2,2.2);
 vector v2(4);
 v2 = v; // assignment: what happens here?
 // . . .
}

We would like v2 to be a copy of v (and that’s what the standard library vector
does), but since we have said nothing about the meaning of assignment of our
vector, the default assignment is used; that is, the assignment is a memberwise
copy so that v2’s sz and elem become identical to v’s sz and elem, respectively.
We can illustrate that like this:

Stroustrup_book.indb 634Stroustrup_book.indb 634 4/22/14 9:42 AM4/22/14 9:42 AM

18.3 COPYING 635

3 2.2v:
2nd

1st

3v2:

When we leave f2(), we have the same disaster as we had when leaving f() in §18.3
before we added the copy constructor: the elements pointed to by both v and v2
are freed twice (using delete[]). In addition, we have leaked the memory initially
allocated for v2’s four elements. We “forgot” to free those. The remedy for this
copy assignment is fundamentally the same as for the copy initialization (§18.3.1).
We define an assignment that copies properly:

class vector {
 int sz;
 double* elem;
public:
 vector& operator=(const vector&) ; // copy assignment
 // . . .
};

vector& vector::operator=(const vector& a)
 // make this vector a copy of a
{
 double* p = new double[a.sz]; // allocate new space
 copy(a.elem,a.elem+a.sz,elem); // copy elements
 delete[] elem; // deallocate old space
 elem = p; // now we can reset elem
 sz = a.sz;
 return *this; // return a self-reference (see §17.10)
}

Assignment is a bit more complicated than construction because we must deal
with the old elements. Our basic strategy is to make a copy of the elements from
the source vector:

 double* p = new double[a.sz]; // allocate new space
 copy(a.elem,a.elem+a.sz,elem); // copy elements

Then we free the old elements from the target vector:

delete[] elem; // deallocate old space

Stroustrup_book.indb 635Stroustrup_book.indb 635 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS636

Finally, we let elem point to the new elements:

elem = p; // now we can reset elem
sz = a.sz;

We can represent the result graphically like this:

3 2.2

2.2

v:
Given back to
the free store by
delete[]

2nd

1st

3v2:

We now have a vector that doesn’t leak memory and doesn’t free (delete[]) any
memory twice.

When implementing the assignment, you could consider simplifying the code
by freeing the memory for the old elements before creating the copy, but it is usu-
ally a very good idea not to throw away information before you know that you
can replace it. Also, if you did that, strange things would happen if you assigned
a vector to itself:

vector v(10);
 v = v; // self-assignment

Please check that our implementation handles that case correctly (if not with op-
timal efficiency).

18.3.3 Copy terminology
Copying is an issue in most programs and in most programming languages. The
basic issue is whether you copy a pointer (or reference) or copy the information
pointed to (referred to):

• Shallow copy copies only a pointer so that the two pointers now refer to the
same object. That’s what pointers and references do.

• Deep copy copies what a pointer points to so that the two pointers now refer
to distinct objects. That’s what vectors, strings, etc. do. We defi ne copy
constructors and copy assignments when we want deep copy for objects
of our classes.

Here is an example of shallow copy:

Stroustrup_book.indb 636Stroustrup_book.indb 636 4/22/14 9:42 AM4/22/14 9:42 AM

18.3 COPYING 637

int* p = new int{77};
int* q = p; // copy the pointer p
*p = 88; // change the value of the int pointed to by p and q

We can illustrate that like this:

p: q:
(copy of p)

88

In contrast, we can do a deep copy:

int* p = new int{77};
int* q = new int{*p}; // allocate a new int, then copy the value pointed to by p
*p = 88; // change the value of the int pointed to by p

We can illustrate that like this:

p: q:

88 77

Using this terminology, we can say that the problem with our original vector was
that it did a shallow copy, rather than copying the elements pointed to by its elem
pointer. Our improved vector, like the standard library vector, does a deep copy
by allocating new space for the elements and copying their values. Types that
provide shallow copy (like pointers and references) are said to have pointer seman-
tics or reference semantics (they copy addresses). Types that provide deep copy (like
string and vector) are said to have value semantics (they copy the values pointed to).
From a user perspective, types with value semantics behave as if no pointers were
involved — just values that can be copied. One way of thinking of types with value
semantics is that they “work just like integers” as far as copying is concerned.

18.3.4 Moving
If a vector has a lot of elements, it can be expensive to copy. So, we should copy
vectors only when we need to. Consider an example:

vector fill(istream& is)
{

Stroustrup_book.indb 637Stroustrup_book.indb 637 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS638

 vector res;
 for (double x; is>>x;) res.push_back(x);
 return res;
}

void use()
{
 vector vec = fill(cin);
 // … use vec …
}

Here, we fill the local vector res from the input stream and return it to use().
Copying res out of fill() and into vec could be expensive. But why copy? We don’t
want a copy! We can never use the original (res) after the return. In fact, res is de-
stroyed as part of the return from fill(). So how can we avoid the copy? Consider
again how a vector is represented in memory:

res:

elements

100000

We would like to “steal” the representation of res to use for vec. In other words,
we would like vec to refer to the elements of res without any copy.

After moving res’s element pointer and element count to vec, res holds no
elements. We have successfully moved the value from res out of fill() to vec. Now,
res can be destroyed (simply and efficiently) without any undesirable side effects:

We have successfully moved 100,000 doubles out of fill() and into its caller at the
cost of four single-word assignments.

How do we express such a move in C++ code? We define move operations
to complement the copy operations:

class vector {
 int sz;
 double* elem;

Stroustrup_book.indb 638Stroustrup_book.indb 638 4/22/14 9:42 AM4/22/14 9:42 AM

18.3 COPYING 639

public:
 vector(vector&& a); // move constructor
 vector& operator=(vector&&); // move assignment
 // . . .
 };

The funny && notation is called an “rvalue reference.” We use it for defining
move operations. Note that move operations do not take const arguments; that
is, we write (vector&&) and not (const vector&&). Part of the purpose of a move
operation is to modify the source, to make it “empty.” The definitions of move
operations tend to be simple. They tend to be simpler and more efficient than
their copy equivalents. For vector, we get

vector::vector(vector&& a)
 :sz{a.sz}, elem{a.elem} // copy a’s elem and sz
{
 a.sz = 0; // make a the empty vector
 a.elem = nullptr;
}

vector& vector::operator=(vector&& a) // move a to this vector
{
 delete[] elem; // deallocate old space
 elem = a.elem; // copy a’s elem and sz
 sz = a.sz;
 a.elem = nullptr; // make a the empty vector
 a.sz = 0;
 return *this; // return a self-reference (see §17.10)
}

By defining a move constructor, we make it easy and cheap to move around large
amounts of information, such as a vector with many elements. Consider again:

vector fill(istream& is)
{
 vector res;
 for (double x; is>>x;) res.push_back(x);
 return res;
}

The move constructor is implicitly used to implement the return. The compiler
knows that the local value returned (res) is about to go out of scope, so it can
move from it, rather than copying.

Stroustrup_book.indb 639Stroustrup_book.indb 639 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS640

The importance of move constructors is that we do not have to deal with
pointers or references to get large amounts of information out of a function. Con-
sider this flawed (but conventional) alternative:

vector* fill2(istream& is)
{
 vector* res = new vector;
 for (double x; is>>x;) res->push_back(x);
 return res;
}

void use2()
{
 vector* vec = fill(cin);
 // … use vec …
 delete vec;
}

Now we have to remember to delete the vector. As described in §17.4.6, deleting
objects placed on the free store is not as easy to do consistently and correctly as
it might seem.

18.4 Essential operations
We have now reached the point where we can discuss how to decide which con-
structors a class should have, whether it should have a destructor, and whether
you need to provide copy and move operations. There are seven essential opera-
tions to consider:

• Constructors from one or more arguments
• Default constructor
• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

Usually we need one or more constructors that take arguments needed to initial-
ize an object. For example:

Stroustrup_book.indb 640Stroustrup_book.indb 640 4/22/14 9:42 AM4/22/14 9:42 AM

18.4 ESSENTIAL OPERATIONS 641

string s {"cat.jpg"}; // initialize s to the character string “cat.jpg”
Image ii {Point{200,300},"cat.jpg"}; // initialize a Point with the

// coordinates{200,300},
 // then display the contents of file

// cat.jpg at that Point

The meaning/use of an initializer is completely up to the constructor. The stan-
dard string’s constructor uses a character string as an initial value, whereas Im-
age’s constructor uses the string as the name of a file to open. Usually we use a
constructor to establish an invariant (§9.4.3). If we can’t define a good invariant
for a class that its constructors can establish, we probably have a poorly designed
class or a plain data structure.

Constructors that take arguments are as varied as the classes they serve. The
remaining operations have more regular patterns.

How do we know if a class needs a default constructor? We need a default
constructor if we want to be able to make objects of the class without specifying
an initializer. The most common example is when we want to put objects of a class
into a standard library vector. The following works only because we have default
values for int, string, and vector<int>:

vector<double> vi(10); // vector of 10 doubles, each initialized to 0.0
vector<string> vs(10); // vector of 10 strings, each initialized to “”
vector<vector<int>> vvi(10); // vector of 10 vectors, each initialized to vector{}

So, having a default constructor is often useful. The question then becomes:
“When does it make sense to have a default constructor?” An answer is: “When
we can establish the invariant for the class with a meaningful and obvious default
value.” For value types, such as int and double, the obvious value is 0 (for double,
that becomes 0.0). For string, the empty string, "", is the obvious choice. For
 vector, the empty vector serves well. For every type T, T{} is the default value, if
a default exists. For example, double{} is 0.0, string{} is "", and vector<int>{} is
the empty vector of ints.

A class needs a destructor if it acquires resources. A resource is something
you “get from somewhere” and that you must give back once you have finished
using it. The obvious example is memory that you get from the free store (using
new) and have to give back to the free store (using delete or delete[]). Our vec-
tor acquires memory to hold its elements, so it has to give that memory back;
therefore, it needs a destructor. Other resources that you might encounter as your
programs increase in ambition and sophistication are files (if you open one, you
also have to close it), locks, thread handles, and sockets (for communication with
processes and remote computers).

Stroustrup_book.indb 641Stroustrup_book.indb 641 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS642

Another sign that a class needs a destructor is simply that it has members that
are pointers or references. If a class has a pointer or a reference member, it often
needs a destructor and copy operations.

A class that needs a destructor almost always also needs a copy constructor
and a copy assignment. The reason is simply that if an object has acquired a
resource (and has a pointer member pointing to it), the default meaning of copy
(shallow, memberwise copy) is almost certainly wrong. Again, vector is the clas-
sic example.

Similarly, a class that needs a destructor almost always also needs a move
constructor and a move assignment. The reason is simply that if an object has ac-
quired a resource (and has a pointer member pointing to it), the default meaning
of copy (shallow, memberwise copy) is almost certainly wrong and the usual rem-
edy (copy operations that duplicate the complete object state) can be expensive.
Again, vector is the classic example.

In addition, a base class for which a derived class may have a destructor needs
a virtual destructor (§17.5.2).

18.4.1 Explicit constructors
A constructor that takes a single argument defines a conversion from its argument
type to its class. This can be most useful. For example:

class complex {
public:
 complex(double); // defines double-to-complex conversion
 complex(double,double);
 // . . .
};

complex z1 = 3.14; // OK: convert 3.14 to (3.14,0)
complex z2 = complex{1.2, 3.4};

However, implicit conversions should be used sparingly and with caution, be-
cause they can cause unexpected and undesirable effects. For example, our vector,
as defined so far, has a constructor that takes an int. This implies that it defines a
conversion from int to vector. For example:

class vector {
 // . . .
 vector(int);
 // . . .
};

Stroustrup_book.indb 642Stroustrup_book.indb 642 4/22/14 9:42 AM4/22/14 9:42 AM

18.4 ESSENTIAL OPERATIONS 643

vector v = 10; // odd: makes a vector of 10 doubles
v = 20; // eh? Assigns a new vector of 20 doubles to v

void f(const vector&);
f(10); // eh? Calls f with a new vector of 10 doubles

It seems we are getting more than we have bargained for. Fortunately, it is simple
to suppress this use of a constructor as an implicit conversion. A constructor-
defined explicit provides only the usual construction semantics and not the im-
plicit conversions. For example:

class vector {
 // . . .
 explicit vector(int);
 // . . .
};

vector v = 10; // error: no int-to-vector conversion
v = 20; // error: no int-to-vector conversion
vector v0(10); // OK

void f(const vector&);
f(10); // error: no int-to-vector<double> conversion
f(vector(10)); // OK

To avoid surprising conversions, we — and the standard — define vector’s single-
argument constructors to be explicit. It’s a pity that constructors are not explicit
by default; if in doubt, make any constructor that can be invoked with a single
argument explicit.

18.4.2 Debugging constructors and destructors
Constructors and destructors are invoked at well-defined and predictable points
of a program’s execution. However, we don’t always write explicit calls, such as
vector(2); rather we do something, such as declaring a vector, passing a vector
as a by-value argument, or creating a vector on the free store using new. This
can cause confusion for people who think in terms of syntax. There is not just a
single syntax that triggers a constructor. It is simpler to think of constructors and
destructors this way:

• Whenever an object of type X is created, one of X’s constructors is invoked.
• Whenever an object of type X is destroyed, X’s destructor is invoked.

Stroustrup_book.indb 643Stroustrup_book.indb 643 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS644

A destructor is called whenever an object of its class is destroyed; that happens
when names go out of scope, the program terminates, or delete is used on a
pointer to an object. A constructor (some appropriate constructor) is invoked
whenever an object of its class is created; that happens when a variable is initial-
ized, when an object is created using new (except for built-in types), and whenever
an object is copied.

But when does that happen? A good way to get a feel for that is to add print
statements to constructors, assignment operations, and destructors and then just
try. For example:

struct X { // simple test class
 int val;

 void out(const string& s, int nv)
 { cerr << this << "–>" << s << ": " << val << " (" << nv << ")\n"; }

 X(){ out("X()",0); val=0; } // default constructor
 X(int v) { val=v; out("X(int)",v); }
 X(const X& x){ val=x.val; out("X(X&) ",x.val); } // copy constructor
 X& operator=(const X& a) // copy assignment
 { out("X::operator=()",a.val); val=a.val; return *this; }
 ~X() { out("~X()",0); } // destructor
};

Anything we do with this X will leave a trace that we can study. For example:

X glob(2); // a global variable

X copy(X a) { return a; }

X copy2(X a) { X aa = a; return aa; }

X& ref_to(X& a) { return a; }

X* make(int i) { X a(i); return new X(a); }

struct XX { X a; X b; };

int main()
{
 X loc {4}; // local variable
 X loc2 {loc}; // copy construction

Stroustrup_book.indb 644Stroustrup_book.indb 644 4/22/14 9:42 AM4/22/14 9:42 AM

18.4 ESSENTIAL OPERATIONS 645

 loc = X{5}; // copy assignment
 loc2 = copy(loc); // call by value and return
 loc2 = copy2(loc);
 X loc3 {6};
 X& r = ref_to(loc); // call by reference and return
 delete make(7);
 delete make(8);
 vector<X> v(4); // default values
 XX loc4;
 X* p = new X{9}; // an X on the free store
 delete p;
 X* pp = new X[5]; // an array of Xs on the free store
 delete[] pp;
}

Try executing that.

TRY THIS

We really mean it: do run this example and make sure you understand the
result. If you do, you’ll understand most of what there is to know about
construction and destruction of objects.

Depending on the quality of your compiler, you may note some “missing
copies” relating to our calls of copy() and copy2(). We (humans) can see that those
functions do nothing: they just copy a value unmodified from input to output. If
a compiler is smart enough to notice that, it is allowed to eliminate the calls to the
copy constructor. In other words, a compiler is allowed to assume that a copy con-
structor copies and does nothing but copy. Some compilers are smart enough to
eliminate many spurious copies. However, compilers are not guaranteed to be that
smart, so if you want portable performance, consider move operations (§18.3.4).

Now consider: Why should we bother with this “silly class X”? It’s a bit like
the finger exercises that musicians have to do. After doing them, other things —
things that matter — become easier. Also, if you have problems with constructors
and destructors, you can insert such print statements in constructors for your real
classes to see that they work as intended. For larger programs, this exact kind
of tracing becomes tedious, but similar techniques apply. For example, you can
determine whether you have a memory leak by seeing if the number of construc-
tions minus the number of destructions equals zero. Forgetting to define copy con-
structors and copy assignments for classes that allocate memory or hold pointers
to objects is a common — and easily avoidable — source of problems.

T

Stroustrup_book.indb 645Stroustrup_book.indb 645 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS646

If your problems get too big to handle by such simple means, you will have
learned enough to be able to start using the professional tools for finding such
problems; they are often referred to as “leak detectors.” The ideal, of course, is not
to leak memory by using techniques that avoid such leaks.

18.5 Access to vector elements
So far (§17.6), we have used set() and get() member functions to access elements.
Such uses are verbose and ugly. We want our usual subscript notation: v[i]. The
way to get that is to define a member function called operator[] . Here is our first
(naive) try:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements
public:
 // . . .
 double operator[](int n) { return elem[n]; } // return element
};

That looks good and especially it looks simple, but unfortunately it is too simple.
Letting the subscript operator (operator[]()) return a value enables reading but
not writing of elements:

vector v(10);
double x = v[2]; // fine
v[3] = x; // error: v[3] is not an lvalue

Here, v[i] is interpreted as a call v.operator[](i), and that call returns the value of
v’s element number i. For this overly naive vector, v[3] is a floating-point value,
not a floating-point variable.

TRY THIS

Make a version of this vector that is complete enough to compile and see
what error message your compiler produces for v[3]=x;.

Our next try is to let operator[] return a pointer to the appropriate element:

class vector {
 int sz; // the size
 double* elem; // a pointer to the elements

T

Stroustrup_book.indb 646Stroustrup_book.indb 646 4/22/14 9:42 AM4/22/14 9:42 AM

18.5 ACCESS TO VECTOR ELEMENTS 647

public:
 // . . .
 double* operator[](int n) { return &elem[n]; } // return pointer
};

Given that definition, we can write

vector v(10);
for (int i=0; i<v.size(); ++i) { // works, but still too ugly
 *v[i] = i;
 cout << *v[i];
}

Here, v[i] is interpreted as a call v.operator[](i), and that call returns a pointer to
v’s element number i. The problem is that we have to write * to dereference that
pointer to get to the element. That’s almost as bad as having to write set() and
get(). Returning a reference from the subscript operator solves this problem:

class vector {
 // . . .
 double& operator[](int n) { return elem[n]; } // return reference
};

Now we can write

vector v(10);
for (int i=0; i<v.size(); ++i) { // works!
 v[i] = i; // v[i] returns a reference element i
 cout << v[i];
}

We have achieved the conventional notation: v[i] is interpreted as a call v.operator[]
(i), and that returns a reference to v’s element number i.

18.5.1 Overloading on const
The operator[]() defined so far has a problem: it cannot be invoked for a const
vector. For example:

void f(const vector& cv)
{
 double d = cv[1]; // error, but should be fine
 cv[1] = 2.0; // error (as it should be)
}

Stroustrup_book.indb 647Stroustrup_book.indb 647 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS648

The reason is that our vector::operator[]() could potentially change a vector. It
doesn’t, but the compiler doesn’t know that because we “forgot” to tell it. The
solution is to provide a version that is a const member function (see §9.7.4). That’s
easily done:

class vector {
 // . . .
 double& operator[](int n); // for non-const vectors
 double operator[](int n) const; // for const vectors
};

We obviously couldn’t return a double& from the const version, so we re-
turned a double value. We could equally well have returned a const double&, but
since a double is a small object there would be no point in returning a reference
(§8.5.6), so we decided to pass it back by value. We can now write

void ff(const vector& cv, vector& v)
{
 double d = cv[1]; // fine (uses the const [])
 cv[1] = 2.0; // error (uses the const [])
 double d = v[1]; // fine (uses the non-const [])
 v[1] = 2.0; // fine (uses the non-const [])
}

Since vectors are often passed by const reference, this const version of operator[]
() is an essential addition.

18.6 Arrays
For a while, we have used array to refer to a sequence of objects allocated on the
free store. We can also allocate arrays elsewhere as named variables. In fact, they
are common

• As global variables (but global variables are most often a bad idea)
• As local variables (but arrays have serious limitations there)
• As function arguments (but an array doesn’t know its own size)
• As class members (but member arrays can be hard to initialize)

Now, you might have detected that we have a not-so-subtle bias in favor of vectors
over arrays. Use std::vector where you have a choice — and you have a choice
in most contexts. However, arrays existed long before vectors and are roughly
equivalent to what is offered in other languages (notably C), so you must know

Stroustrup_book.indb 648Stroustrup_book.indb 648 4/22/14 9:42 AM4/22/14 9:42 AM

18.6 ARRAYS 649

arrays, and know them well, to be able to cope with older code and with code
written by people who don’t appreciate the advantages of vector.

So, what is an array? How do we define an array? How do we use an array?
An array is a homogeneous sequence of objects allocated in contiguous memory;
that is, all elements of an array have the same type and there are no gaps between
the objects of the sequence. The elements of an array are numbered from 0 up-
ward. In a declaration, an array is indicated by “square brackets”:

const int max = 100;
int gai[max]; // a global array (of 100 ints); “lives forever”

void f(int n)
{
 char lac[20]; // local array; “lives” until the end of scope
 int lai[60];
 double lad[n]; // error: array size not a constant
 // . . .
}

Note the limitation: the number of elements of a named array must be known at
compile time. If you want the number of elements to be a variable, you must put
it on the free store and access it through a pointer. That’s what vector does with
its array of elements.

Just like the arrays on the free store, we access named arrays using the sub-
script and dereference operators ([] and *). For example:

void f2()
{
 char lac[20]; // local array; “lives” until the end of scope

 lac[7] = 'a';
 *lac = 'b'; // equivalent to lac[0]='b'

 lac[–2] = 'b'; // huh?
 lac[200] = 'c'; // huh?
}

This function compiles, but we know that “compiles” doesn’t mean “works cor-
rectly.” The use of [] is obvious, but there is no range checking, so f2() compiles,
and the result of writing to lac[–2] and lac[200] is (as for all out-of-range access)
usually disastrous. Don’t do it. Arrays do not range check. Again, we are dealing
directly with physical memory here; don’t expect “system support.”

Stroustrup_book.indb 649Stroustrup_book.indb 649 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS650

But couldn’t the compiler see that lac has just 20 elements so that lac[200] is
an error? A compiler could, but as far as we know no production compiler does.
The problem is that keeping track of array bounds at compile time is impossible
in general, and catching errors in the simplest cases (like the one above) only is
not very helpful.

18.6.1 Pointers to array elements
A pointer can point to an element of an array. Consider:

double ad[10];
double* p = &ad[5]; // point to ad[5]

We now have a pointer p to the double known as ad[5]:

p:

ad:

We can subscript and dereference that pointer:

*p =7;
p[2] = 6;
p[–3] = 9;

We get

p:

ad: 9 7 6

That is, we can subscript the pointer with both positive and negative numbers.
As long as the resulting element is in range, all is well. However, access outside
the range of the array pointed into is illegal (as with free-store-allocated arrays;
see §17.4.3). Typically, access outside an array is not detected by the compiler and
(sooner or later) is disastrous.

Stroustrup_book.indb 650Stroustrup_book.indb 650 4/22/14 9:42 AM4/22/14 9:42 AM

18.6 ARRAYS 651

Once a pointer points into an array, addition and subscripting can be used to
make it point to another element of the array. For example:

p += 2; // move p 2 elements to the right

We get

p:

ad: 9 7 6

And

p –= 5; // move p 5 elements to the left

We get

p:

ad: 9 7 6

Using +, – , +=, and –= to move pointers around is called pointer arithmetic. Obvi-
ously, if we do that, we have to take great care to ensure that the result is not a
pointer to memory outside the array:

p += 1000; // insane: p points into an array with just 10 elements
double d = *p; // illegal: probably a bad value
 // (definitely an unpredictable value)
*p = 12.34; // illegal: probably scrambles some unknown data

Unfortunately, not all bad bugs involving pointer arithmetic are that easy to spot.
The best policy is usually simply to avoid pointer arithmetic.

The most common use of pointer arithmetic is incrementing a pointer (using
++) to point to the next element and decrementing a pointer (using ––) to point

Stroustrup_book.indb 651Stroustrup_book.indb 651 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS652

to the previous element. For example, we could print the value of ad’s elements
like this:

for (double* p = &ad[0]; p<&ad[10]; ++p) cout << *p << '\n';

Or backward:

for (double* p = &ad[9]; p>=&ad[0]; ––p) cout << *p << '\n';

This use of pointer arithmetic is not uncommon. However, we find the last (“back-
ward”) example quite easy to get wrong. Why &ad[9] and not &ad[10]? Why >=
and not >? These examples could equally well (and equally efficiently) be done
using subscripting. Such examples could be done equally well using subscripting
into a vector, which is more easily range checked.

Note that most real-world uses of pointer arithmetic involve a pointer passed
as a function argument. In that case, the compiler doesn’t have a clue how many
elements are in the array pointed into: you are on your own. That is a situation
we prefer to stay away from whenever we can.

Why does C++ have (allow) pointer arithmetic at all? It can be such a bother
and doesn’t provide anything new once we have subscripting. For example:

double* p1 = &ad[0];
double* p2 = p1+7;
double* p3 = &p1[7];
if (p2 != p3) cout << "impossible!\n";

Mainly, the reason is historical. These rules were crafted for C decades ago and
can’t be removed without breaking a lot of code. Partly, there can be some con-
venience gained by using pointer arithmetic in some important low-level applica-
tions, such as memory managers.

18.6.2 Pointers and arrays
The name of an array refers to all the elements of the array. Consider:

char ch[100];

The size of ch, sizeof(ch), is 100. However, the name of an array turns into (“de-
cays to”) a pointer with the slightest excuse. For example:

char* p = ch;

Here p is initialized to &ch[0] and sizeof(p) is something like 4 (not 100).

Stroustrup_book.indb 652Stroustrup_book.indb 652 4/22/14 9:42 AM4/22/14 9:42 AM

18.6 ARRAYS 653

This can be useful. For example, consider a function strlen() that counts the
number of characters in a zero-terminated array of characters:

int strlen(const char* p) // similar to the standard library strlen()
{
 int count = 0;
 while (*p) { ++count; ++p; }
 return count;
}

We can now call this with strlen(ch) as well as strlen(&ch[0]). You might point out
that this is a very minor notational advantage, and we’d have to agree.

One reason for having array names convert to pointers is to avoid acciden-
tally passing large amounts of data by value. Consider:

int strlen(const char a[]) // similar to the standard library strlen()
{
 int count = 0;
 while (a[count]) { ++count; }
 return count;
}

char lots [100000];

void f()
{
 int nchar = strlen(lots);
 // . . .
}

Naively (and quite reasonably), you might expect this call to copy the 100,000
characters specified as the argument to strlen(), but that’s not what happens. In-
stead, the argument declaration char p[] is considered equivalent to char* p, and
the call strlen(lots) is considered equivalent to strlen(&lots[0]). This saves you
from an expensive copy operation, but it should surprise you. Why should it sur-
prise you? Because in every other case, when you pass an object and don’t explic-
itly declare an argument to be passed by reference (§8.5.3–6), that object is copied.

Note that the pointer you get from treating the name of an array as a pointer
to its first element is a value and not a variable, so you cannot assign to it:

char ac[10];
ac = new char [20]; // error: no assignment to array name
&ac[0] = new char [20]; // error: no assignment to pointer value

Stroustrup_book.indb 653Stroustrup_book.indb 653 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS654

Finally! A problem that the compiler will catch!
As a consequence of this implicit array-name-to-pointer conversion, you can’t

even copy arrays using assignment:

int x[100];
int y[100];
// . . .
x = y; // error
int z[100] = y; // error

This is consistent, but often a bother. If you need to copy an array, you must write
some more elaborate code to do so. For example:

for (int i=0; i<100; ++i) x[i]=y[i]; // copy 100 ints
memcpy(x,y,100*sizeof(int)); // copy 100*sizeof(int) bytes
copy(y,y+100, x); // copy 100 ints

Note that the C language doesn’t support anything like vector, so in C, you must
use arrays extensively. This implies that a lot of C++ code uses arrays (§27.1.2).
In particular, C-style strings (zero-terminated arrays of characters; see §27.5) are
very common.

If we want assignment, we have to use something like the standard library
vector. The vector equivalent to the copying code above is

vector<int> x(100);
vector<int> y(100);
// . . .
x = y; // copy 100 ints

18.6.3 Array initialization
An array of chars can be initialized with a string literal. For example:

char ac[] = "Beorn"; // array of 6 chars

Count those characters. There are five, but ac becomes an array of six characters
because the compiler adds a terminating zero character at the end of a string
literal:

'B' 'e' 'o' 'r' 'n' 0 ac:

Stroustrup_book.indb 654Stroustrup_book.indb 654 4/22/14 9:42 AM4/22/14 9:42 AM

18.6 ARRAYS 655

A zero-terminated string is the norm in C and many systems. We call such a zero-
terminated array of characters a C-style string. All string literals are C-style strings.
For example:

char* pc = "Howdy"; // pc points to an array of 6 chars

Graphically:

'H' 'o' 'w' 'd' 'y' 0

pc:

Note that the char with the numeric value 0 is not the character '0' or any other
letter or digit. The purpose of that terminating zero is to allow functions to find
the end of the string. Remember: An array does not know its size. Relying on the
terminating zero convention, we can write

int strlen(const char* p) // similar to the standard library strlen()
{
 int n = 0;
 while (p[n]) ++n;
 return n;
}

Actually, we don’t have to define strlen() because it is a standard library function
defined in the <string.h> header (§27.5, §B.11.3). Note that strlen() counts the
characters, but not the terminating 0; that is, you need n+1 chars to store n char-
acters in a C-style string.

Only character arrays can be initialized by literal strings, but all arrays can be
initialized by a list of values of their element type. For example:

int ai[] = { 1, 2, 3, 4, 5, 6 }; // array of 6 ints
int ai2[100] = {0,1,2,3,4,5,6,7,8,9}; // the last 90 elements are initialized to 0
double ad[100] = { }; // all elements initialized to 0.0
char chars[] = {'a', 'b', 'c'}; // no terminating 0!

Note that the number of elements of ai is six (not seven) and the number of el-
ements for chars is three (not four) — the “add a 0 at the end” rule is for literal
character strings only. If an array isn’t given a size, that size is deduced from the
initializer list. That’s a rather useful feature. If there are fewer initializer values

Stroustrup_book.indb 655Stroustrup_book.indb 655 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS656

than array elements (as in the definitions of ai2 and ad), the remaining elements
are initialized by the element type’s default value.

18.6.4 Pointer problems
Like arrays, pointers are often overused and misused. Often, the problems people
get themselves into involve both pointers and arrays, so we’ll summarize the prob-
lems here. In particular, all serious problems with pointers involve trying to access
something that isn’t an object of the expected type, and many of those problems
involve access outside the bounds of an array. Here we will consider

• Access through the null pointer
• Access through an uninitialized pointer
• Access off the end of an array
• Access to a deallocated object
• Access to an object that has gone out of scope

In all cases, the practical problem for the programmer is that the actual access
looks perfectly innocent; it is “just” that the pointer hasn’t been given a value that
makes the use valid. Worse (in the case of a write through the pointer), the prob-
lem may manifest itself only a long time later when some apparently unrelated
object has been corrupted. Let’s consider examples:

Don’t access through the null pointer:

int* p = nullptr;
*p = 7; // ouch!

Obviously, in real-world programs, this typically occurs when there is some code
in between the initialization and the use. In particular, passing p to a function and
receiving it as the result from a function are common examples. We prefer not to
pass null pointers around, but if you have to, test for the null pointer before use:

int* p = fct_that_can_return_a_nullptr();

if (p == nullptr) {
 // do something
}
else {
 // use p
 *p = 7;
}

Stroustrup_book.indb 656Stroustrup_book.indb 656 4/22/14 9:42 AM4/22/14 9:42 AM

18.6 ARRAYS 657

and

void fct_that_can_receive_a_nullptr(int* p)
{
 if (p == nullptr) {
 // do something
 }
 else {
 // use p
 *p = 7;
 }
}

Using references (§17.9.1) and using exceptions to signal errors (§5.6 and §19.5)
are the main tools for avoiding null pointers.

Do initialize your pointers:

int* p;
*p = 9; // ouch!

In particular, don’t forget to initialize pointers that are class members.
Don’t access nonexistent array elements:

int a[10];
int* p = &a[10];
*p = 11; // ouch!
a[10] = 12; // ouch!

Be careful with the first and last elements of a loop, and try not to pass arrays
around as pointers to their first elements. Instead use vectors. If you really must
use an array in more than one function (passing it as an argument), then be extra
careful and pass its size along.

Don’t access through a deleted pointer:

int* p = new int{7};
// . . .
delete p;
// . . .
*p = 13; // ouch!

The delete p or the code after it may have scribbled all over *p or used it for
something else. Of all of these problems, we consider this one the hardest to

Stroustrup_book.indb 657Stroustrup_book.indb 657 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS658

systematically avoid. The most effective defense against this problem is not to have
“naked” news that require “naked” deletes: use new and delete in constructors
and destructors or use a container, such as Vector_ref (§E.4), to handle deletes.

Don’t return a pointer to a local variable:

int* f()
{
 int x = 7;
 // . . .
 return &x;
}

// . . .

int* p = f();
// . . .
*p = 15; // ouch!

The return from f() or the code after it may have scribbled all over *p or used it
for something else. The reason for that is that the local variables of a function are
allocated (on the stack) upon entry to the function and deallocated again at the
exit from the function. In particular, destructors are called for local variables of
classes with destructors (§17.5.1). Compilers could catch most problems related to
returning pointers to local variables, but few do.

Consider a logically equivalent example:

vector& ff()
{
 vector x(7); // 7 elements
 // . . .
 return x;
} // the vector x is destroyed here

// . . .

vector& p = ff();
// . . .
p[4] = 15; // ouch!

Quite a few compilers catch this variant of the return problem.
It is common for programmers to underestimate these problems. However,

many experienced programmers have been defeated by the innumerable varia-

Stroustrup_book.indb 658Stroustrup_book.indb 658 4/22/14 9:42 AM4/22/14 9:42 AM

18.7 EXAMPLES: PALINDROME 659

tions and combinations of these simple array and pointer problems. The solution
is not to litter your code with pointers, arrays, news, and deletes. If you do,
“being careful” simply isn’t enough in realistically sized programs. Instead, rely
on vectors, RAII (“Resource Acquisition Is Initialization”; see §19.5), and other
systematic approaches to the management of memory and other resources.

18.7 Examples: palindrome
Enough technical examples! Let’s try a little puzzle. A palindrome is a word that is
spelled the same from both ends. For example, anna, petep, and malayalam are palin-
dromes, whereas ida and homesick are not. There are two basic ways of determining
whether a word is a palindrome:

• Make a copy of the letters in reverse order and compare that copy to the
original.

• See if the fi rst letter is the same as the last, then see if the second letter is
the same as the second to last, and keep going until you reach the middle.

Here, we’ll take the second approach. There are many ways of expressing this
idea in code depending on how we represent the word and how we keep track
of how far we have come with the comparison of characters. We’ll write a little
program that tests whether words are palindromes in a few different ways just to
see how different language features affect the way the code looks and works.

18.7.1 Palindromes using string
First, we try a version using the standard library string with int indices to keep
track of how far we have come with our comparison:

bool is_palindrome(const string& s)
{
 int first = 0; // index of first letter
 int last = s.length()–1; // index of last letter
 while (first < last) { // we haven’t reached the middle
 if (s[first]!=s[last]) return false;
 ++first; // move forward

–– last; // move backward
 }
 return true;
}

We return true if we reach the middle without finding a difference. We suggest
that you look at this code to convince yourself that it is correct when there are no

Stroustrup_book.indb 659Stroustrup_book.indb 659 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS660

letters in the string, just one letter in the string, an even number of letters in the
string, and an odd number of letters in the string. Of course, we should not just
rely on logic to see that our code is correct. We should also test. We can exercise
is_palindrome() like this:

int main()
{
 for (string s; cin>>s;) {
 cout << s << " is";
 if (!is_palindrome(s)) cout << " not";
 cout << " a palindrome\n";
 }
}

Basically, the reason we are using a string is that “strings are good for dealing with
words.” It is simple to read a whitespace-separated word into a string, and a string
knows its size. Had we wanted to test is_palindrome() with strings containing
whitespace, we could have read using getline() (§11.5). That would have shown
ah ha and as df fd sa to be palindromes.

18.7.2 Palindromes using arrays
What if we didn’t have strings (or vectors), so that we had to use an array to store
the characters? Let’s see:

bool is_palindrome(const char s[], int n)
 // s points to the first character of an array of n characters
{
 int first = 0; // index of first letter
 int last = n–1; // index of last letter
 while (first < last) { // we haven’t reached the middle
 if (s[first]!=s[last]) return false;
 ++first; // move forward
 –– last; // move backward
 }
 return true;
}

To exercise is_palindrome(), we first have to get characters read into the array.
One way to do that safely (i.e., without risk of overflowing the array) is like this:

istream& read_word(istream& is, char* buffer, int max)
 // read at most max–1 characters from is into buffer

Stroustrup_book.indb 660Stroustrup_book.indb 660 4/22/14 9:42 AM4/22/14 9:42 AM

18.7 EXAMPLES: PALINDROME 661

{
 is.width(max); // read at most max–1 characters in the next >>
 is >> buffer; // read whitespace-terminated word,
 // add zero after the last character read into buffer
 return is;
}

Setting the istream’s width appropriately prevents buffer overflow for the next >>
operation. Unfortunately, it also means that we don’t know if the read terminated
by whitespace or by the buffer being full (so that we need to read more charac-
ters). Also, who remembers the details of the behavior of width() for input? The
standard library string and vector are really better as input buffers because they
expand to fit the amount of input. The terminating 0 character is needed because
most popular operations on arrays of characters (C-style strings) assume 0 termi-
nation. Using read_word() we can write

int main()
{
 constexpr int max = 128;
 for (char s[max]; read_word(cin,s,max);) {
 cout << s << " is";
 if (!is_palindrome(s,strlen(s))) cout << " not";
 cout << " a palindrome\n";
 }
}

The strlen(s) call returns the number of characters in the array after the call of read_
word(), and cout<<s outputs the characters in the array up to the terminating 0.

We consider this “array solution” significantly messier than the “string solu-
tion,” and it gets much worse if we try to seriously deal with the possibility of long
strings. See exercise 10.

18.7.3 Palindromes using pointers
Instead of using indices to identify characters, we could use pointers:

bool is_palindrome(const char* first, const char* last)
 // first points to the first letter, last to the last letter
{
 while (first < last) { // we haven’t reached the middle
 if (*first!=*last) return false;
 ++first; // move forward
 –– last; // move backward

Stroustrup_book.indb 661Stroustrup_book.indb 661 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS662

 }
 return true;
}

Note that we can actually increment and decrement pointers. Increment makes
a pointer point to the next element of an array and decrement makes a pointer
point to the previous element. If the array doesn’t have such a next element or
previous element, you have a serious uncaught out-of-range error. That’s another
problem with pointers.

We call this is_palindrome() like this:

int main()
{
 const int max = 128;
 for (char s[max]; read_word(cin,s,max);) {
 cout << s << " is";
 if (!is_palindrome(&s[0],&s[strlen(s)–1])) cout << " not";
 cout << " a palindrome\n";
 }
}

Just for fun, we rewrite is_palindrome() like this:

bool is_palindrome(const char* first, const char* last)
 // first points to the first letter, last to the last letter
{
 if (first<last) {
 if (*first!=*last) return false;
 return is_palindrome(first+1,last–1);
 }
 return true;
}

This code becomes obvious when we rephrase the definition of palindrome: a word
is a palindrome if the first and the last characters are the same and if the substring
you get by removing the first and the last characters is a palindrome.

Stroustrup_book.indb 662Stroustrup_book.indb 662 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 DRILL 663

Drill
In this chapter, we have two drills: one to exercise arrays and one to exercise vectors
in roughly the same manner. Do both and compare the effort involved in each.

Array drill:

 1. Define a global int array ga of ten ints initialized to 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking an int array argument and an int argument

indicating the number of elements in the array.
 3. In f():
 a. Define a local int array la of ten ints.
 b. Copy the values from ga into la.
 c. Print out the elements of la.
 d. Define a pointer p to int and initialize it with an array allocated on the

free store with the same number of elements as the argument array.
 e. Copy the values from the argument array into the free-store array.
 f. Print out the elements of the free-store array.
 g. Deallocate the free-store array.
 4. In main():
 a. Call f() with ga as its argument.
 b. Define an array aa with ten elements, and initialize it with the first ten

factorial values (1, 2*1, 3*2*1, 4*3*2*1, etc.).
 c. Call f() with aa as its argument.

Standard library vector drill:

 1. Define a global vector<int> gv; initialize it with ten ints, 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking a vector<int> argument.
 3. In f():
 a. Define a local vector<int> lv with the same number of elements as the

argument vector.
 b. Copy the values from gv into lv.
 c. Print out the elements of lv.
 d. Define a local vector<int> lv2; initialize it to be a copy of the argument

vector.
 e. Print out the elements of lv2.
 4. In main():
 a. Call f() with gv as its argument.
 b. Define a vector<int> vv, and initialize it with the first ten factorial val-

ues (1, 2*1, 3*2*1, 4*3*2*1, etc.).
 c. Call f() with vv as its argument.

Stroustrup_book.indb 663Stroustrup_book.indb 663 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS664

Review
 1. What does “Caveat emptor!” mean?
 2. What is the default meaning of copying for class objects?
 3. When is the default meaning of copying of class objects appropriate?

When is it inappropriate?
 4. What is a copy constructor?
 5. What is a copy assignment?
 6. What is the difference between copy assignment and copy initialization?
 7. What is shallow copy? What is deep copy?
 8. How does the copy of a vector compare to its source?
 9. What are the five “essential operations” for a class?
 10. What is an explicit constructor? Where would you prefer one over the

(default) alternative?
 11. What operations may be invoked implicitly for a class object?
 12. What is an array?
 13. How do you copy an array?
 14. How do you initialize an array?
 15. When should you prefer a pointer argument over a reference argument?

Why?
 16. What is a C-style string?
 17. What is a palindrome?

Terms
array deep copy move assignment
array initialization default constructor move construction
copy assignment essential operations palindrome
copy constructor explicit constructor shallow copy

Exercises
 1. Write a function, char* strdup(const char*), that copies a C-style string

into memory it allocates on the free store. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator *
instead.

 2. Write a function, char* findx(const char* s, const char* x), that finds the
first occurrence of the C-style string x in s. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator *
instead.

 3. Write a function, int strcmp(const char* s1, const char* s2), that compares
C-style strings. Let it return a negative number if s1 is lexicographically

Stroustrup_book.indb 664Stroustrup_book.indb 664 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 EXERCISES 665

before s2, zero if s1 equals s2, and a positive number if s1 is lexicograph-
ically after s2. Do not use any standard library functions. Do not use
subscripting; use the dereference operator * instead.

 4. Consider what happens if you give strdup(), findx(), and strcmp() an argu-
ment that is not a C-style string. Try it! First figure out how to get a char*
that doesn’t point to a zero-terminated array of characters and then use
it (never do this in real — non-experimental — code; it can create havoc).
Try it with free-store-allocated and stack-allocated “fake C-style strings.”
If the results still look reasonable, turn off debug mode. Redesign and
re-implement those three functions so that they take another argument
giving the maximum number of elements allowed in argument strings.
Then, test that with correct C-style strings and “bad” strings.

 5. Write a function, string cat_dot(const string& s1, const string& s2),
that concatenates two strings with a dot in between. For example, cat_
dot("Niels", "Bohr") will return a string containing Niels.Bohr.

 6. Modify cat_dot() from the previous exercise to take a string to be used as
the separator (rather than dot) as its third argument.

 7. Write versions of the cat_dot()s from the previous exercises to take
C-style strings as arguments and return a free-store-allocated C-style string
as the result. Do not use standard library functions or types in the im-
plementation. Test these functions with several strings. Be sure to free
(using delete) all the memory you allocated from free store (using new).
Compare the effort involved in this exercise with the effort involved for
exercises 5 and 6.

 8. Rewrite all the functions in §18.7 to use the approach of making a back-
ward copy of the string and then comparing; for example, take "home",
generate "emoh", and compare those two strings to see that they are
different, so home isn’t a palindrome.

 9. Consider the memory layout in §17.4. Write a program that tells the order
in which static storage, the stack, and the free store are laid out in memory.
In which direction does the stack grow: upward toward higher addresses
or downward toward lower addresses? In an array on the free store, are
elements with higher indices allocated at higher or lower addresses?

 10. Look at the “array solution” to the palindrome problem in §18.7.2. Fix it
to deal with long strings by (a) reporting if an input string was too long
and (b) allowing an arbitrarily long string. Comment on the complexity
of the two versions.

 11. Look up (e.g., on the web) skip list and implement that kind of list. This is
not an easy exercise.

 12. Implement a version of the game “Hunt the Wumpus.” “Hunt the Wum-
pus” (or just “Wump”) is a simple (non-graphical) computer game origi-
nally invented by Gregory Yob. The basic premise is that a rather smelly

Stroustrup_book.indb 665Stroustrup_book.indb 665 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 18 • VECTORS AND ARRAYS666

monster lives in a dark cave consisting of connected rooms. Your job is to
slay the wumpus using bow and arrow. In addition to the wumpus, the
cave has two hazards: bottomless pits and giant bats. If you enter a room
with a bottomless pit, it’s the end of the game for you. If you enter a room
with a bat, the bat picks you up and drops you into another room. If you
enter the room with the wumpus or he enters yours, he eats you. When
you enter a room you will be told if a hazard is nearby:

“I smell the wumpus”: It’s in an adjoining room.
“I feel a breeze”: One of the adjoining rooms is a bottomless pit.
“I hear a bat”: A giant bat is in an adjoining room.

 For your convenience, rooms are numbered. Every room is con-
nected by tunnels to three other rooms. When entering a room, you are
told something like “You are in room 12; there are tunnels to rooms 1, 13,
and 4; move or shoot?” Possible answers are m13 (“Move to room 13”)
and s13–4–3 (“Shoot an arrow through rooms 13, 4, and 3”). The range
of an arrow is three rooms. At the start of the game, you have five arrows.
The snag about shooting is that it wakes up the wumpus and he moves to
a room adjoining the one he was in — that could be your room.

 Probably the trickiest part of the exercise is to make the cave by
selecting which rooms are connected with which other rooms. You’ll
probably want to use a random number generator (e.g., randint() from
std_lib_facilities.h) to make different runs of the program use different
caves and to move around the bats and the wumpus. Hint: Be sure to
have a way to produce a debug output of the state of the cave.

Postscript
The standard library vector is built from lower-level memory management fa-
cilities, such as pointers and arrays, and its primary role is to help us avoid the
complexities of those facilities. Whenever we design a class, we must consider
initialization, copying, and destruction.

Stroustrup_book.indb 666Stroustrup_book.indb 666 4/22/14 9:42 AM4/22/14 9:42 AM

667

19

Vector, Templates,
and Exceptions

“Success is never fi nal.”

—Winston Churchill

This chapter completes the design and implementation of

the most common and most useful STL container: vector.

Here, we show how to implement containers where the number

of elements can vary, how to specify containers where the ele-

ment type is a parameter, and how to deal with range errors. As

usual, the techniques used are generally applicable, rather than

simply restricted to the implementation of vector, or even to the

implementation of containers. Basically, we show how to deal

safely with varying amounts of data of a variety of types. In

addition, we add a few doses of realism as design lessons. The

techniques rely on templates and exceptions, so we show how to

define templates and give the basic techniques for resource man-

agement that are the keys to good use of exceptions.

Stroustrup_book.indb 667Stroustrup_book.indb 667 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS668

19.1 The problems
At the end of Chapter 18, our vector reached the point where we can

• Create vectors of double-precision fl oating-point elements (objects of class
vector) with whatever number of elements we want

• Copy our vectors using assignment and initialization
• Rely on vectors to correctly release their memory when they go out of

scope
• Access vector elements using the conventional subscript notation (on both

the right-hand side and the left-hand side of an assignment)

That’s all good and useful, but to reach the level of sophistication we expect
(based on experience with the standard library vector), we need to address three
more concerns:

• How do we change the size of a vector (change the number of elements)?
• How do we catch and report out-of-range vector element access?
• How do we specify the element type of a vector as an argument?

For example, how do we define vector so that this is legal:

vector<double> vd; // elements of type double
for (double d; cin>>d;)
 vd.push_back(d); // grow vd to hold all the elements

 19.1 The problems

 19.2 Changing size
 19.2.1 Representation
 19.2.2 reserve and capacity
 19.2.3 resize
 19.2.4 push_back
 19.2.5 Assignment
 19.2.6 Our vector so far

 19.3 Templates
 19.3.1 Types as template parameters
 19.3.2 Generic programming
 19.3.3 Concepts
 19.3.4 Containers and inheritance
 19.3.5 Integers as template parameters
 19.3.6 Template argument deduction
 19.3.7 Generalizing vector

 19.4 Range checking and exceptions
 19.4.1 An aside: design considerations
 19.4.2 A confession: macros

 19.5 Resources and exceptions
 19.5.1 Potential resource management

problems
 19.5.2 Resource acquisition is

initialization
 19.5.3 Guarantees
 19.5.4 unique_ptr
 19.5.5 Return by moving
 19.5.6 RAII for vector

Stroustrup_book.indb 668Stroustrup_book.indb 668 4/22/14 9:42 AM4/22/14 9:42 AM

19.1 THE PROBLEMS 669

vector<char> vc(100); // elements of type char
int n;
cin>>n;
vc.resize(n); // make vc have n elements

Obviously, it is nice and useful to have vectors that allow this, but why is it
important from a programming point of view? What makes it interesting to
someone collecting useful programming techniques for future use? We are using
two kinds of flexibility. We have a single entity, the vector, for which we can
vary two things:

• The number of elements
• The type of elements

Those kinds of variability are useful in rather fundamental ways. We always col-
lect data. Looking around my desk, I see piles of bank statements, credit card bills,
and phone bills. Each of those is basically a list of lines of information of various
types: strings of letters and numeric values. In front of me lies a phone; it keeps
lists of phone numbers and names. In the bookcases across the room, there is shelf
after shelf of books. Our programs tend to be similar: we have containers of ele-
ments of various types. We have many different kinds of containers (vector is just
the most widely useful), and they contain information such as phone numbers,
names, transaction amounts, and documents. Essentially all the examples from
my desk and my room originated in some computer program or another. The
obvious exception is the phone: it is a computer, and when I look at the numbers
on it I’m looking at the output of a program just like the ones we’re writing. In
fact, those numbers may very well be stored in a vector<Number>.

Obviously, not all containers have the same number of elements. Could we
live with a vector that had its size fixed by its initial definition; that is, could we
write our code without push_back(), resize(), and equivalent operations? Sure
we could, but that would put an unnecessary burden on the programmer: the
basic trick for living with fixed-size containers is to move the elements to a bigger
container when the number of elements grows too large for the initial size. For
example, we could read into a vector without ever changing the size of a vector
like this:

// read elements into a vector without using push_back:
vector<double>* p = new vector<double>(10);
int n = 0; // number of elements
for (double d; cin>>d;) {
 if (n==p–>size()) {
 vector<double>* q = new vector<double>(p–>size()*2);
 copy(p–>begin(), p–>end(), q–>begin());

Stroustrup_book.indb 669Stroustrup_book.indb 669 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS670

 delete p;
 p = q;
 }
 (*p)[n] = d;
 ++n;
}

That’s not pretty. Are you convinced that we got it right? How can you be sure?
Note how we suddenly started to use pointers and explicit memory management.
What we did was to imitate the style of programming we have to use when we
are “close to the machine,” using only the basic memory management techniques
dealing with fixed-size objects (arrays; see §18.6). One of the reasons to use con-
tainers, such as vector, is to do better than that; that is, we want vector to handle
such size changes internally to save us — its users — the bother and the chance to
make mistakes. In other words, we prefer containers that can grow to hold the
exact number of elements we happen to need. For example:

vector<double> vd;
for (double d; cin>>d;) vd.push_back(d);

Are such changes of size common? If they are not, facilities for changing size
are simply minor conveniences. However, such size changes are very common.
The most obvious example is reading an unknown number of values from input.
Other examples are collecting a set of results from a search (we don’t in advance
know how many results there will be) and removing elements from a collection
one by one. Thus, the question is not whether we should handle size changes for
containers, but how.

Why do we bother with changing sizes at all? Why not “just allocate enough
space and be done with it!”? That appears to be the simplest and most efficient
strategy. However, it is that only if we can reliably allocate enough space without
allocating grossly too much space — and we can’t. People who try that tend to
have to rewrite code (if they carefully and systematically checked for overflows)
and deal with disasters (if they were careless with their checking).

Obviously, not all vectors have the same type of elements. We need vectors of
doubles, temperature readings, records (of various kinds), strings, operations, GUI
buttons, shapes, dates, pointers to windows, etc. The possibilities are endless.

There are many kinds of containers. This is an important point, and because
it has important implications it should not be accepted without thought. Why
can’t all containers be vectors? If we could make do with a single kind of con-
tainer (e.g., vector), we could dispense with all the concerns about how to pro-
gram it and just make it part of the language. If we could make do with a single
kind of container, we needn’t bother learning about different kinds of containers;
we’d just use vector all the time.

Stroustrup_book.indb 670Stroustrup_book.indb 670 4/22/14 9:42 AM4/22/14 9:42 AM

19.2 CHANGING SIZE 671

Well, data structures are the key to most significant applications. There are
many thick and useful books about how to organize data, and much of that infor-
mation could be described as answers to the question “How do I best store my
data?” So, the answer is that we need many different kinds of containers, but it
is too large a subject to adequately address here. However, we have already used
vectors and strings (a string is a container of characters) extensively. In the next
chapters, we will see lists, maps (a map is a tree of pairs of values), and matrices.
Because we need many different containers, the language features and program-
ming techniques needed to build and use containers are widely useful. In fact, the
techniques we use to store and access data are among the most fundamental and
most useful for all nontrivial forms of computing.

At the most basic memory level, all objects are of a fixed size and no types
exist. What we do here is to introduce language facilities and programming tech-
niques that allow us to provide containers of objects of various types for which we
can vary the number of elements. This gives us a fundamentally useful degree of
flexibility and convenience.

19.2 Changing size
What facilities for changing size does the standard library vector offer? It provides
three simple operations. Given

vector<double> v(n); // v.size()==n

we can change its size in three ways:

v.resize(10); // v now has 10 elements

v.push_back(7); // add an element with the value 7 to the end of v
 // v.size() increases by 1

v = v2; // assign another vector; v is now a copy of v2
 // v.size() now equals v2.size()

The standard library vector offers more operations that can change a vector’s
size, such as erase() and insert() (§B.4.7), but here we will just see how we can
implement those three operations for our vector.

19.2.1 Representation
In §19.1, we showed the simplest strategy for changing size: just allocate space for
the new number of elements and copy the old elements into the new space. How-
ever, if you resize often, that’s inefficient. In practice, if we change the size once,
we usually do so many times. In particular, we rarely see just one push_back().

Stroustrup_book.indb 671Stroustrup_book.indb 671 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS672

So, we can optimize our programs by anticipating such changes in size. In fact,
all vector implementations keep track of both the number of elements and an
amount of “free space” reserved for “future expansion.” For example:

class vector {
 int sz; // number of elements
 double* elem; // address of first element
 int space; // number of elements plus “free space”/“slots”
 // for new elements (“the current allocation”)
public:
 // . . .
};

We can represent this graphically like this:

sz: 0: sz:
Free space

(uninitialized)

Elements
(initialized)

elem:
space:

Since we count elements starting with 0, we represent sz (the number of elements)
as referring to one beyond the last element and space as referring to one beyond
the last allocated slot. The pointers shown are really elem+sz and elem+space.

When a vector is first constructed, space==sz; that is, there is no “free space”:

sz: 0: sz:
elem:

space:

We don’t start allocating extra slots until we begin changing the number of el-
ements. Typically, space==sz, so there is no memory overhead unless we use
push_back().

The default constructor (creating a vector with no elements) sets the integer
members to 0 and the pointer member to nullptr:

vector::vector() :sz{0}, elem{nullptr}, space{0} { }

Stroustrup_book.indb 672Stroustrup_book.indb 672 4/22/14 9:42 AM4/22/14 9:42 AM

19.2 CHANGING SIZE 673

That gives

sz:
elem:

space:

That one-beyond-the-end element is completely imaginary. The default constructor
does no free-store allocation and occupies minimal storage (but see exercise 16).

Please note that our vector illustrates techniques that can be used to imple-
ment a standard vector (and other data structures), but a fair amount of freedom
is given to standard library implementations so that std::vector on your system
may use different techniques.

19.2.2 reserve and capacity
The most fundamental operation when we change sizes (that is, when we change
the number of elements) is vector::reserve(). That’s the operation we use to add
space for new elements:

void vector::reserve(int newalloc)
{
 if (newalloc<=space) return; // never decrease allocation
 double* p = new double[newalloc]; // allocate new space
 for (int i=0; i<sz; ++i) p[i] = elem[i]; // copy old elements
 delete[] elem; // deallocate old space
 elem = p;
 space = newalloc;
}

Note that we don’t initialize the elements of the reserved space. After all, we are
just reserving space; using that space for elements is the job of push_back() and
resize().

Obviously the amount of free space available in a vector can be of interest
to a user, so we (like the standard) provide a member function for obtaining that
information:

int vector::capacity() const { return space; }

That is, for a vector called v, v.capacity()–v.size() is the number of elements we
could push_back() to v without causing reallocation.

Stroustrup_book.indb 673Stroustrup_book.indb 673 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS674

19.2.3 resize
Given reserve(), implementing resize() for our vector is fairly simple. We have to
handle several cases:

• The new size is larger than the old allocation.
• The new size is larger than the old size, but smaller than or equal to the

old allocation.
• The new size is equal to the old size.
• The new size is smaller than the old size.

Let’s see what we get:

void vector::resize(int newsize)
 // make the vector have newsize elements
 // initialize each new element with the default value 0.0
{
 reserve(newsize);
 for (int i=sz; i<newsize; ++i) elem[i] = 0; // initialize new elements
 sz = newsize;
}

We let reserve() do the hard work of dealing with memory. The loop initializes
new elements (if there are any).

We didn’t explicitly deal with any cases here, but you can verify that all are
handled correctly nevertheless.

TRY THIS

What cases do we need to consider (and test) if we want to convince our-
selves that this resize() is correct? How about newsize == 0? How about
newsize == –77?

19.2.4 push_back
When we first think of it, push_back() may appear complicated to implement, but
given reserve() it is quite simple:

void vector::push_back(double d)
 // increase vector size by one; initialize the new element with d
{
 if (space==0)
 reserve(8); // start with space for 8 elements

T

Stroustrup_book.indb 674Stroustrup_book.indb 674 4/22/14 9:42 AM4/22/14 9:42 AM

19.2 CHANGING SIZE 675

 else if (sz==space)
 reserve(2*space); // get more space
 elem[sz] = d; // add d at end
 ++sz; // increase the size (sz is the number of elements)
}

In other words, if we have no spare space, we double the size of the allocation.
In practice that turns out to be a very good choice for the vast majority of uses
of vector, and that’s the strategy used by most implementations of the standard
library vector.

19.2.5 Assignment
We could have defined vector assignment in several different ways. For example,
we could have decided that assignment was legal only if the two vectors involved
had the same number of elements. However, in §18.3.2 we decided that vector as-
signment should have the most general and arguably the most obvious meaning:
after assignment v1=v2, the vector v1 is a copy of v2. Consider:

1 2

V1:

sz:

5 6 7 8

V2:

sz:

Obviously, we need to copy the elements, but what about the spare space? Do we
“copy” the “free space” at the end? We don’t: the new vector will get a copy of the
elements, but since we have no idea how that new vector is going to be used, we
don’t bother with extra space at the end:

1 2
sz:

5 6 7 8

V1:

sz:

5 6 7 8

V2:

sz:

Handed back to
free store

Stroustrup_book.indb 675Stroustrup_book.indb 675 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS676

The simplest implementation of that is:

• Allocate memory for a copy.
• Copy the elements.
• Delete the old allocation.
• Set the sz, elem, and space to the new values.

Like this:

vector& vector::operator=(const vector& a)
 // like copy constructor, but we must deal with old elements
{
 double* p = new double[a.sz]; // allocate new space
 for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
 delete[] elem; // deallocate old space
 space = sz = a.sz; // set new size
 elem = p; // set new elements
 return *this; // return self-reference
}

By convention, an assignment operator returns a reference to the object assigned
to. The notation for that is *this, which is explained in §17.10.

This implementation is correct, but when we look at it a bit we realize that we
do a lot of redundant allocation and deallocation. What if the vector we assign to
has more elements than the one we assign? What if the vector we assign to has
the same number of elements as the vector we assign? In many applications, that
last case is very common. In either case, we can just copy the elements into space
already available in the target vector:

vector& vector::operator=(const vector& a)
{
 if (this==&a) return *this; // self-assignment, no work needed

 if (a.sz<=space) { // enough space, no need for new allocation
 for (int i = 0; i<a.sz; ++i) elem[i] = a.elem[i]; // copy elements
 sz = a.sz;
 return *this;
 }

 double* p = new double[a.sz]; // allocate new space
 for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements

Stroustrup_book.indb 676Stroustrup_book.indb 676 4/22/14 9:42 AM4/22/14 9:42 AM

19.2 CHANGING SIZE 677

 delete[] elem; // deallocate old space
 space = sz = a.sz; // set new size
 elem = p; // set new elements
 return *this; // return a self-reference
}

Here, we first test for self-assignment (e.g., v=v); in that case, we just do nothing.
That test is logically redundant but sometimes a significant optimization. It does,
however, show a common use of the this pointer checking if the argument a is
the same object as the object for which a member function (here, operator=())
was called. Please convince yourself that this code actually works if we remove
the this==&a line. The a.sz<=space is also just an optimization. Please convince
yourself that this code actually works if we remove the a.sz<=space case.

19.2.6 Our vector so far
Now we have an almost real vector of doubles:

// an almost real vector of doubles:
class vector {
/*
 invariant:
 if 0<=n<sz, elem[n] is element n
 sz<=space;
 if sz<space there is space for (space–sz) doubles after elem[sz–1]
*/
 int sz; // the size
 double* elem; // pointer to the elements (or 0)
 int space; // number of elements plus number of free slots
public:
 vector() : sz{0}, elem{nullptr}, space{0} { }
 explicit vector(int s) :sz{s}, elem{new double[s]}, space{s}
 {
 for (int i=0; i<sz; ++i) elem[i]=0; // elements are initialized
 }

 vector(const vector&); // copy constructor
 vector& operator=(const vector&); // copy assignment

 vector(vector&&); // move constructor
 vector& operator=(vector&&); // move assignment

Stroustrup_book.indb 677Stroustrup_book.indb 677 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS678

 ~vector() { delete[] elem; } // destructor

 double& operator[](int n) { return elem[n]; } // access: return reference
 const double& operator[](int n) const { return elem[n]; }

 int size() const { return sz; }
 int capacity() const { return space; }

 void resize(int newsize); // growth
 void push_back(double d);
 void reserve(int newalloc);
};

Note how it has the essential operations (§18.4): constructor, default constructor,
copy operations, destructor. It has an operation for accessing data (subscripting:
[]) and for providing information about that data (size() and capacity()) and for
controlling growth (resize(), push_back(), and reserve()).

19.3 Templates
But we don’t just want vectors of doubles; we want to freely specify the element
type for our vectors. For example:

vector<double>
vector<int>
vector<Month>
vector<Window*> // vector of pointers to Windows
vector<vector<Record>> // vector of vectors of Records
vector<char>

To do that, we must see how to define templates. We have used templates from
day one, but until now we haven’t had a need to define one. The standard library
provides what we have needed so far, but we mustn’t believe in magic, so we need
to examine how the designers and implementers of the standard library provided
facilities such as the vector type and the sort() function (§21.1, §B.5.4). This is not
just of theoretical interest, because — as usual — the tools and techniques used for
the standard library are among the most useful for our own code. For example,
in Chapters 21 and 22, we show how templates can be used for implementing
the standard library containers and algorithms. In Chapter 24, we show how to
design matrices for scientific computation.

Stroustrup_book.indb 678Stroustrup_book.indb 678 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 679

Basically, a template is a mechanism that allows a programmer to use types as
parameters for a class or a function. The compiler then generates a specific class
or function when we later provide specific types as arguments.

19.3.1 Types as template parameters
We want to make the element type a parameter to vector. So we take our vector
and replace double with T where T is a parameter that can be given “values” such
as double, int, string, vector<Record>, and Window*. The C++ notation for
introducing a type parameter T is the template<typename T> prefix, meaning “for
all types T.” For example:

// an almost real vector of Ts:
template<typename T>
class vector { // read “for all types T” (just like in math)
 int sz; // the size
 T* elem; // a pointer to the elements
 int space; // size + free space
public:
 vector() : sz{0}, elem{nullptr}, space{0} { }
 explicit vector(int s) :sz{s}, elem{new T[s]}, space{s}
 {
 for (int i=0; i<sz; ++i) elem[i]=0; // elements are initialized
 }

 vector(const vector&); // copy constructor
 vector& operator=(const vector&); // copy assignment

 vector(vector&&); // move constructor
 vector& operator=(vector&&); // move assignment

 ~vector() { delete[] elem; } // destructor

 T& operator[](int n) { return elem[n]; } // access: return reference
 const T& operator[](int n) const { return elem[n]; }

 int size() const { return sz; } // the current size
 int capacity() const { return space; }

 void resize(int newsize); // growth
 void push_back(const T& d);
 void reserve(int newalloc);
};

Stroustrup_book.indb 679Stroustrup_book.indb 679 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS680

That’s just our vector of doubles from §19.2.6 with double replaced by the tem-
plate parameter T. We can use this class template vector like this:

vector<double> vd; // T is double
vector<int> vi; // T is int
vector<double*> vpd; // T is double*
vector<vector<int>> vvi; // T is vector<int>, in which T is int

One way of thinking about what a compiler does when we use a template is that
it generates the class with the actual type (the template argument) in place of the
template parameter. For example, when the compiler sees vector<char> in the
code, it (somewhere) generates something like this:

class vector_char {
 int sz; // the size
 char* elem; // a pointer to the elements
 int space; // size + free space
public:
 vector() : sz{0}, elem{nullptr}, space{0} { }
 explicit vector_char(int s) :sz{s}, elem{new char[s]}, space{s}
 {
 for (int i=0; i<sz; ++i) elem[i]=0; // elements are initialized
 }

 vector_char(const vector_char&); // copy constructor
 vector_char& operator=(const vector_char&); // copy assignment

 vector_char(vector_char&&); // move constructor
 vector_char& operator=(vector_char&&); // move assignment

 ~vector_char (); // destructor

 char& operator[] (int n)) { return elem[n]; // access: return reference
 const char& operator[] (int n) const) { return elem[n]; }

 int size() const; // the current size
 int capacity() const;

 void resize(int newsize); // growth
 void push_back(const char& d);
 void reserve(int newalloc);
};

Stroustrup_book.indb 680Stroustrup_book.indb 680 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 681

For vector<double>, the compiler generates roughly the vector (of double) from
§19.2.6 (using a suitable internal name meaning vector<double>).

Sometimes, we call a class template a type generator. The process of generating
types (classes) from a class template given template arguments is called specializa-
tion or template instantiation. For example, vector<char> and vector<Poly_line*> are
said to be specializations of vector. In simple cases, such as our vector, instantia-
tion is a pretty simple process. In the most general and advanced cases, template
instantiation is horrendously complicated. Fortunately for the user of templates,
that complexity is in the domain of the compiler writer, not the template user.
Template instantiation (generation of template specializations) takes place at com-
pile time or link time, not at run time.

Naturally, we can use member functions of such a class template. For example:

void fct(vector<string>& v)
{
 int n = v.size();
 v.push_back("Norah");
 // . . .
}

When such a member function of a class template is used, the compiler generates the
appropriate function. For example, when the compiler sees v.push_back("Norah"), it
generates a function

void vector<string>::push_back(const string& d) { /* . . . */ }

from the template definition

template<typename T> void vector<T>::push_back(const T& d) { /* . . . */ };

That way, there is a function for v.push_back("Norah") to call. In other words,
when you need a function for given object and argument types, the compiler will
write it for you based on its template.

Instead of writing template<typename T>, you can write template<class T>.
The two constructs mean exactly the same thing, but some prefer typename “be-
cause it is clearer” and “because nobody gets confused by typename thinking
that you can’t use a built-in type, such as int, as a template argument.” We are of
the opinion that class already means type, so it makes no difference. Also, class
is shorter.

19.3.2 Generic programming
Templates are the basis for generic programming in C++. In fact, the simplest
definition of “generic programming” in C++ is “using templates.” That definition

Stroustrup_book.indb 681Stroustrup_book.indb 681 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS682

is a bit too simpleminded, though. We should not define fundamental program-
ming concepts in terms of programming language features. Programming lan-
guage features exist to support programming techniques — not the other way
around. As with most popular notions, there are many definitions of “generic
programming.” We think that the most useful simple definition is

Generic programming: Writing code that works with a variety of types present-
ed as arguments, as long as those argument types meet specifi c syntactic and
semantic requirements.

For example, the elements of a vector must be of a type that we can copy (by
copy construction and copy assignment), and in Chapters 20 and 21 we will see
templates that require arithmetic operations on their arguments. When what
we parameterize is a class, we get a class template, what is often called a parame-
terized type or a parameterized class. When what we parameterize is a function, we
get a function template, what is often called a parameterized function and sometimes
also called an algorithm. Thus, generic programming is sometimes referred to as
“algorithm-oriented programming”; the focus of the design is more the algorithms
than the data types they use.

Since the notion of parameterized types is so central to programming, let’s
explore the somewhat bewildering terminology a bit further. That way we have a
chance of not getting too confused when we meet such notions in other contexts.

This form of generic programming relying on explicit template parameters is
often called parametric polymorphism. In contrast, the polymorphism you get from us-
ing class hierarchies and virtual functions is called ad hoc polymorphism and that style
of programming is called object-oriented programming (§14.3–4). The reason that both
styles of programming are called polymorphism is that each style relies on the pro-
grammer to present many versions of a concept by a single interface. Polymorphism
is Greek for “many shapes,” referring to the many different types you can manip-
ulate through a common interface. In the Shape examples from Chapters 16–19
we literally accessed many shapes (such as Text, Circle, and Polygon) through the
interface defined by Shape. When we use vectors, we use many vectors (such as
vector<int>, vector<double>, and vector<Shape*>) through the interface defined
by the vector template.

There are several differences between object-oriented programming (using
class hierarchies and virtual functions) and generic programming (using tem-
plates). The most obvious is that the choice of function invoked when you use
generic programming is determined by the compiler at compile time, whereas for
object-oriented programming, it is not determined until run time. For example:

v.push_back(x); // put x into the vector v
s.draw(); // draw the shape s

Stroustrup_book.indb 682Stroustrup_book.indb 682 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 683

For v.push_back(x) the compiler will determine the element type for v and use the
appropriate push_back(), but for s.draw() the compiler will indirectly call some
draw() function (using s’s vtbl; see §14.3.1). This gives object-oriented programming
a degree of freedom that generic programming lacks, but leaves run-of-the-mill ge-
neric programming more regular, easier to understand, and better performing
(hence the “ad hoc” and “parametric” labels).

To sum up:

• Generic programming: supported by templates, relying on compile-time
resolution

• Object-oriented programming: supported by class hierarchies and virtual func-
tions, relying on run-time resolution

Combinations of the two are possible and useful. For example:

void draw_all(vector<Shape*>& v)
{
 for (int I = 0; i<v.size(); ++i) v[i]–>draw();
}

Here we call a virtual function (draw()) on a base class (Shape) using a virtual
function — that’s certainly object-oriented programming. However, we also kept
Shape*s in a vector, which is a parameterized type, so we also used (simple) ge-
neric programming.

So — assuming you have had your fill of philosophy for now — what do peo-
ple actually use templates for? For unsurpassed flexibility and performance:

• Use templates where performance is essential (e.g., numerics and hard
real time; see Chapters 24 and 25).

• Use templates where fl exibility in combining information from several
types is essential (e.g., the C++ standard library; see Chapters 20–21).

19.3.3 Concepts
Templates have many useful properties, such as great flexibility and near-
optimal performance, but unfortunately they are not perfect. As usual, the ben-
efits have corresponding weaknesses. For templates, the main problem is that
the flexibility and performance come at the cost of poor separation between
the “inside” of a template (its definition) and its interface (its declaration). This
manifests itself in poor error diagnostics — often spectacularly poor error mes-
sages. Sometimes, these error messages come much later in the compilation
process than we would prefer.

Stroustrup_book.indb 683Stroustrup_book.indb 683 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS684

When compiling a use of a template, the compiler “looks into” the template
and also into the template arguments. It does so to get the information to generate
optimal code. To have all that information available, current compilers tend to re-
quire that a template must be fully defined wherever it is used. That includes all of
its member functions and all template functions called from those. Consequently,
template writers tend to place template definitions in header files. This is not
actually required by the standard, but until radically improved implementations
are widely available, we recommend that you do so for your own templates: place
the definition of any template that is to be used in more than one translation unit
in a header file.

Initially, write only very simple templates yourself and proceed carefully to
gain experience. One useful development technique is to do as we did for vector:
First develop and test a class using specific types. Once that works, replace the
specific types with template parameters and test with a variety of template argu-
ments. Use template-based libraries, such as the C++ standard library, for gen-
erality, type safety, and performance. Chapters 20 and 21 are devoted to the
containers and algorithms of the standard library and will give you examples of
the use of templates.

C++14 provides a mechanism for vastly improved checking of template inter-
faces. For example, in C++11 we write

template<typename T> // for all types T
class vector {
 // . . .
};

We cannot precisely state what is expected of an argument type T. The standard
says what these requirements are, but only in English, rather than in code that the
compiler can understand. We call a set of requirements on a template argument
a concept. A template argument must meet the requirements, the concepts, of the
template to which it is applied. For example, a vector requires that its elements can
be copied or moved, can have their address taken, and be default constructed (if
needed). In other words, an element must meet a set of requirements, which we
could call Element. In C++14, we can make that explicit:

template<typename T> // for all types T
 requires Element<T>() // such that T is an Element
class vector {
 // . . .
};

Stroustrup_book.indb 684Stroustrup_book.indb 684 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 685

This shows that a concept is really a type predicate, that is, a compile-time-
evaluated (constexpr) function that returns true if the type argument (here, T)
has the properties required by the concept (here, Element) and false if it does not.
This is a bit long-winded, but a shorthand notation brings us to

template<Element T> // for all types T, such that Element<T>() is true
class vector {
 // . . .
};

If we don’t have a C++14 compiler that supports concepts, we can specify our
requirements in names and in comments:

template<typename Elem> // requires Element<Elem>()
class vector {
 // . . .
};

The compiler doesn’t understand our names or read our comments, but being
explicit about concepts helps us think about our code, improves our design of
generic code, and helps other programmers understand our code. As we go along,
we will use some common and useful concepts:

• Element<E>(): E can be an element in a container.
• Container<C>(): C can hold Elements and be accessed as a [begin():end())

sequence.
• Forward_iterator<For>(): For can be used to traverse a sequence [b:e)

(like a linked list, a vector, or an array).
• Input_iterator<In>(): In can be used to read a sequence [b:e) once only

(like an input stream).
• Output_iterator<Out>(): A sequence can be output using Out.
• Random_access_iterator<Ran>(): Ran can be used to read and write a

sequence [b:e) repeatedly and supports subscripting using [].
• Allocator<A>(): A can be used to acquire and release memory (like the

free store).
• Equal_comparable<T>(): We can compare two Ts for equality using == to

get a Boolean result.
• Equal_comparable<T,U>(): We can compare a T to a U for equality using

== to get a Boolean result.

Stroustrup_book.indb 685Stroustrup_book.indb 685 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS686

• Predicate<P,T>(): We can call P with an argument of type T to get a Bool-
ean result.

• Binary_predicate<P,T>(): We can call P with two arguments of type T to
get a Boolean result.

• Binary_predicate<P,T,U>(): We can call P with arguments of types T and
U to get a Boolean result.

• Less_comparable<L,T>(): We can use L to compare two Ts for less than
using < to get a Boolean result.

• Less_comparable<L,T,U>(): We can use L to compare a T to a U for less
than using < to get a Boolean result.

• Binary_operation<B,T,U>(): We can use B to do an operation on two Ts.
• Binary_operation<B,T,U>(): We can use B to do an operation on a T and

a U.
• Number<N>(): N behaves like a number, supporting +, -, *, and /.

For standard library containers and algorithms, these concepts (and many more)
are specified in excruciating detail. Here, especially in Chapters 20 and 21, we will
use them informally to document our containers and algorithms.

A container type and an iterator type, T, have a value type (written as
Value_type<T>), which is the element type. Often, that Value_type<T> is a mem-
ber type T::value_type; see vector and list (§20.5).

19.3.4 Containers and inheritance
There is one kind of combination of object-oriented programming and generic
programming that people always try, but it doesn’t work: attempting to use a
container of objects of a derived class as a container of objects of a base class. For
example:

vector<Shape> vs;
vector<Circle> vc;
vs = vc; // error: vector<Shape> required
void f(vector<Shape>&);
f(vc); // error: vector<Shape> required

But why not? After all, you say, I can convert a Circle to a Shape! Actually, no,
you can’t. You can convert a Circle* to a Shape* and a Circle& to a Shape&, but
we deliberately disabled assignment of Shapes, so that you wouldn’t have to won-
der what would happen if you put a Circle with a radius into a Shape variable that
doesn’t have a radius (§14.2.4). What would have happened — had we allowed

Stroustrup_book.indb 686Stroustrup_book.indb 686 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 687

it — would have been what is called “slicing” and is the class object equivalent of
integer truncation (§3.9.2).

So we try again using pointers:

vector<Shape*> vps;
vector<Circle*> vpc;
vps = vpc; // error: vector<Shape*> required
void f(vector<Shape*>&);
f(vpc); // error: vector<Shape*> required

Again, the type system resists; why? Consider what f() might do:

void f(vector<Shape*>& v)
{
 v.push_back(new Rectangle{Point{0,0},Point{100,100}});
}

Obviously, we can put a Rectangle* into a vector<Shape*>. However, if that
vector<Shape*> was elsewhere considered to be a vector<Circle*>, someone
would get a nasty surprise. In particular, had the compiler accepted the example
above, what would a Rectangle* be doing in vpc? Inheritance is a powerful and
subtle mechanism and templates do not implicitly extend its reach. There are
ways of using templates to express inheritance, but they are beyond the scope of
this book. Just remember that “D is a B” does not imply “C<D> is a C” for an
arbitrary template C — and we should value that as a protection against accidental
type violations. See also §25.4.4.

19.3.5 Integers as template parameters
Obviously, it is useful to parameterize classes with types. How about parameteriz-
ing classes with “other things,” such as integer values and string values? Basically,
any kind of argument can be useful, but we’ll consider only type and integer
parameters. Other kinds of parameters are less frequently useful, and C++’s sup-
port for other kinds of parameters is such that their use requires quite detailed
knowledge of language features.

Consider an example of the most common use of an integer value as a template
argument, a container where the number of elements is known at compile time:

template<typename T, int N> struct array {
 T elem[N]; // hold elements in member array

 // rely on the default constructors, destructor, and assignment

Stroustrup_book.indb 687Stroustrup_book.indb 687 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS688

 T& operator[] (int n); // access: return reference
 const T& operator[] (int n) const;

 T* data() { return elem; } // conversion to T*
 const T* data() const { return elem; }

 int size() const { return N; }
};

We can use array (see also §20.7) like this:

array<int,256> gb; // 256 integers
array<double,6> ad = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };
const int max = 1024;

void some_fct(int n)
{
 array<char,max> loc;
 array<char,n> oops; // error: the value of n not known to compiler
 // . . .
 array<char,max> loc2 = loc; // make backup copy
 // . . .
 loc = loc2; // restore
 // . . .
}

Clearly, array is very simple — much simpler and less powerful than vector — so
why would anyone want to use an array rather than a vector? One answer is
“efficiency.” We know the size of an array at compile time, so the compiler can
allocate static memory (for global objects, such as gb) and stack memory (for local
objects, such as loc) rather than using the free store. When we do range checking,
the checks can be against constants (the size parameter N). For most programs
the efficiency improvement is insignificant, but if you are writing a crucial system
component, such as a network driver, even a small difference can matter. More
importantly, some programs simply can’t be allowed to use the free store. Such
programs are typically embedded systems programs and/or safety-critical pro-
grams (see Chapter 25). In such programs, array gives us many of the advantages
of vector without violating a critical restriction (no free-store use).

Let’s ask the opposite question: not “Why can’t we just use vector?” but
“Why not just use built-in arrays?” As we saw in §18.6, arrays can be rather ill
behaved: they don’t know their own size, they convert to pointers at the slightest
provocation, they don’t copy properly; like vector, array doesn’t have those prob-
lems. For example:

Stroustrup_book.indb 688Stroustrup_book.indb 688 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 689

double* p = ad; // error: no implicit conversion to pointer
double* q = ad.data(); // OK: explicit conversion

template<typename C> void printout(const C& c) // function template
{
 for (int i = 0; i<c.size(); ++i) cout << c[i] <<'\n';
}

This printout() can be called by an array as well as a vector:

printout(ad); // call with array
vector<int> vi;
// . . .
printout(vi); // call with vector

This is a simple example of generic programming applied to data access. It works
because the interface used for array and vector (size() and subscripting) is the
same. Chapters 20 and 21 will explore this style of programming in some detail.

19.3.6 Template argument deduction
For a class template, you specify the template arguments when you create an ob-
ject of some specific class. For example:

array<char,1024> buf; // for buf, T is char and N is 1024
array<double,10> b2; // for b2, T is double and N is 10

For a function template, the compiler usually deduces the template arguments
from the function arguments. For example:

template<class T, int N> void fill(array<T,N>& b, const T& val)
{
 for (int i = 0; i<N; ++i) b[i] = val;
}

void f()
{
 fill(buf,'x'); // for fill(), T is char and N is 1024
 // because that’s what buf has
 fill(b2,0.0); // for fill(), T is double and N is 10
 // because that’s what b2 has
}

Stroustrup_book.indb 689Stroustrup_book.indb 689 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS690

Technically, fill(buf,'x') is shorthand for fill<char,1024>(buf,'x'), and fill(b2,0) is
shorthand for fill<double,10>(b2,0), but fortunately we don’t often have to be
that specific. The compiler figures it out for us.

19.3.7 Generalizing vector
When we generalized vector from a class “vector of double” to a template “vector
of T,” we didn’t review the definitions of push_back(), resize(), and reserve(). We
must do that now because as they are defined in §19.2.2 and §19.2.3 they make
assumptions that are true for doubles, but not true for all types that we’d like to
use as vector element types:

• How do we handle a vector<X> where X doesn’t have a default value?
• How do we ensure that elements are destroyed when we are fi nished with

them?

Must we solve those problems? We could say, “Don’t try to make vectors of types
without default values” and “Don’t use vectors for types with destructors in ways
that cause problems.” For a facility that is aimed at “general use,” such restrictions
are annoying to users and give the impression that the designer hasn’t thought
the problem through or doesn’t really care about users. Often, such suspicions are
correct, but the designers of the standard library didn’t leave these warts in place.
To mirror the standard library vector, we must solve these two problems.

We can handle types without a default by giving the user the option to specify
the value to be used when we need a “default value”:

template<typename T> void vector<T>::resize(int newsize, T def = T());

That is, use T() as the default value unless the user says otherwise. For example:

vector<double> v1;
v1.resize(100); // add 100 copies of double(), that is, 0.0
v1.resize(200, 0.0); // add 100 copies of 0.0 — mentioning 0.0 is redundant
v1.resize(300, 1.0); // add 100 copies of 1.0

struct No_default {
 No_default(int); // the only constructor for No_default
 // . . .
};

vector<No_default> v2(10); // error: tries to make 10 No_default()s
vector<No_default> v3;

Stroustrup_book.indb 690Stroustrup_book.indb 690 4/22/14 9:43 AM4/22/14 9:43 AM

19.3 TEMPLATES 691

v3.resize(100, No_default(2)); // add 100 copies of No_default(2)
v3.resize(200); // error: tries to add 100 No_default()s

The destructor problem is harder to address. Basically, we need to deal with
something really awkward: a data structure consisting of some initialized data
and some uninitialized data. So far, we have gone a long way to avoid unini-
tialized data and the programming errors that usually accompany it. Now — as
implementers of vector — we have to face that problem so that we — as users of
vector — don’t have to in our applications.

First, we need to find a way of getting and manipulating uninitialized storage.
Fortunately, the standard library provides a class allocator, which provides unini-
tialized memory. A slightly simplified version looks like this:

template<typename T> class allocator {
public:
 // . . .
 T* allocate(int n); // allocate space for n objects of type T
 void deallocate(T* p, int n); // deallocate n objects of type T starting at p

 void construct(T* p, const T& v); // construct a T with the value v in p
 void destroy(T* p); // destroy the T in p
};

Should you need the full story, have a look in The C++ Programming Language,
<memory> (§B.1.1), or the standard. However, what is presented here shows the
four fundamental operations that allow us to

• Allocate memory of a size suitable to hold an object of type T without
initializing

• Construct an object of type T in uninitialized space
• Destroy an object of type T, thus returning its space to the uninitialized

state
• Deallocate uninitialized space of a size suitable for an object of type T

Unsurprisingly, an allocator is exactly what we need for implementing vector<T>
::reserve(). We start by giving vector an allocator parameter:

template<typename T, typename A = allocator<T>> class vector {
 A alloc; // use allocate to handle memory for elements
 // . . .
};

Stroustrup_book.indb 691Stroustrup_book.indb 691 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS692

Except for providing an allocator — and using the standard one by default instead
of using new — all is as before. As users of vector, we can ignore allocators until
we find ourselves needing a vector that manages memory for its elements in some
unusual way. As implementers of vector and as students trying to understand fun-
damental problems and learn fundamental techniques, we must see how a vector
can deal with uninitialized memory and present properly constructed objects to its
users. The only code affected is vector member functions that directly deal with
memory, such as vector<T>::reserve():

template<typename T, typename A>
void vector<T,A>::reserve(int newalloc)
{
 if (newalloc<=space) return; // never decrease allocation
 T* p = alloc.allocate(newalloc); // allocate new space
 for (int i=0; i<sz; ++i) alloc.construct(&p[i],elem[i]); // copy
 for (int i=0; i<sz; ++i) alloc.destroy(&elem[i]); // destroy
 alloc.deallocate(elem,space); // deallocate old space
 elem = p;
 space = newalloc;
}

We move an element to the new space by constructing a copy in uninitialized
space and then destroying the original. We can’t use assignment because for types
such as string, assignment assumes that the target area has been initialized.

Given reserve(), vector<T,A>::push_back() is simple to write:

template<typename T, typename A>
void vector<T,A>::push_back(const T& val)
{
 if (space==0) reserve(8); // start with space for 8 elements
 else if (sz==space) reserve(2*space); // get more space
 alloc.construct(&elem[sz],val); // add val at end
 ++sz; // increase the size
}

Similarly, vector<T,A>::resize() is not too difficult:

template<typename T, typename A>
void vector<T,A>::resize(int newsize, T val = T())
{
 reserve(newsize);
 for (int i=sz; i<newsize; ++i) alloc.construct(&elem[i],val); // construct

Stroustrup_book.indb 692Stroustrup_book.indb 692 4/22/14 9:43 AM4/22/14 9:43 AM

19.4 RANGE CHECKING AND EXCEPTIONS 693

 for (int i = newsize; i<sz; ++i) alloc.destroy(&elem[i]); // destroy
 sz = newsize;
}

Note that because some types do not have a default constructor, we again provide
the option to supply a value to be used as an initial value for new elements.

The other new thing here is the destruction of “surplus elements” in the case
where we are resizing to a smaller vector. Think of the destructor as turning a
typed object into “raw memory.”

“Messing with allocators” is pretty advanced stuff, and tricky. Leave it alone
until you are ready to become an expert.

19.4 Range checking and exceptions
We look at our vector so far and find (with horror?) that access isn’t range checked.
The implementation of operator[] is simply

template<typename T, typename A> T& vector<T,A>::operator[](int n)
{
 return elem[n];
}

So, consider:

vector<int> v(100);
v[–200] = v[200]; // oops!
int i;
cin>>i;
v[i] = 999; // maul an arbitrary memory location

This code compiles and runs, accessing memory not owned by our vector. This
could mean big trouble! In a real program, such code is unacceptable. Let’s try to
improve our vector to deal with this problem. The simplest approach would be to
add a checked access operation, called at():

struct out_of_range { /* . . . */ }; // class used to report range access errors

template<typename T, typename A = allocator<T>> class vector {
 // . . .
 T& at(int n); // checked access
 const T& at(int n) const; // checked access

Stroustrup_book.indb 693Stroustrup_book.indb 693 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS694

 T& operator[](int n); // unchecked access
 const T& operator[](int n) const; // unchecked access
 // . . .
};

template<typename T, typename A > T& vector<T,A>::at(int n)
{
 if (n<0 || sz<=n) throw out_of_range();
 return elem[n];
}

template<typename T, typename A > T& vector<T,A>::operator[](int n)
 // as before
{
 return elem[n];
}

Given that, we could write

void print_some(vector<int>& v)
{
 int i = –1;
 while(cin>>i && i!=–1)
 try {
 cout << "v[" << i << "]==" << v.at(i) << "\n";
 }
 catch(out_of_range) {
 cout << "bad index: " << i << "\n";
 }
}

Here, we use at() to get range-checked access, and we catch out_of_range in case
of an illegal access.

The general idea is to use subscripting with [] when we know that we have a
valid index and at() when we might have an out-of-range index.

19.4.1 An aside: design considerations
So far, so good, but why didn’t we just add the range check to operator[]()? Well,
the standard library vector provides checked at() and unchecked operator[]() as
shown here. Let’s try to explain how that makes some sense. There are basically
four arguments:

Stroustrup_book.indb 694Stroustrup_book.indb 694 4/22/14 9:43 AM4/22/14 9:43 AM

19.4 RANGE CHECKING AND EXCEPTIONS 695

 1. Compatibility: People have been using unchecked subscripting since long
before C++ had exceptions.

 2. Efficiency: You can build a checked-access operator on top of an optimally
fast unchecked-access operator, but you cannot build an optimally fast
access operator on top of a checked-access operator.

 3. Constraints: In some environments, exceptions are unacceptable.
 4. Optional checking: The standard doesn’t actually say that you can’t range

check vector, so if you want checking, use an implementation that checks.

19.4.1.1 Compatibility
People really, really don’t like to have their old code break. For example, if you
have a million lines of code, it could be a very costly affair to rework it all to use ex-
ceptions correctly. We can argue that the code would be better for the extra work,
but then we are not the ones who have to pay (in time or money). Furthermore,
maintainers of existing code usually argue that unchecked code may be unsafe in
principle, but their particular code has been tested and used for years and all the
bugs have already been found. We can be skeptical about that argument, but again
nobody who hasn’t had to make such decisions about real code should be too
judgmental. Naturally, there was no code using the standard library vector before
it was introduced into the C++ standard, but there were many millions of lines of
code that used very similar vectors that (being pre-standard) didn’t use exceptions.
Much of that code was later modified to use the standard.

19.4.1.2 Efficiency
Yes, range checking can be a burden in extreme cases, such as buffers for network
interfaces and matrices in high-performance scientific computations. However,
the cost of range checking is rarely a concern in the kind of “ordinary comput-
ing” that most of us spend most of our time on. Thus, we recommend and use a
range-checked implementation of vector whenever we can.

19.4.1.3 Constraints
Again, the argument holds for some programmers and some applications. In
fact, it holds for a whole lot of programmers and shouldn’t be lightly ignored.
However, if you are starting a new program in an environment that doesn’t in-
volve hard real time (see §25.2.1), prefer exception-based error handling and
range-checked vectors.

19.4.1.4 Optional checking
The ISO C++ standard simply states that out-of-range vector access is not guar-
anteed to have any specific semantics, and that such access should be avoided. It

Stroustrup_book.indb 695Stroustrup_book.indb 695 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS696

is perfectly standards-conforming to throw an exception when a program tries an
out-of-range access. So, if you like vector to throw and don’t need to be concerned
by the first three reasons for a particular application, use a range-checked imple-
mentation of vector. That’s what we are doing for this book.

The long and the short of this is that real-world design can be messier than
we would prefer, but there are ways of coping.

19.4.2 A confession: macros
Like our vector, most implementations of the standard library vector don’t guar-
antee to range check the subscript operator ([]) but provide at() that checks. So
where did those std::out_of_range exceptions in our programs come from? Ba-
sically, we chose “option 4” from §19.4.1: a vector implementation is not obliged
to range check [], but it is not prohibited from doing so either, so we arranged
for checking to be done. What you might have been using is our debug version,
called Vector, which does check []. That’s what we use when we develop code. It
cuts down on errors and debug time at little cost to performance:

struct Range_error : out_of_range { // enhanced vector range error reporting
 int index;
 Range_error(int i) :out_of_range("Range error"), index(i) { }
};

template<typename T> struct Vector : public std::vector<T> {
 using size_type = typename std::vector<T>::size_type;
 using vector<T>::vector; // use vector<T>’s constructors (§20.5)

 T& operator[](size_type i) // rather than return at(i);
 {
 if (i<0||this–>size()<=i) throw Range_error(i);
 return std::vector<T>::operator[](i);
 }

 const T& operator[](size_type i) const
 {
 if (i<0||this–>size()<=i) throw Range_error(i);
 return std::vector<T>::operator[](i);
 }
};

We use Range_error to make the offending index available for debugging.
Deriving from std::vector gives us all of vector’s member functions for Vector.
The first using introduces a convenient synonym for std::vector’s size_type; see
§20.5. The second using gives us all of vector’s constructors for Vector.

Stroustrup_book.indb 696Stroustrup_book.indb 696 4/22/14 9:43 AM4/22/14 9:43 AM

19.5 RESOURCES AND EXCEPTIONS 697

This Vector has been useful in debugging nontrivial programs. The alterna-
tive is to use a systematically checked implementation of the complete standard
library vector — in fact, that may indeed be what you have been using; we have
no way of knowing exactly what degree of checking your compiler and library
provide (beyond what the standard guarantees).

In std_lib_facilities.h, we use the nasty trick (a macro substitution) of redefin-
ing vector to mean Vector:

// disgusting macro hack to get a range-checked vector:
#define vector Vector

That means that whenever you wrote vector, the compiler saw Vector. This trick
is nasty because what you see looking at the code is not what the compiler sees. In
real-world code, macros are a significant source of obscure errors (§27.8, §A.17.2).

We did the same to provide range-checked access for string.
Unfortunately, there is no standard, portable, and clean way of getting range

checking from an implementation of vector’s []. It is, however, possible to do a
much cleaner and more complete job of a range-checked vector (and string) than
we did. However, that usually involves replacement of a vendor’s standard library
implementation, adjusting installation options, or messing with standard library
source code. None of those options is appropriate for a beginner’s first week of
programming — and we used string in Chapter 2.

19.5 Resources and exceptions
So, vector can throw exceptions, and we recommend that when a function cannot
perform its required action, it throws an exception to tell that to its callers (Chap-
ter 5). Now is the time to consider what to do when we write code that must deal
with exceptions thrown by vector operations and other functions that we call. The
naive answer — “Use a try-block to catch the exception, write an error message,
and then terminate the program” — is too crude for most nontrivial systems.

One of the fundamental principles of programming is that if we acquire a
 resource, we must — somehow, directly or indirectly — return it to whatever part of
the system manages that resource. Examples of resources are

• Memory
• Locks
• File handles
• Thread handles
• Sockets
• Windows

Stroustrup_book.indb 697Stroustrup_book.indb 697 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS698

Basically, we define a resource as something that is acquired and must be given
back (released) or reclaimed by some “resource manager.” The simplest example
is free-store memory that we acquire using new and return to the free store using
delete. For example:

void suspicious(int s, int x)
{
 int* p = new int[s]; // acquire memory
 // . . .
 delete[] p; // release memory
}

As we saw in §17.4.6, we have to remember to release the memory, and that’s not
always easy to do. When we add exceptions to the picture, resource leaks can
become common; all it takes is ignorance or some lack of care. In particular, we
view code, such as suspicious(), that explicitly uses new and assigns the resulting
pointer to a local variable with great suspicion.

We call an object, such as a vector, that is responsible for releasing a resource
the owner or a handle of the resource for which it is responsible.

19.5.1 Potential resource management problems
One reason for suspicion of apparently innocuous pointer assignments such as

int* p = new int[s]; // acquire memory

is that it can be hard to verify that the new has a corresponding delete. At least
suspicious() has a delete[] p; statement that might release the memory, but let’s
imagine a few things that might cause that release not to happen. What could we
put in the . . . part to cause a memory leak? The problematic examples we find
should give you cause for thought and make you suspicious of such code. They
should also make you appreciate the simple and powerful alternative to such code.

Maybe p no longer points to the object when we get to the delete:

void suspicious(int s, int x)
{
 int* p = new int[s]; // acquire memory
 // . . .
 if (x) p = q; // make p point to another object
 // . . .
 delete[] p; // release memory
}

Stroustrup_book.indb 698Stroustrup_book.indb 698 4/22/14 9:43 AM4/22/14 9:43 AM

19.5 RESOURCES AND EXCEPTIONS 699

We put that if (x) there to be sure that you couldn’t know whether we had changed
the value of p. Maybe we never get to the delete:

void suspicious(int s, int x)
{
 int* p = new int[s]; // acquire memory
 // . . .
 if (x) return;
 // . . .
 delete[] p; // release memory
}

Maybe we never get to the delete because we threw an exception:

void suspicious(int s, int x)
{
 int* p = new int[s]; // acquire memory
 vector<int> v;
 // . . .
 if (x) p[x] = v.at(x);
 // . . .
 delete[] p; // release memory
}

It is this last possibility that concerns us most here. When people first encounter
this problem, they tend to consider it a problem with exceptions rather than a
resource management problem. Having misclassified the root cause, they come
up with a solution that involves catching the exception:

void suspicious(int s, int x) // messy code
{
 int* p = new int[s]; // acquire memory
 vector<int> v;
 // . . .
 try {
 if (x) p[x] = v.at(x);
 // . . .
 } catch (. . .) { // catch every exception
 delete[] p; // release memory
 throw; // re-throw the exception
 }
 // . . .
 delete[] p; // release memory
}

Stroustrup_book.indb 699Stroustrup_book.indb 699 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS700

This solves the problem at the cost of some added code and a duplication of the
resource release code (here, delete[] p;). In other words, this solution is ugly;
worse, it doesn’t generalize well. Consider acquiring more resources:

void suspicious(vector<int>& v, int s)
{
 int* p = new int[s];
 vector<int>v1;
 // . . .
 int* q = new int[s];
 vector<double> v2;
 // . . .
 delete[] p;
 delete[] q;
}

Note that if new fails to find free-store memory to allocate, it will throw the stan-
dard library exception bad_alloc. The try . . . catch technique works for this ex-
ample also, but you’ll need several try-blocks, and the code is repetitive and ugly.
We don’t like repetitive and ugly code because “repetitive” translates into code
that is a maintenance hazard, and “ugly” translates into code that is hard to get
right, hard to read, and a maintenance hazard.

TRY THIS

Add try-blocks to this last example to ensure that all resources are properly
released in all cases where an exception might be thrown.

19.5.2 Resource acquisition is initialization
Fortunately, we don’t need to plaster our code with complicated try . . . catch
statements to deal with potential resource leaks. Consider:

void f(vector<int>& v, int s)
{
 vector<int> p(s);
 vector<int> q(s);
 // . . .
}

This is better. More importantly, it is obviously better. The resource (here, free-
store memory) is acquired by a constructor and released by the matching destruc-

T

Stroustrup_book.indb 700Stroustrup_book.indb 700 4/22/14 9:43 AM4/22/14 9:43 AM

19.5 RESOURCES AND EXCEPTIONS 701

tor. We actually solved this particular “exception problem” when we solved the
memory leak problems for vectors. The solution is general; it applies to all kinds
of resources: acquire a resource in the constructor for some object that manages
it, and release it again in the matching destructor. Examples of resources that are
usually best dealt with in this way include database locks, sockets, and I/O buffers
(iostreams do it for you). This technique is usually referred to by the awkward
phrase “Resource Acquisition Is Initialization,” abbreviated to RAII.

Consider the example above. Whichever way we leave f(), the destructors for
p and q are invoked appropriately: since p and q aren’t pointers, we can’t assign to
them, a return-statement will not prevent the invocation of destructors, and neither
will throwing an exception. This general rule holds: when the thread of execution
leaves a scope, the destructors for every fully constructed object and sub-object are
invoked. An object is considered constructed when its constructor completes. Ex-
ploring the detailed implications of those two statements might cause a headache,
but they simply mean that constructors and destructors are invoked as needed.

In particular, use vector rather than explicit new and delete when you need
a nonconstant amount of storage within a scope.

19.5.3 Guarantees
What can we do where we can’t keep the vector within a single scope (and its
sub-scopes)? For example:

vector<int>* make_vec() // make a filled vector
{
 vector<int>* p = new vector<int>; // we allocate on free store
 // . . . fill the vector with data; this may throw an exception . . .
 return p;
}

This is an example of a common kind of code: we call a function to construct a
complicated data structure and return that data structure as the result. The snag
is that if an exception is thrown while “filling” the vector, make_vec() leaks that
vector. An unrelated problem is that if the function succeeds, someone will have
to delete the object returned by make_vec() (see §17.4.6).

We can add a try-block to deal with the possibility of a throw:

vector<int>* make_vec() // make a filled vector
{
 vector<int>* p = new vector<int>; // we allocate on free store
 try {
 // fill the vector with data; this may throw an exception
 return p;
 }

Stroustrup_book.indb 701Stroustrup_book.indb 701 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS702

 catch (. . .) {
 delete p; // do our local cleanup
 throw; // re-throw to allow our caller to deal with the fact
 // that make_vec() couldn’t do what was
 // required of it
 }
}

This make_vec() function illustrates a very common style of error handling: it
tries to do its job and if it can’t, it cleans up any local resources (here the vector on
the free store) and indicates failure by throwing an exception. Here, the exception
thrown is one that some other function (e.g., vector::at()) threw; make_vec() sim-
ply re-throws it using throw;. This is a simple and effective way of dealing with
errors and can be used systematically.

• The basic guarantee: The purpose of the try . . . catch code is to ensure that
make_vec() either succeeds or throws an exception without having leaked
any resources. That’s often called the basic guarantee. All code that is part
of a program that we expect to recover from an exception throw should
provide the basic guarantee. All standard library code provides the basic
guarantee.

• The strong guarantee: If, in addition to providing the basic guarantee, a func-
tion also ensures that all observable values (all values not local to the func-
tion) are the same after failure as they were when we called the function,
that function is said to provide the strong guarantee. The strong guarantee is
the ideal when we write a function: either the function succeeded at doing
everything it was asked to do or else nothing happened except that an
exception was thrown to indicate failure.

• The no-throw guarantee: Unless we could do simple operations without any
risk of failing and throwing an exception, we would not be able to write
code to meet the basic guarantee and the strong guarantee. Fortunately,
essentially all built-in facilities in C++ provide the no-throw guarantee:
they simply can’t throw. To avoid throwing, simply avoid throw itself,
new, and dynamic_cast of reference types (§A.5.7).

The basic guarantee and the strong guarantee are most useful for thinking about
correctness of programs. RAII is essential for implementing code written accord-
ing to those ideals simply and with high performance.

Naturally, we should always avoid undefined (and usually disastrous) oper-
ations, such as dereferencing 0, dividing by 0, and accessing an array beyond its
range. Catching exceptions does not save you from violations of the fundamental
language rules.

Stroustrup_book.indb 702Stroustrup_book.indb 702 4/22/14 9:43 AM4/22/14 9:43 AM

19.5 RESOURCES AND EXCEPTIONS 703

19.5.4 unique_ptr
So, make_vec() is a useful kind of function that obeys the basic rules for good
resource management in the presence of exceptions. It provides the basic guar-
antee — as all good functions should — when we want to recover from exception
throws. Unless something nasty is done with nonlocal data in the “fill the vector
with data” part, it even provides the strong guarantee. However, that try . . . catch
code is still ugly. The solution is obvious: somehow we must use RAII; that is, we
need to provide an object to hold that vector<int> so that it can delete the vector
if an exception occurs. In <memory>, the standard library provides unique_ptr
for that:

vector<int>* make_vec() // make a filled vector
{
 unique_ptr<vector<int>> p {new vector<int>}; // allocate on free store
 // . . . fill the vector with data; this may throw an exception . . .
 return p.release(); // return the pointer held by p
}

A unique_ptr is an object that holds a pointer. We immediately initialize it with
the pointer we got from new. You can use –> and * on a unique_ptr exactly like
a built-in pointer (e.g., p–>at(2) or (*p).at(2)), so we think of unique_ptr as a
kind of pointer. However, the unique_ptr owns the object pointed to: when the
unique_ptr is destroyed, it deletes the object it points to. That means that if an ex-
ception is thrown while the vector<int> is being filled, or if we return prematurely
from make_vec, the vector<int> is properly destroyed. The p.release() extracts
the contained pointer (to the vector<int>) from p so that we can return it, and it
also makes p hold the nullptr so that destroying p (as is done by the return) does
not destroy anything.

Using unique_ptr simplifies make_vec() immensely. Basically, it makes make_
vec() as simple as the naive but unsafe version. Importantly, having unique_ptr
allows us to repeat our recommendation to look upon explicit try-blocks with
suspicion; most can — as in make_vec() — be replaced by some variant of the “Re-
source Acquisition Is Initialization” technique.

The version of make_vec() that uses a unique_ptr is fine, except that it still
returns a pointer, so that someone still has to remember to delete that pointer.
Returning a unique_ptr would solve that:

unique_ptr<vector<int>> make_vec() // make a filled vector
{
 unique_ptr<vector<int>> p {new vector<int>}; // allocate on free store
 // . . . fill the vector with data; this may throw an exception . . .
 return p;
}

Stroustrup_book.indb 703Stroustrup_book.indb 703 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS704

A unique_ptr is very much like an ordinary pointer, but it has one significant re-
striction: you cannot assign one unique_ptr to another to get two unique_ptrs to
the same object. That has to be so, or confusion could arise about which unique_
ptr owned the pointed-to object and had to delete it. For example:

void no_good()
{
 unique_ptr<X> p { new X };
 unique_ptr<X> q {p}; // error: fortunately
 // . . .
} // here p and q both delete the X

If you want to have a “smart” pointer that both guarantees deletion and can be
copied, use a shared_ptr (§B.6.5). However, that is a more heavyweight solution
that involves a use count to ensure that the last copy destroyed destroys the object
referred to.

A unique_ptr has the interesting property of having no overhead compared
to an ordinary pointer.

19.5.5 Return by moving
The technique of returning a lot of information by placing it on the free store and
returning a pointer to it is very common. It is also a source of a lot of complexity
and one of the major sources of memory management errors: Who deletes a
pointer to the free store returned from a function? Are we sure that a pointer to
an object on the free store is properly deleted in case of an exception? Unless we
are systematic about the management of pointers (or use “smart” pointers such
as unique_ptr and shared_ptr), the answer will be something like “Well, we think
so,” and that’s not good enough.

Fortunately, when we added move operations to vector, we solved that prob-
lem for vectors: just use a move constructor to get the ownership of the elements
out of the function. For example:

vector<int> make_vec() // make a filled vector
{
 vector<int> res;
 // . . . fill the vector with data; this may throw an exception . . .
 return res; // the move constructor efficiently transfers ownership
}

This (final) version of make_vec() is the simplest and the one we recommend. The
move solution generalizes to all containers and further still to all resource handles.
For example, fstream uses this technique to keep track of file handles. The move

Stroustrup_book.indb 704Stroustrup_book.indb 704 4/22/14 9:43 AM4/22/14 9:43 AM

19.5 RESOURCES AND EXCEPTIONS 705

solution is simple and general. Using resource handles simplifies code and eliminates
a major source of errors. Compared to the direct use of pointers, the run-time over-
head of using such handles is nothing, or very minor and predictable.

19.5.6 RAII for vector
Even using a smart pointer, such as unique_ptr, may seem to be a bit ad hoc.
How can we be sure that we have spotted all pointers that require protection?
How can we be sure that we have released all pointers to objects that should not
be destroyed at the end of a scope? Consider reserve() from §19.3.7:

template<typename T, typename A>
void vector<T,A>::reserve(int newalloc)
{
 if (newalloc<=space) return; // never decrease allocation
 T* p = alloc.allocate(newalloc); // allocate new space
 for (int i=0; i<sz; ++i) alloc.construct(&p[i],elem[i]); // copy
 for (int i=0; i<sz; ++i) alloc.destroy(&elem[i]); // destroy
 alloc.deallocate(elem,space); // deallocate old space
 elem = p;
 space = newalloc;
}

Note that the copy operation for an old element, alloc.construct(&p[i],elem[i]),
might throw an exception. So, p is an example of the problem we warned about
in §19.5.1. Ouch! We could apply the unique_ptr solution. A better solution is to
step back and realize that “memory for a vector” is a resource; that is, we can de-
fine a class vector_base to represent the fundamental concept we have been using
all the time, the picture with the three elements defining a vector’s memory use:

sz: 0: sz–1:

Elements
(initialized)

elem:
space:

In code, that is (after adding the allocator for completeness)

template<typename T, typename A>
struct vector_base {
 A alloc; // allocator
 T* elem; // start of allocation

Stroustrup_book.indb 705Stroustrup_book.indb 705 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS706

 int sz; // number of elements
 int space; // amount of allocated space

 vector_base(const A& a, int n)
 : alloc{a}, elem{alloc.allocate(n)}, sz{n}, space{n}{ }
 ~vector_base() { alloc.deallocate(elem,space); }
};

Note that vector_base deals with memory rather than (typed) objects. Our vector
implementation can use that to hold objects of the desired element type. Basically,
vector is simply a convenient interface to vector_base:

template<typename T, typename A = allocator<T>>
class vector : private vector_base<T,A> {
public:
 // . . .
};

We can then rewrite reserve() to something simpler and more correct:

template<typename T, typename A>
void vector<T,A>::reserve(int newalloc)
{
 if (newalloc<=this–>space) return; // never decrease allocation
 vector_base<T,A> b(this–>alloc,newalloc); // allocate new space
 uninitialized_copy(b.elem,&b.elem[this–>sz],this–>elem); // copy
 for (int i=0; i<this–>sz; ++i)
 this–>alloc.destroy(&this–>elem[i]); // destroy old
 swap<vector_base<T,A>>(*this,b); // swap representations
}

We use the standard library function uninitialized_copy to construct copies of
the elements from b because it correctly handles throws from an element copy
constructor and because calling a function is simpler than writing a loop. When
we exit reserve(), the old allocation is automatically freed by vector_base’s de-
structor if the copy operation succeeded. If instead that exit is caused by the copy
operation throwing an exception, the new allocation is freed. The swap() function
is a standard library algorithm (from <algorithm>) that exchanges the value of
two objects. We used swap<vector_base<T,A>>(*this,b) rather than the simpler
swap(*this,b) because *this and b are of different types (vector and vector_base,
respectively), so we had to be explicit about which swap specialization we wanted.
Similarly, we have to explicitly use this–> when we refer to a member of the base

Stroustrup_book.indb 706Stroustrup_book.indb 706 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 REVIEW 707

class vector_base<T,A> from a member of the derived class vector<T,A>, such as
vector<T,A>::reserve().

TRY THIS

Modify reserve to use unique_ptr. Remember to release before returning.
Compare that solution to the vector_base one. Consider which is easier to
write and which is easier to get correct.

Drill
 1. Define template<typename T> struct S { T val; };.
 2. Add a constructor, so that you can initialize with a T.
 3. Define variables of types S<int>, S<char>, S<double>, S<string>, and

S<vector<int>>; initialize them with values of your choice.
 4. Read those values and print them.
 5. Add a function template get() that returns a reference to val.
 6. Put the definition of get() outside the class.
 7. Make val private.
 8. Do 4 again using get().
 9. Add a set() function template so that you can change val.
 10. Replace set() with an S<T>::operator=(const T&). Hint: Much simpler

than §19.2.5.
 11. Provide const and non-const versions of get().
 12. Define a function template<typename T> read_val(T& v) that reads from

cin into v.
 13. Use read_val() to read into each of the variables from 3 except the

 S<vector<int>> variable.
 14. Bonus: Define input and output operators (>> and <<) for vector<T>s.

For both input and output use a { val, val, val } format. That will allow
read_val() to also handle the S<vector<int>> variable.

Remember to test after each step.

Review
 1. Why would we want to change the size of a vector?
 2. Why would we want to have different element types for different vectors?

T

Stroustrup_book.indb 707Stroustrup_book.indb 707 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS708

 3. Why don’t we just always define a vector with a large enough size for all
eventualities?

 4. How much spare space do we allocate for a new vector?
 5. When must we copy vector elements to a new location?
 6. Which vector operations can change the size of a vector after construction?
 7. What is the value of a vector after a copy?
 8. Which two operations define copy for vector?
 9. What is the default meaning of copy for class objects?
 10. What is a template?
 11. What are the two most useful types of template arguments?
 12. What is generic programming?
 13. How does generic programming differ from object-oriented programming?
 14. How does array differ from vector?
 15. How does array differ from the built-in array?
 16. How does resize() differ from reserve()?
 17. What is a resource? Define and give examples.
 18. What is a resource leak?
 19. What is RAII? What problem does it address?
 20. What is unique_ptr good for?

Terms
#defi ne
at()
basic guarantee
exception
guarantees
handle
instantiation
macro

owner
push_back()
RAII
resize()
resource
re-throw
self-assignment
shared_ptr

specialization
strong guarantee
template
template parameter
this
throw;
unique_ptr

Exercises
For each exercise, create and test (with output) a couple of objects of the defi ned
classes to demonstrate that your design and implementation actually do what you
think they do. Where exceptions are involved, this can require careful thought
about where errors can occur.

 1. Write a template function f() that adds the elements of one vector<T> to
the elements of another; for example, f(v1,v2) should do v1[i]+=v2[i] for
each element of v1.

 2. Write a template function that takes a vector<T> vt and a vector<U> vu as
arguments and returns the sum of all vt[i]*vu[i]s.

Stroustrup_book.indb 708Stroustrup_book.indb 708 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 EXERCISES 709

 3. Write a template class Pair that can hold a pair of values of any type.
Use this to implement a simple symbol table like the one we used in the
calculator (§7.8).

 4. Modify class Link from §17.9.3 to be a template with the type of value
as the template argument. Then redo exercise 13 from Chapter 17 with
Link<God>.

 5. Define a class Int having a single member of class int. Define construc-
tors, assignment, and operators +, – , *, / for it. Test it, and improve its
design as needed (e.g., define operators << and >> for convenient I/O).

 6. Repeat the previous exercise, but with a class Number<T> where T can be
any numeric type. Try adding % to Number and see what happens when
you try to use % for Number<double> and Number<int>.

 7. Try your solution to exercise 2 with some Numbers.
 8. Implement an allocator (§19.3.7) using the basic allocation functions mal-

loc() and free() (§B.11.4). Get vector as defined by the end of §19.4 to
work for a few simple test cases. Hint: Look up “placement new” and
“explicit call of destructor” in a complete C++ reference.

 9. Re-implement vector::operator=() (§19.2.5) using an allocator (§19.3.7)
for memory management.

 10. Implement a simple unique_ptr supporting only a constructor, destructor,
–>, *, and release(). In particular, don’t try to implement an assignment
or a copy constructor.

 11. Design and implement a counted_ptr<T> that is a type that holds a
pointer to an object of type T and a pointer to a “use count” (an int)
shared by all counted pointers to the same object of type T. The use
count should hold the number of counted pointers pointing to a given
T. Let the counted_ptr’s constructor allocate a T object and a use count
on the free store. Let counted_ptr’s constructor take an argument to be
used as the initial value of the T elements. When the last counted_ptr
for a T is destroyed, counted_ptr’s destructor should delete the T. Give
the counted_ptr operations that allow us to use it as a pointer. This is
an example of a “smart pointer” used to ensure that an object doesn’t
get destroyed until after its last user has stopped using it. Write a set
of test cases for counted_ptr using it as an argument in calls, container
elements, etc.

 12. Define a File_handle class with a constructor that takes a string argu-
ment (the file name), opens the file in the constructor, and closes it in the
destructor.

 13. Write a Tracer class where its constructor prints a string and its destructor
prints a string. Give the strings as constructor arguments. Use it to see
where RAII management objects will do their job (i.e., experiment with
Tracers as local objects, member objects, global objects, objects allocated

Stroustrup_book.indb 709Stroustrup_book.indb 709 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTIONS710

by new, etc.). Then add a copy constructor and a copy assignment so that
you can use Tracer objects to see when copying is done.

 14. Provide a GUI interface and a bit of graphical output to the “Hunt the
Wumpus” game from the exercises in Chapter 18. Take the input in an
input box and display a map of the part of the cave currently known to
the player in a window.

 15. Modify the program from the previous exercise to allow the user to mark
rooms based on knowledge and guesses, such as “maybe bats” and “bot-
tomless pit.”

 16. Sometimes, it is desirable that an empty vector be as small as possible. For
example, someone might use vector<vector<vector<int>>> a lot but have
most element vectors empty. Define a vector so that sizeof(vector<int>)
==sizeof(int*), that is, so that the vector itself consists only of a pointer to
a representation consisting of the elements, the number of elements, and
the space pointer.

Postscript
Templates and exceptions are immensely powerful language features. They sup-
port programming techniques of great fl exibility — mostly by allowing people to
separate concerns, that is, to deal with one problem at a time. For example, using
templates, we can defi ne a container, such as vector, separately from the defi nition
of an element type. Similarly, using exceptions, we can write the code that detects
and signals an error separately from the code that handles that error. The third
major theme of this chapter, changing the size of a vector, can be seen in a similar
light: push_back(), resize(), and reserve() allow us to separate the defi nition of a
vector from the specifi cation of its size.

Stroustrup_book.indb 710Stroustrup_book.indb 710 4/22/14 9:43 AM4/22/14 9:43 AM

711

20

Containers and Iterators

 “Write programs that do one thing
and do it well. Write programs

to work together.”

—Doug McIlroy

This chapter and the next present the STL, the contain-

ers and algorithms part of the C++ standard library.

The STL is an extensible framework for dealing with data in a

C++ program. After a first simple example, we present the gen-

eral ideals and the fundamental concepts. We discuss iteration,

linked-list manipulation, and STL containers. The key notions

of sequence and iterator are used to tie containers (data) together

with algorithms (processing). This chapter lays the groundwork

for the general, efficient, and useful algorithms presented in the

next chapter. As an example, it also presents a framework for text

editing as a sample application.

Stroustrup_book.indb 711Stroustrup_book.indb 711 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS712

20.1 Storing and processing data
Before looking into dealing with larger collections of data items, let’s consider a
simple example that points to ways of handling a large class of data-processing prob-
lems. Jack and Jill are each measuring vehicle speeds, which they record as
floating-point values. Jack was brought up as a C programmer and stores his
values in an array, whereas Jill stores hers in a vector. Now we’d like to use their
data in our program. How might we do this?

We could have Jack’s and Jill’s programs write out the values to a file and then
read them back into our program. That way, we are completely insulated from
their choices of data structures and interfaces. Often, such isolation is a good idea,
and if that’s what we decide to do we can use the techniques from Chapters 10–11
for input and a vector<double> for our calculations.

But, what if using files isn’t a good option for the task we want to do? Let’s
say that the data-gathering code is designed to be invoked as a function call to
deliver a new set of data every second. Once a second, we call Jack’s and Jill’s
functions to deliver data for us to process:

double* get_from_jack(int* count); // Jack puts doubles into an array and
 // returns the number of elements in *count
vector<double>* get_from_jill(); // Jill fills the vector

void fct()
{
 int jack_count = 0;
 double* jack_data = get_from_jack(&jack_count);

 20.1 Storing and processing data
 20.1.1 Working with data
 20.1.2 Generalizing code

 20.2 STL ideals

 20.3 Sequences and iterators
 20.3.1 Back to the example

 20.4 Linked lists
 20.4.1 List operations
 20.4.2 Iteration

 20.5 Generalizing vector yet again
 20.5.1 Container traversal

 20.5.2 auto

 20.6 An example: a simple text editor
 20.6.1 Lines
 20.6.2 Iteration

 20.7 vector, list, and string
 20.7.1 insert and erase

 20.8 Adapting our vector to the STL

 20.9 Adapting built-in arrays to the STL

 20.10 Container overview
 20.10.1 Iterator categories

Stroustrup_book.indb 712Stroustrup_book.indb 712 4/22/14 9:43 AM4/22/14 9:43 AM

20.1 STORING AND PROCESSING DATA 713

 vector<double>* jill_data = get_from_jill();
 // . . . process . . .
 delete[] jack_data;
 delete jill_data;
}

The assumption is that the data is stored on the free store and that we should de-
lete it when we are finished using it. Another assumption is that we can’t rewrite
Jack’s and Jill’s code, or wouldn’t want to.

20.1.1 Working with data
Clearly, this is a somewhat simplified example, but it is not dissimilar to a vast
number of real-world problems. If we can handle this example elegantly, we can
handle a huge number of common programming problems. The fundamental
problem here is that we don’t control the way in which our “data suppliers” store
the data they give us. It’s our job to either work with the data in the form in which
we get it or to read it and store it the way we like better.

What do we want to do with that data? Sort it? Find the highest value? Find
the average value? Find every value over 65? Compare Jill’s data with Jack’s?
See how many readings there were? The possibilities are endless, and when
writing a real program we will simply do the computation required. Here, we
just want to do something to learn how to handle data and do computations
involving lots of data. Let’s first do something really simple: find the element
with the highest value in each data set. We can do that by inserting this code in
place of the “. . . process . . .” comment in fct():

// . . .
double h = –1;
double* jack_high; // jack_high will point to the element with the highest value
double* jill_high; // jill_high will point to the element with the highest value
for (int i=0; i<jack_count; ++i)
 if (h<jack_data[i]) {
 jack_high = &jack_data[i]; // save address of largest element
 h = jack_data[i]; // update “largest element”
 }

h = –1;
for (int i=0; i< jill_data –>size(); ++i)
 if (h<(*jill_data)[i]) {
 jill_high = &(*jill_data)[i]; // save address of largest element
 h = (*jill_data)[i]; // update “largest element”
 }

Stroustrup_book.indb 713Stroustrup_book.indb 713 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS714

cout << "Jill's max: " << *jill_high
 << "; Jack's max: " << *jack_high;

// . . .

Note the ugly notation we use to access Jill’s data: (*jill_data)[i]. The function get_
from_jill() returns a pointer to a vector, a vector<double>*. To get to the data,
we first have to dereference the pointer to get to the vector, *jill_data, then we can
subscript that. However, *jill_data[i] isn’t what we want; that means *(jill_data[i])
because [] binds tighter than *, so we need the parentheses around *jill_data and
get (*jill_data)[i].

TRY THIS

If you were able to change Jill’s code, how would you redesign its interface
to get rid of the ugliness?

20.1.2 Generalizing code
What we would like is a uniform way of accessing and manipulating data so that
we don’t have to write our code differently each time we get data presented to us
in a slightly different way. Let’s look at Jack’s and Jill’s code as examples of how
we can make our code more abstract and uniform.

Obviously, what we do for Jack’s data strongly resembles what we do for Jill’s.
However, there are some annoying differences: jack_count vs. jill_data–>size()
and jack_data[i] vs. (*jill_data)[i]. We could eliminate the latter difference by in-
troducing a reference:

vector<double>& v = *jill_data;
for (int i=0; i<v.size(); ++i)
 if (h<v[i]) {
 jill_high = &v[i];
 h = v[i];
 }

This is tantalizingly close to the code for Jack’s data. What would it take to write
a function that could do the calculation for Jill’s data as well as for Jack’s? We
can think of several ways (see exercise 3), but for reasons of generality which will
become clear over the next two chapters, we chose a solution based on pointers:

double* high(double* first, double* last)
// return a pointer to the element in [first,last) that has the highest value

T

Stroustrup_book.indb 714Stroustrup_book.indb 714 4/22/14 9:43 AM4/22/14 9:43 AM

20.1 STORING AND PROCESSING DATA 715

{
 double h = –1;
 double* high;
 for(double* p = first; p!=last; ++p)
 if (h<*p) { high = p; h = *p; }
 return high;
}

Given that, we can write

double* jack_high = high(jack_data,jack_data+jack_count);
vector<double>& v = *jill_data;
double* jill_high = high(&v[0],&v[0]+v.size());

This looks better. We don’t introduce so many variables and we write the loop
and the loop body only once (in high()). If we want to know the highest values,
we can look at *jack_high and *jill_high. For example:

cout << "Jill's max: " << *jill_high
 << "; Jack's max: " << *jack_high;

Note that high() relies on a vector storing its elements in an array, so that we can
express our “find highest element” algorithm in terms of pointers into an array.

TRY THIS

We left two potentially serious errors in this little program. One can cause a
crash, and the other will give wrong answers if high() is used in many other
programs where it might have been useful. The general techniques that we
describe below will make them obvious and show how to systematically
avoid them. For now, just find them and suggest remedies.

This high() function is limited in that it is a solution to a single specific problem:

• It works for arrays only. We rely on the elements of a vector being stored
in an array, but there are many more ways of storing data, such as lists
and maps (see §20.4 and §21.6.1).

• It can be used for vectors and arrays of doubles, but not for arrays or
vectors with other element types, such as vector<double*> and char[10].

• It fi nds the element with the highest value, but there are many more sim-
ple calculations that we want to do on such data.

T

Stroustrup_book.indb 715Stroustrup_book.indb 715 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS716

Let’s explore how we can support this kind of calculation on sets of data in far
greater generality.

Please note that by deciding to express our “find highest element” algorithm
in terms of pointers, we “accidentally” generalized it to do more than we required:
we can — as desired — find the highest element of an array or a vector, but we can
also find the highest element in part of an array or in part of a vector. For example:

// . . .
vector<double>& v = *jill_data;
double* middle = &v[0]+v.size()/2;
double* high1 = high(&v[0], middle); // max of first half
double* high2 = high(middle, &v[0]+v.size()); // max of second half
// . . .

Here high1 will point to the element with the largest value in the first half of the
vector and high2 will point to the element with the largest value in the second
half. Graphically, it will look something like this:

&v[0]

high1 high2

Middle &v[0] + v.size()

We used pointer arguments for high(). That’s a bit low-level and can be error-prone.
We suspect that for many programmers, the obvious function for finding the ele-
ment with the largest value in a vector would look like this:

double* find_highest(vector<double>& v)
{
 double h = –1;
 double* high = 0;
 for (int i=0; i<v.size(); ++i)
 if (h<v[i]) { high = &v[i]; h = v[i]; }
 return high;
}

However, that wouldn’t give us the flexibility we “accidentally” obtained from
high() — we can’t use find_highest() to find the element with the highest value in
part of a vector. We actually achieved a practical benefit from writing a function that
could be used for both arrays and vectors by “messing with pointers.” We will re-
member that: generalization can lead to functions that are useful for more problems.

Stroustrup_book.indb 716Stroustrup_book.indb 716 4/22/14 9:43 AM4/22/14 9:43 AM

20.2 STL IDEALS 717

20.2 STL ideals
The C++ standard library provides a framework for dealing with data as se-
quences of elements, called the STL. STL is usually said to be an acronym for
“standard template library.” The STL is the part of the ISO C++ standard library
that provides containers (such as vector, list, and map) and generic algorithms
(such as sort, find, and accumulate). Thus we can — and do — refer to facilities,
such as vector, as being part of both “the STL” and “the standard library.” Other
standard library features, such as ostream (Chapter 10) and C-style string func-
tions (§B.11.3), are not part of the STL. To better appreciate and understand the
STL, we will first consider the problems we must address when dealing with data
and the ideals we have for a solution.

There are two major aspects of computing: the computation and the data.
Sometimes we focus on the computation and talk about if-statements, loops, func-
tions, error handling, etc. At other times, we focus on the data and talk about
arrays, vectors, strings, files, etc. However, to get useful work done we need both.
A large amount of data is incomprehensible without analysis, visualization, and
searching for “the interesting bits.” Conversely, we can compute as much as we
like, but it’s going to be tedious and sterile unless we have some data to tie our
computation to something real. Furthermore, the “computation part” of our pro-
gram has to elegantly interact with the “data part.”

Computation

Input Output

WriteRead

When we talk about data in this way, we think of lots of data: dozens of Shapes,
hundreds of temperature readings, thousands of log records, millions of points,
billions of web pages, etc.; that is, we talk about processing containers of data,
streams of data, etc. In particular, this is not a discussion of how best to choose a
couple of values to represent a small object, such as a complex number, a tempera-
ture reading, or a circle. For such types, see Chapters 9, 11, and 14.

Consider some simple examples of something we’d like to do with “a lot of
data”:

• Sort the words in dictionary order.
• Find a number in a phone book, given a name.
• Find the highest temperature.
• Find all values larger than 8800.

Stroustrup_book.indb 717Stroustrup_book.indb 717 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS718

• Find the fi rst occurrence of the value 17.
• Sort the telemetry records by unit number.
• Sort the telemetry records by time stamp.
• Find the fi rst value larger than “Petersen.”
• Find the largest amount.
• Find the fi rst difference between two sequences.
• Compute the pair-wise product of the elements of two sequences.
• Find the highest temperature for each day in a month.
• Find the top ten best sellers in the sales records.
• Count the number of occurrences of “Stroustrup” on the web.
• Compute the sum of the elements.

Note that we can describe each of these tasks without actually mentioning how
the data is stored. Clearly, we must be dealing with something like lists, vectors,
files, input streams, etc. for these tasks to make sense, but we don’t have to know
the details about how the data is stored (or gathered) to talk about what to do with
it. What is important is the type of the values or objects (the element type), how
we access those values or objects, and what we want to do with them.

These kinds of tasks are very common. Naturally, we want to write code
performing such tasks simply and efficiently. Conversely, the problems for us as
programmers are:

• There is an infi nite variation of data types (“kinds of data”).
• There is a bewildering number of ways to store collections of data elements.
• There is a huge variety of tasks we’d like to do with collections of data.

To minimize the effect of these problems, we’d like our code to take advantage of
commonalities among types, among the ways of storing data, and among our pro-
cessing tasks. In other words, we want to generalize our code to cope with these
kinds of variations. We really don’t want to hand-craft each solution from scratch;
that would be a tedious waste of time.

To get an idea of what support we would like for writing our code, consider
a more abstract view of what we do with data:

• Collect data into containers
• Such as vector, list, and array

• Organize data
• For printing
• For fast access

Stroustrup_book.indb 718Stroustrup_book.indb 718 4/22/14 9:43 AM4/22/14 9:43 AM

20.2 STL IDEALS 719

• Retrieve data items
• By index (e.g., the 42nd element)
• By value (e.g., the fi rst record with the “age fi eld” 7)
• By properties (e.g., all records with the “temperature fi eld” >32 and

<100)

• Modify a container
• Add data
• Remove data
• Sort (according to some criteria)

• Perform simple numeric operations (e.g., multiply all elements by 1.7)

We’d like to do these things without getting sucked into a swamp of details about
differences among containers, differences in ways of accessing elements, and dif-
ferences among element types. If we can do that, we’ll have come a long way
toward our goal of simple and efficient use of large amounts of data.

Looking back at the programming tools and techniques from the previous
chapters, we note that we can (already) write programs that are similar inde-
pendently of the data type used:

• Using an int isn’t all that different from using a double.
• Using a vector<int> isn’t all that different from using a vector<string>.
• Using an array of double isn’t all that different from using a vector<double>.

We’d like to organize our code so that we have to write new code only when we
want to do something really new and different. In particular, we’d like to provide
code for common programming tasks so that we don’t have to rewrite our solu-
tion each time we find a new way of storing the data or find a slightly different
way of interpreting the data.

• Finding a value in a vector isn’t all that different from fi nding a value in
an array.

• Looking for a string ignoring case isn’t all that different from looking at a
string considering uppercase letters different from lowercase ones.

• Graphing experimental data with exact values isn’t all that different from
graphing data with rounded values.

• Copying a fi le isn’t all that different from copying a vector.

We want to build on these observations to write code that’s

• Easy to read
• Easy to modify

Stroustrup_book.indb 719Stroustrup_book.indb 719 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS720

• Regular
• Short
• Fast

To minimize our programming work, we would like

• Uniform access to data
• Independently of how it is stored
• Independently of its type

• Type-safe access to data
• Easy traversal of data
• Compact storage of data
• Fast

• Retrieval of data
• Addition of data
• Deletion of data

• Standard versions of the most common algorithms
• Such as copy, fi nd, search, sort, sum, . . .

The STL provides that, and more. We will look at it not just as a very useful set of
facilities, but also as an example of a library designed for maximal flexibility and
performance. The STL was designed by Alex Stepanov to provide a framework
for general, correct, and efficient algorithms operating on data structures. The
ideal was the simplicity, generality, and elegance of mathematics.

The alternative to dealing with data using a framework with clearly articu-
lated ideals and principles is for each programmer to craft each program out of
the basic language facilities using whatever ideas seem good at the time. That’s
a lot of extra work. Furthermore, the result is often an unprincipled mess; rarely
is the result a program that is easily understood by people other than its original
designer, and only by chance is the result code that we can use in other contexts.

Having considered the motivation and the ideals, let’s look at the basic defi-
nitions of the STL, and then finally get to the examples that’ll show us how to
approximate those ideals — to write better code for dealing with data and to do
so with greater ease.

20.3 Sequences and iterators
The central concept of the STL is the sequence. From the STL point of view, a
collection of data is a sequence. A sequence has a beginning and an end. We can
traverse a sequence from its beginning to its end, optionally reading or writing the

Stroustrup_book.indb 720Stroustrup_book.indb 720 4/22/14 9:43 AM4/22/14 9:43 AM

20.3 SEQUENCES AND ITERATORS 721

value of each element. We identify the beginning and the end of a sequence by a
pair of iterators. An iterator is an object that identifies an element of a sequence.
We can think of a sequence like this:

begin:

. . .

end:

Here, begin and end are iterators; they identify the beginning and the end of
the sequence. An STL sequence is what is usually called “half-open”; that is, the
element identified by begin is part of the sequence, but the end iterator points
one beyond the end of the sequence. The usual mathematical notation for such
sequences (ranges) is [begin:end). The arrows from one element to the next indi-
cate that if we have an iterator to one element we can get an iterator to the next.

What is an iterator? An iterator is a rather abstract notion:

• An iterator points to (refers to) an element of a sequence (or one beyond
the last element).

• You can compare two iterators using == and !=.
• You can refer to the value of the element pointed to by an iterator using

the unary * operator (“dereference” or “contents of”).
• You can get an iterator to the next element by using ++.

For example, if p and q are iterators to elements of the same sequence:

Basic standard iterator operations

p==q true if and only if p and q point to the same element or both point to one
beyond the last element

p!=q !(p==q)

*p refers to the element pointed to by p

*p=val writes to the element pointed to by p

val=*p reads from the element pointed to by p

++p makes p refer to the next element in the sequence or to one beyond the
last element

Clearly, the idea of an iterator is related to the idea of a pointer (§17.4). In fact, a
pointer to an element of an array is an iterator. However, many iterators are not
just pointers; for example, we could define a range-checked iterator that throws
an exception if you try to make it point outside its [begin:end) sequence or

Stroustrup_book.indb 721Stroustrup_book.indb 721 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS722

dereference end. It turns out that we get enormous flexibility and generality from
having iterator as an abstract notion rather than as a specific type. This chapter
and the next will give several examples.

TRY THIS

Write a function void copy(int* f1, int* e1, int* f2) that copies the elements
of an array of ints defined by [f1:e1) into another [f2:f2+(e1–f1)). Use only
the iterator operations mentioned above (not subscripting).

Iterators are used to connect our code (algorithms) to our data. The writer
of the code knows about the iterators (and not about the details of how the itera-
tors actually get to the data), and the data provider supplies iterators rather than
exposing details about how the data is stored to all users. The result is pleasingly
simple and offers an important degree of independence between algorithms and
containers. To quote Alex Stepanov: “The reason STL algorithms and containers
work so well together is that they don’t know anything about each other.” Instead,
both understand about sequences defined by pairs of iterators.

Iterators

sort, find, search, copy, …, my_very_own_algorithm, your_code, …

 vector, list, map, array, …, my_container, your_container,…

In other words, my algorithms no longer have to know about the bewildering
variety of ways of storing and accessing data; they just have to know about itera-
tors. Conversely, if I’m a data provider, I no longer have to write code to serve a
bewildering variety of users; I just have to implement an iterator for my data. At
the most basic level, an iterator is defined by just the *, ++, ==, and != operators.
That makes them simple and fast.

The STL framework consists of about ten containers and about 60 algo-
rithms connected by iterators (see Chapter 21). In addition, many organizations
and individuals provide containers and algorithms in the style of the STL. The
STL is probably the currently best-known and most widely used example of ge-
neric programming (§19.3.2). If you know the basic concepts and a few examples,
you can use the rest.

T

Stroustrup_book.indb 722Stroustrup_book.indb 722 4/22/14 9:43 AM4/22/14 9:43 AM

20.3 SEQUENCES AND ITERATORS 723

20.3.1 Back to the example
Let’s see how we can express the “find the element with the largest value” prob-
lem using the STL notion of a sequence:

template<typename Iterator>
Iterator high(Iterator first, Iterator last)
 // return an iterator to the element in [first:last) that has the highest value
{
 Iterator high = first;
 for (Iterator p = first; p!=last; ++p)
 if (*high<*p) high = p;
 return high;
}

Note that we eliminated the local variable h that we had used to hold the high-
est value seen so far. When we don’t know the name of the actual type of the
elements of the sequence, the initialization by –1 seems completely arbitrary and
odd. That’s because it was arbitrary and odd! It was also an error waiting to
happen: in our example –1 worked only because we happened not to have any
negative velocities. We knew that “magic constants,” such as –1, are bad for code
maintenance (§4.3.1, §7.6.1, §10.11.1, etc.). Here, we see that they can also limit
the utility of a function and can be a sign of incomplete thought about the solu-
tion; that is, “magic constants” can be — and often are — a sign of sloppy thinking.

Note that this “generic” high() can be used for any element type that can be
compared using <. For example, we could use high() to find the lexicographically
last string in a vector<string> (see exercise 7).

The high() template function can be used for any sequence defined by a pair
of iterators. For example, we can exactly replicate our example program:

double* get_from_jack(int* count); // Jack puts doubles into an array and
 // returns the number of elements in *count
vector<double>* get_from_jill(); // Jill fills the vector

void fct()
{
 int jack_count = 0;
 double* jack_data = get_from_jack(&jack_count);
 vector<double>* jill_data = get_from_jill();

 double* jack_high = high(jack_data,jack_data+jack_count);
 vector<double>& v = *jill_data;
 double* jill_high = high(&v[0],&v[0]+v.size());

Stroustrup_book.indb 723Stroustrup_book.indb 723 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS724

 cout << "Jill's high " << *jill_high << "; Jack's high " << *jack_high;
 // . . .
 delete[] jack_data;
 delete jill_data;
}

For the two calls here, the Iterator template argument type for high() is double*.
Apart from (finally) getting the code for high() correct, there is apparently no
difference from our previous solution. To be precise, there is no difference in the
code that is executed, but there is a most important difference in the generality of
our code. The templated version of high() can be used for every kind of sequence
that can be described by a pair of iterators. Before looking at the detailed conven-
tions of the STL and the useful standard algorithms that it provides to save us
from writing common tricky code, let’s consider a couple of more ways of storing
collections of data elements.

TRY THIS

We again left a serious error in that program. Find it, fix it, and suggest a
general remedy for that kind of problem.

20.4 Linked lists
Consider again the graphical representation of the notion of a sequence:

begin:

. . .

end:

Compare it to the way we visualize a vector in memory:

begin():

0: 1: size()–1: size():
. . .

end():

Basically, the subscript 0 identifies the same element as does the iterator v.begin(),
and the subscript v.size() identifies the one-beyond-the-last element also identified
by the iterator v.end().

T

Stroustrup_book.indb 724Stroustrup_book.indb 724 4/22/14 9:43 AM4/22/14 9:43 AM

20.4 LINKED LISTS 725

The elements of the vector are consecutive in memory. That’s not required
by STL’s notion of a sequence, and it so happens that there are many algorithms
where we would like to insert an element in between two existing elements with-
out moving those existing elements. The graphical representation of the abstract
notion suggests the possibility of inserting elements (and of deleting elements)
without moving other elements. The STL notion of iterators supports that.

The data structure most directly suggested by the STL sequence diagram is
called a linked list. The arrows in the abstract model are usually implemented as
pointers. An element of a linked list is part of a “link” consisting of the element
and one or more pointers. A linked list where a link has just one pointer (to the
next link) is called a singly-linked list and a list where a link has pointers to both the
previous and the next link is called a doubly-linked list. We will sketch the implemen-
tation of a doubly-linked list, which is what the C++ standard library provides
under the name of list. Graphically, it can be represented like this:

begin:

. . .

end:

This can be represented in code as

template<typename Elem>
struct Link {
 Link* prev; // previous link
 Link* succ; // successor (next) link
 Elem val; // the value
};

template<typename Elem> struct list {
 Link<Elem>* first;
 Link<Elem>* last; // one beyond the last link
};

The layout of a Link is

val

succ
prev

Stroustrup_book.indb 725Stroustrup_book.indb 725 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS726

There are many ways of implementing linked lists and presenting them to users.
A description of the standard library version can be found in Appendix B. Here,
we’ll just outline the key properties of a list — you can insert and delete elements
without disturbing existing elements — show how we can iterate over a list, and
give an example of list use.

When you try to think about lists, we strongly encourage you to draw little
diagrams to visualize the operations you are considering. Linked-list manipulation
really is a topic where a picture is worth 1K words.

20.4.1 List operations
What operations do we need for a list?

• The operations we have for vector (constructors, size, etc.), except
subscripting

• Insert (add an element) and erase (remove an element)
• Something that can be used to refer to elements and to traverse the list:

an iterator

In the STL, that iterator type is a member of its class, so we’ll do the same:

template<typename Elem>
class list {
 // representation and implementation details
public:
 class iterator; // member type: iterator

 iterator begin(); // iterator to first element
 iterator end(); // iterator to one beyond last element

 iterator insert(iterator p, const Elem& v); // insert v into list after p
 iterator erase(iterator p); // remove p from the list

 void push_back(const Elem& v); // insert v at end
 void push_front(const Elem& v); // insert v at front
 void pop_front(); // remove the first element
 void pop_back(); // remove the last element

 Elem& front(); // the first element
 Elem& back(); // the last element

 // . . .
};

Stroustrup_book.indb 726Stroustrup_book.indb 726 4/22/14 9:43 AM4/22/14 9:43 AM

20.4 LINKED LISTS 727

Just as “our” vector is not the complete standard library vector, this list is not the
complete definition of the standard library list. There is nothing wrong with this
list; it simply isn’t complete. The purpose of “our” list is to convey an understand-
ing of what linked lists are, how a list might be implemented, and how to use the
key features. For more information see Appendix B or an expert-level C++ book.

The iterator is central to the definition of an STL list. Iterators are used to
identify places for insertion and elements for removal (erasure). They are also
used for “navigating” through a list rather than using subscripting. This use of
iterators is very similar to the way we used pointers to traverse arrays and vectors
in §20.1 and §20.3.1. This style of iterators is the key to the standard library al-
gorithms (§21.1–3).

Why not subscripting for list? We could subscript a list, but it would be a
surprisingly slow operation: lst[1000] would involve starting from the first element
and then visiting each link along the way until we reached element number 1000.
If we want to do that, we can do it ourselves (or use advance(); see §20.6.2). Con-
sequently, the standard library list doesn’t provide the innocuous-looking sub-
script syntax.

We made list’s iterator type a member (a nested class) because there was no
reason for it to be global. It is used only with lists. Also, this allows us to name ev-
ery container’s iterator type iterator. In the standard library, we have list<T>::it-
erator, vector<T>::iterator, map<K,V>::iterator, and so on.

20.4.2 Iteration
The list iterator must provide *, ++, ==, and !=. Since the standard library list is
a doubly-linked list, it also provides –– for iterating “backward” toward the front
of the list:

template<typename Elem> // requires Element<Elem>() (§19.3.3)
class list<Elem>::iterator {
 Link<Elem>* curr; // current link
public:
 iterator(Link<Elem>* p) :curr{p} { }

 iterator& operator++() {curr = curr–>succ; return *this; } // forward
 iterator& operator––() { curr = curr–>prev; return *this; } // backward
 Elem& operator*() { return curr–>val; } // get value (dereference)

 bool operator==(const iterator& b) const { return curr==b.curr; }
 bool operator!= (const iterator& b) const { return curr!=b.curr; }
};

Stroustrup_book.indb 727Stroustrup_book.indb 727 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS728

These functions are short and simple, and obviously efficient: there are no loops,
no complicated expressions, and no “suspicious” function calls. If the implemen-
tation isn’t clear to you, just have a quick look at the diagrams above. This list
iterator is just a pointer to a link with the required operations. Note that even
though the implementation (the code) for a list<Elem>::iterator is very different
from the simple pointer we have used as an iterator for vectors and arrays, the
meaning (the semantics) of the operations is identical. Basically, the list iterator
provides suitable ++, –– , *, ==, and != for a Link pointer.

Now look at high() again:

template<typename Iter> // requires Input_iterator<Iter>() (§19.3.3)
Iterator high(Iter first, Iter last)
 // return an iterator to the element in [first,last) that has the highest value
{
 Iterator high = first;
 for (Iterator p = first; p!=last; ++p)
 if (*high<*p) high = p;
 return high;
 }

We can use it for a list:

void f()
{
 list<int> lst; for (int x; cin >> x;) lst.push_front(x);

 list<int>::iterator p = high(lst.begin(), lst.end());
 cout << "the highest value was " << *p << '\n';
}

Here, the “value” of the Iterator argument is list<int>::iterator, and the imple-
mentation of ++, *, and != has changed dramatically from the array case, but
the meaning is still the same. The template function high() still traverses the data
(here a list) and finds the highest value. We can insert an element anywhere in
a list, so we used push_front() to add elements at the front just to show that we
could. We could equally well have used push_back() as we do for vectors.

TRY THIS

The standard library vector doesn’t provide push_front(). Why not? Imple-
ment push_front() for vector and compare it to push_back().

T

Stroustrup_book.indb 728Stroustrup_book.indb 728 4/22/14 9:43 AM4/22/14 9:43 AM

20.5 GENERALIZING VECTOR YET AGAIN 729

Now, finally, is the time to ask, “But what if the list is empty?” In other words,
“What if lst.begin()==lst.end()?” In that case, *p will be an attempt to dereference
the one-beyond-the-last element, lst.end(): disaster! Or — potentially worse — the
result could be a random value that might be mistaken for a correct answer.

The last formulation of the question strongly hints at the solution: we can
test whether a list is empty by comparing begin() and end() — in fact, we can test
whether any STL sequence is empty by comparing its beginning and end:

begin: end:

That’s the deeper reason for having end point one beyond the last element rather
than at the last element: the empty sequence is not a special case. We dislike special
cases because — by definition — we have to remember to write special-case code
for them.

In our example, we could use that like this:

list<int>::iterator p = high(lst.begin(), lst.end());
if (p==lst.end()) // did we reach the end?
 cout << "The list is empty";
else
 cout << "the highest value is " << *p << '\n';

We use testing the return value against end() — indicating “not found” — system-
atically with STL algorithms.

Because the standard library provides a list, we won’t go further into the im-
plementation here. Instead, we’ll have a brief look at what lists are good for (see
exercises 12–14 if you are interested in list implementation details).

20.5 Generalizing vector yet again
Obviously, from the examples in §20.3–4, the standard library vector has an
 iterator member type and begin() and end() member functions (just like std::list).
However, we did not provide those for our vector in Chapter 19. What does it
really take for different containers to be used more or less interchangeably in the
STL generic programming style presented in §20.3? First, we’ll outline the solu-
tion (ignoring allocators to simplify) and then explain it:

template<typename T> // requires Element<T>() (§19.3.3)
class vector {

Stroustrup_book.indb 729Stroustrup_book.indb 729 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS730

public:
 using size_type = unsigned long;
 using value_type = T;
 using iterator = T*;
 using const_iterator = const T*;

 // . . .

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

 size_type size();

 // . . .
};

A using declaration creates an alias for a type; that is, for our vector, iterator is
a synonym, another name, for the type we chose to use as our iterator: T*. Now,
for a vector called v, we can write

vector<int>::iterator p = find(v.begin(), v.end(),32);

and

for (vector<int>::size_type i = 0; i<v.size(); ++i) cout << v[i] << '\n';

The point is that to write that, we don’t actually have to know what types are
named by iterator and size_type. In particular, the code above, because it is ex-
pressed in terms of iterator and size_type, will work with vectors where size_type
is not an unsigned long (as it is not on many embedded systems processors) and
where iterator is not a plain pointer, but a class (as it is on many popular C++
implementations).

The standard defines list and the other standard containers similarly. For
example:

template<typename T> // requires Element<T>() (§19.3.3)
class list {
public:
 class Link;
 using size_type = unsigned long;

Stroustrup_book.indb 730Stroustrup_book.indb 730 4/22/14 9:43 AM4/22/14 9:43 AM

20.5 GENERALIZING VECTOR YET AGAIN 731

 using value_type = T;
 class iterator; // see §20.4.2
 class const_iterator; // like iterator, but not allowing writes to elements

 // . . .

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

 size_type size();

 // . . .
};

That way, we can write code that does not care whether it uses a list or a vector.
All the standard library algorithms are defined in terms of these member type
names, such as iterator and size_type, so that they don’t unnecessarily depend on
the implementations of containers or exactly which kind of container they operate
on (see Chapter 21).

As an alternative to saying C::iterator for some container C, we often prefer
Iterator<C>. This can be achieved through a simple template alias:

template<typename C>
using Iterator = typename C::iterator; // Iterator<C> means typename
 // C::iterator

The fact that for language-technical reasons we need to prefix C::iterator with
typename to say that iterator is a type is part of the reason we prefer Iterator<C>.
Similarly, we define

template<typename C>
using Value_type = typename C::value_type;

That way, we can write Value_type<C>. These type aliases are not in the standard
library, but you can find them in std_lib_facilities.h.

A using declaration is a C++11 notation for and a generalization of what was
known in C and C++ as a typedef (§A.16).

Stroustrup_book.indb 731Stroustrup_book.indb 731 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS732

20.5.1 Container traversal
Using size(), we can traverse one of our vectors from its first element to its last.
For example:

void print1(const vector<double>& v)
{
 for (int i = 0; i<v.size(); ++i)
 cout << v[i] << '\n';
}

This doesn’t work for lists because list does not provide subscripting. How-
ever, we can traverse a standard library vector and list using the simpler
range-for-loop (§4.6.1). For example:

void print2(const vector<double>& v, const list<double>& lst)
{
 for (double x : v)
 cout << x << '\n';

 for (double x : lst)
 cout << x << '\n';
}

This works for both the standard library containers and for “our” vector and
list. How? The “trick” is that the range-for-loop is defined in terms of begin()
and end() functions returning iterators to the first and one beyond the end of our
vector elements. The range-for-loop is simply “syntactic sugar” for a loop over a
sequence using iterators. When we defined begin() and end() for our vector and
list we “accidentally” provided what the range-for needed.

20.5.2 auto
When we have to write out loops over a generic structure, naming the iterators
can be a real nuisance. Consider:

template<typename T> // requires Element<T>()
void user(vector<T>& v, list<T>& lst)
{
 for (vector<T>::iterator p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

 list<T>::iterator q = find(lst.begin(), lst.end(),T{42});
}

Stroustrup_book.indb 732Stroustrup_book.indb 732 4/22/14 9:43 AM4/22/14 9:43 AM

20.5 GENERALIZING VECTOR YET AGAIN 733

The most annoying aspect of this is that the compiler obviously already knows
the iterator type for the list and the size_type for the vector. Why should we have
to tell the compiler what it already knows? Doing so just annoys the poor typists
among us and opens opportunities for mistakes. Fortunately, we don’t have to:
we can declare a variable auto, meaning use the type of the iterator as the type of
the variable:

template<typename T> // requires Element<T>()
void user(vector<T>& v, list<T>& lst)
{
 for (auto p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

 auto q = find(lst.begin(), lst.end(),T{42});
}

Here, p is a vector<T>::iterator and q is a list<T>::iterator. We can use auto in
just about every definition that includes an initializer. For example:

auto x = 123; // x is an int
auto c = 'y'; // c is a char
auto& r = x; // r is an int&
auto y = r; // y is an int (references are implicitly dereferenced)

Note that a string literal has the type const char*, so using auto for string literals
might lead to an unpleasant surprise:

auto s1 = "San Antonio"; // s1 is a const char* (Surprise!?)
string s2 = "Fredericksburg"; // s2 is a string

When we know exactly which type we want, we can often say so as easily as we
can use auto.

One common use of auto is to specify the loop variable in a range-for-loop.
Consider:

template<typename C> // requires Container<T>
void print3(const C& cont)
{
 for (const auto& x : cont)
 cout << x << '\n';
}

Stroustrup_book.indb 733Stroustrup_book.indb 733 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS734

Here, we use auto because it is not all that easy to name the element type of the
container cont. We use const because we are not writing to the container ele-
ments, and we use & (for reference) in case the elements are so large that copying
them would be costly.

20.6 An example: a simple text editor
The essential feature of a list is that you can add and remove elements without
moving other elements of the list. Let’s try a simple example that illustrates that.
Consider how to represent the characters of a text document in a simple text
editor. The representation should make operations on the document simple and
reasonably efficient.

Which operations? Let’s assume that a document will fit in your comput-
er’s main memory. That way, we can choose any representation that suits us
and simply convert it to a stream of bytes when we want to store it in a file.
Similarly, we can read a stream of bytes from a file and convert those to our
in-memory representation. That decided, we can concentrate on choosing a con-
venient in-memory representation. Basically, there are five things that our repre-
sentation must support well:

• Constructing it from a stream of bytes from input
• Inserting one or more characters
• Deleting one or more characters
• Searching for a string
• Generating a stream of bytes for output to a fi le or a screen

The simplest representation would be a vector<char>. However, to add or delete
a character we would have to move every following character in the document.
Consider:

This is he start of a very long document.
There are lots of . . .

We could add the t needed to get

This is the start of a very long document.
There are lots of . . .

However, if those characters were stored in a single vector<char>, we’d have to
move every character from h onward one position to the right. That could be a

Stroustrup_book.indb 734Stroustrup_book.indb 734 4/22/14 9:43 AM4/22/14 9:43 AM

20.6 AN EXAMPLE: A SIMPLE TEXT EDITOR 735

lot of copying. In fact for a 70,000-character-long document (such as this chapter,
counting spaces), we would, on average, have to move 35,000 characters to in-
sert or delete a character. The resulting real-time delay is likely to be noticeable
and annoying to users. Consequently, we “break down” our representation into
“chunks” so that we can change part of the document without moving a lot of
characters around. We represent a document as a list of “lines,” list<Line>, where
a Line is a vector<char>. For example:

This is the start of a very long document.Line 1

There are lots of . . . Line 2

Now, when we inserted that t, we only had to move the rest of the characters on
that line. Furthermore, when we need to, we can add a new line without moving
any characters. For example, we could insert This is a new line. after document.
to get

This is the start of a very long document.
This is a new line.
There are lots of . . .

All we needed to do was to insert a new “line” in the middle:

Line 3

This is the start of a very long document.Line 1

There are lots of . . . Line 2

This is a new line.

The logical reason that it is important to be able to insert new links in a list with-
out moving existing links is that we might have iterators pointing to those links or
pointers (and references) pointing to the objects in those links. Such iterators and
pointers are unaffected by insertions or deletions of lines. For example, a word

Stroustrup_book.indb 735Stroustrup_book.indb 735 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS736

processor may keep a vector<list<Line>::iterator> holding iterators to the begin-
ning of every title and subtitle in the current Document:

Storing and processing dataLine 1

20.1

20.2

20.3

STL ideals Line 307

Sequences and iterators Line 870

We can add lines to “paragraph 20.2” without invalidating the iterator to “para-
graph 20.3.”

In conclusion, we use a list of lines rather than a vector of lines or a vector of all
the characters for both logical and performance reasons. Please note that situations
where these reasons apply are rather rare so that the “by default, use vector” rule
of thumb still holds. You need a specific reason to prefer a list over a vector — even
if you think of your data as a list of elements! (See §20.7.) A list is a logical concept
that you can represent in your program as a (linked) list or as a vector. The closest
STL analog to our everyday concept of a list (e.g., a to-do list, a list of groceries, or
a schedule) is a sequence, and most sequences are best represented as vectors.

20.6.1 Lines
How do we decide what’s a “line” in our document? There are three obvious choices:

 1. Rely on newline indicators (e.g., '\n') in user input.
 2. Somehow parse the document and use some “natural” punctuation (e.g., .).
 3. Split any line that grows beyond a given length (e.g., 50 characters) into

two.

There are undoubtedly also some less obvious choices. For simplicity, we use
alternative 1 here.

We will represent a document in our editor as an object of class Document.
Stripped of all refinements, our document type looks like this:

using Line = vector<char>; // a line is a vector of characters

struct Document {
 list<Line> line; // a document is a list of lines
 Document() { line.push_back(Line{}); }
};

Stroustrup_book.indb 736Stroustrup_book.indb 736 4/22/14 9:43 AM4/22/14 9:43 AM

20.6 AN EXAMPLE: A SIMPLE TEXT EDITOR 737

Every Document starts out with a single empty line: Document’s constructor
makes an empty line and pushes it into the list of lines.

Reading and splitting into lines can be done like this:

istream& operator>>(istream& is, Document& d)
{
 for (char ch; is.get(ch);) {
 d.line.back().push_back(ch); // add the character
 if (ch=='\n')
 d.line.push_back(Line{}); // add another line
 }
 if (d.line.back().size()) d.line.push_back(Line{}); // add final empty line
 return is;
}

Both vector and list have a member function back() that returns a reference to the
last element. To use it, you have to be sure that there really is a last element for
back() to refer to — don’t use it on an empty container. That’s why we defined a
Document to end with an empty Line. Note that we store every character from in-
put, even the newline characters ('\n'). Storing those newline characters greatly
simplifies output, but you have to be careful how you define a character count
(just counting characters will give a number that includes space and newline
characters).

20.6.2 Iteration
If the document was just a vector<char> it would be simple to iterate over it.
How do we iterate over a list of lines? Obviously, we can iterate over the list using
list<Line>::iterator. However, what if we wanted to visit the characters one after
another without any fuss about line breaks? We could provide an iterator specifi-
cally designed for our Document:

class Text_iterator { // keep track of line and character position within a line
 list<Line>::iterator ln;
 Line::iterator pos;
public:
 // start the iterator at line ll’s character position pp:
 Text_iterator(list<Line>::iterator ll, Line::iterator pp)
 :ln{ll}, pos{pp} { }

 char& operator*() { return *pos; }
 Text_iterator& operator++();

Stroustrup_book.indb 737Stroustrup_book.indb 737 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS738

 bool operator==(const Text_iterator& other) const
 { return ln==other.ln && pos==other.pos; }
 bool operator!=(const Text_iterator& other) const
 { return !(*this==other); }
};

Text_iterator& Text_iterator::operator++()
{
 ++pos; // proceed to next character
 if (pos==(*ln).end()) {
 ++ln; // proceed to next line
 pos = (*ln).begin(); // bad if ln==line.end(); so make sure it isn’t
 }
 return *this;
}

To make Text_iterator useful, we need to equip class Document with conventional
begin() and end() functions:

struct Document {
 list<Line> line;

 Text_iterator begin() // first character of first line
 { return Text_iterator(line.begin(), (*line.begin()).begin()); }
 Text_iterator end() // one beyond the last character of the last line
 {
 auto last = line.end();
 ––last; // we know that the document is not empty
 return Text_iterator(last, (*last).end());
 }
};

We need the curious (*line.begin()).begin() notation because we want the begin-
ning of what line.begin() points to; we could alternatively have used line.begin()–>
begin() because the standard library iterators support –>.

We can now iterate over the characters of a document like this:

void print(Document& d)
{
 for (auto p : d) cout << *p;
}

print(my_doc);

Stroustrup_book.indb 738Stroustrup_book.indb 738 4/22/14 9:43 AM4/22/14 9:43 AM

20.6 AN EXAMPLE: A SIMPLE TEXT EDITOR 739

Presenting the document as a sequence of characters is useful for many things,
but usually we traverse a document looking for something more specific than a
character. For example, here is a piece of code to delete line n:

void erase_line(Document& d, int n)
{
 if (n<0 || d.line.size()–1<=n) return;
 auto p = d.line.begin();
 advance(p,n);
 d.line.erase(p);
}

A call advance(p,n) moves an iterator p n elements forward; advance() is a stan-
dard library function, but we could have implemented it ourselves like this:

template<typename Iter> // requires Forward_iterator<Iter>
void advance(Iter& p, int n)
{
 while (0<n) { ++p; ––n; }
}

Note that advance() can be used to simulate subscripting. In fact, for a vector
called v, p=v.begin; advance(p,n); *p=x is roughly equivalent to v[n]=x. Note
that “roughly” means that advance() laboriously moves past the first n–1 elements
one by one, whereas the subscript goes straight to the nth element. For a list, we
have to use the laborious method. It’s a price we have to pay for the more flexible
layout of the elements of a list.

For an iterator that can move both forward and backward, such as the iterator
for list, a negative argument to the standard library advance() will move the itera-
tor backward. For an iterator that can handle subscripting, such as the iterator for
a vector, the standard library advance() will go directly to the right element rather
than slowly moving along using ++. Clearly, the standard library advance() is a bit
smarter than ours. That’s worth noticing: typically, the standard library facilities
have had more care and time spent on them than we could afford, so prefer the
standard facilities to “home brew.”

TRY THIS

Rewrite advance() so that it will “go backward” when you give it a negative
argument.

T

Stroustrup_book.indb 739Stroustrup_book.indb 739 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS740

Probably, a search is the kind of iteration that is most obvious to a user. We search
for individual words (such as milkshake or Gavin), for sequences of letters that can’t
easily be considered words (such as secret\nhomestead — i.e., a line ending with
secret followed by a line starting with homestead), for regular expressions (e.g.,
[bB]\w*ne — i.e., an upper- or lowercase B followed by 0 or more letters followed
by ne; see Chapter 23), etc. Let’s show how to handle the second case, finding a
string, using our Document layout. We use a simple — non-optimal — algorithm:

• Find the fi rst character of our search string in the document.
• See if that character and the following characters match our search string.
• If so, we are fi nished; if not, we look for the next occurrence of that fi rst

character.

For generality, we adopt the STL convention of defining the text in which to search
as a sequence defined by a pair of iterators. That way we can use our search func-
tion for any part of a document as well as a complete document. If we find an
occurrence of our string in the document, we return an iterator to its first character;
if we don’t find an occurrence, we return an iterator to the end of the sequence:

Text_iterator find_txt(Text_iterator first, Text_iterator last, const string& s)
{
 if (s.size()==0) return last; // can’t find an empty string
 char first_char = s[0];
 while (true) {
 auto p = find(first,last,first_char);
 if (p==last || match(p,last,s)) return p;
 first = ++p; // look at the next character
 }
}

Returning the end of the sequence to indicate “not found” is an important STL
convention. The match() function is trivial; it just compares two sequences of
characters. Try writing it yourself. The find() used to look for a character in the
sequence of characters is arguably the simplest standard library algorithm (§21.2).
We can use our find_txt() like this:

auto p = find_txt(my_doc.begin(), my_doc.end(), "secret\nhomestead");
if (p==my_doc.end())
 cout << "not found";
else {
 // do something
}

Stroustrup_book.indb 740Stroustrup_book.indb 740 4/22/14 9:43 AM4/22/14 9:43 AM

20.7 VECTOR, LIST, AND STRING 741

Our “text processor” and its operations are very simple. Obviously, we are aiming
for simplicity and reasonable efficiency, rather than at providing a “feature-rich”
editor. Don’t be fooled into thinking that providing efficient insertion, deletion, and
search for arbitrary character sequences is trivial, though. We chose this example
to illustrate the power and generality of the STL concepts sequence, iterator, and
container (such as list and vector) together with some STL programming con-
ventions (techniques), such as returning the end of a sequence to indicate failure.
Note that if we wanted to, we could develop Document into an STL container —
by providing Text_iterator we have done the key part of representing a Document
as a sequence of values.

20.7 vector, list, and string
Why did we use a list for the lines and a vector for the characters? More precisely,
why did we use a list for the sequence of lines and a vector for the sequence of
characters? Furthermore, why didn’t we use a string to hold a line?

We can ask a slightly more general variant of this question. We have now seen
four ways to store a sequence of characters:

• char[] (array of characters)
• vector<char>

• string

• list<char>

How do we choose among them for a given problem? For really simple tasks, they
are interchangeable; that is, they have very similar interfaces. For example, given
an iterator, we can walk through each using ++ and use * to access the characters.
If we look at the code examples related to Document, we can actually replace
our vector<char> with list<char> or string without any logical problems. Such
interchangeability is fundamentally good because it allows us to choose based on
performance. However, before we consider performance, we should look at logi-
cal properties of these types: what can each do that the others can’t?

• Elem[] : Doesn’t know its own size. Doesn’t have begin(), end(), or any
of the other useful container member functions. Can’t be systematically
range checked. Can be passed to functions written in C and C-style func-
tions. The elements are allocated contiguously in memory. The size of the
array is fi xed at compile time. Comparison (== and !=) and output (<<)
use the pointer to the fi rst element of the array, not the elements.

• vector<Elem>: Can do just about everything, including insert() and erase().
Provides subscripting. List operations, such as insert() and erase(), typically
involve moving elements (that can be ineffi cient for large elements and large

Stroustrup_book.indb 741Stroustrup_book.indb 741 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS742

numbers of elements). Can be range checked. The elements are allocated
contiguously in memory. A vector is expandable (e.g., use push_back()).
Elements of a vector are stored (contiguously) in an array. Comparison
operators (==, !=, <, <=, >, and >=) compare elements.

• string: Provides all the common and useful operations plus specifi c text
manipulation operations, such as concatenation (+ and +=). The elements
are guaranteed to be contiguous in memory. A string is expandable. Com-
parison operators (==, !=, <, <=, >, and >=) compare elements.

• list<Elem>: Provides all the common and usual operations, except sub-
scripting. We can insert() and erase() without moving other elements.
Needs two words extra (for link pointers) for each element. A list is expand-
able. Comparison operators (==, !=, <, <=, >, and >=) compare elements.

As we have seen (§17.2, §18.6), arrays are useful and necessary for dealing with
memory at the lowest possible level and for interfacing with code written in C
(§27.1.2, §27.5). Apart from that, vector is preferred because it is easier to use,
more flexible, and safer.

TRY THIS

What does that list of differences mean in real code? For each array of char,
vector<char>, list<char>, and string, define one with the value "Hello",
pass it to a function as an argument, write out the number of characters
in the string passed, try to compare it to "Hello" in that function (to see if
you really did pass "Hello"), and compare the argument to "Howdy" to see
which would come first in a dictionary. Copy the argument into another
variable of the same type.

TRY THIS

Do the previous Try this for an array of int, vector<int>, and list<int> each
with the value { 1, 2, 3, 4, 5 }.

20.7.1 insert and erase
The standard library vector is our default choice for a container. It has most of the
desired features, so we use alternatives only if we have to. Its main problem is its
habit of moving elements when we do list operations (insert() and erase()); that
can be costly when we deal with vectors with many elements or vectors of large
elements. Don’t be too worried about that, though. We have been quite happy

T

T

Stroustrup_book.indb 742Stroustrup_book.indb 742 4/22/14 9:43 AM4/22/14 9:43 AM

20.7 VECTOR, LIST, AND STRING 743

reading half a million floating-point values into a vector using push_back() — mea-
surements confirmed that pre-allocation didn’t make a noticeable difference. Al-
ways measure before making significant changes in the interest of performance;
even for experts, guessing about performance is very hard.

As pointed out in §20.6, moving elements also implies a logical constraint:
don’t hold iterators or pointers to elements of a vector when you do list oper-
ations (such as insert(), erase(), and push_back()): if an element moves, your
iterator or pointer will point to the wrong element or to no element at all. This
is the principal advantage of lists (and maps; see §21.6) over vectors. If you need
a collection of large objects or of objects that you point to from many places in a
program, consider using a list.

Let’s compare insert() and erase() for a vector and a list. First we take an
example designed only to illustrate the key points:

vector<int>::iterator p = v.begin(); // take a vector
++p; ++p; ++p; // point to its 4th element
auto q = p;
++q; // point to its 5th element

6v:

p: q:

0 1 2 3 4 5

p = v.insert(p,99); // p points at the inserted element

7 v:

p: q:

0 1 2 99 3 4 5

Note that q is now invalid. The elements may have been reallocated as the size
of the vector grew. If v had spare capacity, so that it grew in place, q most likely
points to the element with the value 3 rather than the element with the value 4,
but don’t try to take advantage of that.

p = v.erase(p); // p points at the element after the erased one

6 v:

p: q:

0 1 2 3 4 5

Stroustrup_book.indb 743Stroustrup_book.indb 743 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS744

That is, an insert() followed by an erase() of the inserted element leaves us back
where we started, but with q invalidated. However, in between, we moved all
the elements after the insertion point, and maybe all elements were relocated as
v grew.

To compare, we’ll do exactly the same with a list:

list<int>::iterator p = v.begin(); // take a list
++p; ++p; ++p; // point to its 4th element
auto q = p;
++q; // point to its 5th element

4

6v:

p: q:

0 1 2 3 5

p = v.insert(p,99); // p points at the inserted element

4

6v:

p: q:

0 1 2 3

99

5

Note that q still points to the element with the value 4.

p = v.erase(p); // p points at the element after the erased one

4

6v:

p: q:

0 1 2 3 5

Again we find ourselves back where we started. However, for list as opposed to
for vector, we didn’t move any elements and q was valid at all times.

A list<char> takes up at least three times as much memory as the other three
alternatives — on a PC a list<char> uses 12 bytes per element; a vector<char>
uses 1 byte per element. For large numbers of characters, that can be significant.

In what way is a vector superior to a string? Looking at the lists of their prop-
erties, it seems that a string can do all that a vector can, and more. That’s part of

Stroustrup_book.indb 744Stroustrup_book.indb 744 4/22/14 9:43 AM4/22/14 9:43 AM

20.8 ADAPTING OUR VECTOR TO THE STL 745

the problem: since string has to do more things, it is harder to optimize. In fact, vec-
tor tends to be optimized for “memory operations” such as push_back(), whereas
string tends not to be. Instead, string tends to be optimized for handling of
copying, for dealing with short strings, and for interaction with C-style strings.
In the text editor example, we chose vector because we were using insert()
and delete(). That is a performance reason, though. The major logical differ-
ence is that you can have a vector of just about any element type. We have a
choice only when we are thinking about characters. In conclusion, prefer vector
to string unless you need string operations, such as concatenation or reading
whitespace-separated words.

20.8 Adapting our vector to the STL
After adding begin(), end(), and the type aliases in §20.5, vector now just lacks
insert() and erase() to be as close an approximation of std::vector as we need it
to be:

template<typename T, typename A = allocator<T>>
 // requires Element<T>() && Allocator<A>() (§19.3.3)
class vector {
 int sz; // the size
 T* elem; // a pointer to the elements
 int space; // number of elements plus number of free space “slots”
 A alloc; // use allocate to handle memory for elements
public:
 // . . . all the other stuff from Chapter 19 and §20.5 . . .
 using iterator = T*; // T* is the simplest possible iterator

 iterator insert(iterator p, const T& val);
 iterator erase(iterator p);
};

We again used a pointer to the element type, T*, as the iterator type. That’s the
simplest possible solution. We left providing a range-checked iterator as an exer-
cise (exercise 18).

Typically, people don’t provide list operations, such as insert() and erase(),
for data types that keep their elements in contiguous storage, such as vector.
However, list operations, such as insert() and erase(), are immensely useful and
surprisingly efficient for short vectors or small numbers of elements. We have
repeatedly seen the usefulness of push_back(), which is another operation tradi-
tionally associated with lists.

Stroustrup_book.indb 745Stroustrup_book.indb 745 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS746

Basically, we implement vector<T,A>::erase() by copying all elements after
the element we erase (remove, delete). Using the definition of vector from §19.3.7
with the additions above, we get

template<typename T, typename A> // requires Element<T>() &&
 // Allocator<A>() (§19.3.3)
vector<T,A>::iterator vector<T,A>::erase(iterator p)
{
 if (p==end()) return p;
 for (auto pos = p+1; pos!=end(); ++pos)
 *(pos–1) = *pos; // copy element “one position to the left”
 alloc.destroy(&*(end()–1)); // destroy surplus copy of last element
 ––sz;
 return p;
}

It is easier to understand such code if you look at a graphical representation:

sz:

Elements
(initialized)

elem:
space:

The code for erase() is quite simple, but it may be a good idea to try out a couple
of examples by drawing them on paper. Is the empty vector correctly handled?
Why do we need the p==end() test? What if we erased the last element of a
vector? Would this code have been easier to read if we had used the subscript
notation?

Implementing vector<T,A>::insert() is a bit more complicated:

template<typename T, typename A> // requires Element<T>() &&
 // Allocator<A>() (§19.3.3)
vector<T,A>::iterator vector<T,A>::insert(iterator p, const T& val)
{
 int index = p–begin();
 if (size()==capacity())
 reserve(size()==0?8:2*size()); // make sure we have space

 // first copy last element into uninitialized space:
 alloc.construct(elem+sz,*back());

Stroustrup_book.indb 746Stroustrup_book.indb 746 4/22/14 9:43 AM4/22/14 9:43 AM

20.9 ADAPTING BUILT-IN ARRAYS TO THE STL 747

 ++sz;
 iterator pp = begin()+index; // the place to put val
 for (auto pos = end()–1; pos!=pp; ––pos)
 *pos = *(pos–1); // copy elements one position to the right
 *(begin()+index) = val; // “insert” val
 return pp;
}

Please note:

• An iterator may not point outside its sequence, so we use pointers, such
as elem+sz, for that. That’s one reason that allocators are defi ned in terms
of pointers and not iterators.

• When we use reserve(), the elements may be moved to a new area of
memory. Therefore, we must remember the index at which the element
is to be inserted, rather than the iterator to it. When vector reallocates
its elements, iterators into that vector become invalid — you can think of
them as pointing to the old memory.

• Our use of the allocator argument, A, is intuitive, but inaccurate. If you
should ever need to implement a container, you’ll have to do some careful
reading of the standard.

• It is subtleties like these that make us avoid dealing with low-level mem-
ory issues whenever we can. Naturally, the standard library vector — and
all other standard library containers — get that kind of important semantic
detail right. That’s one reason to prefer the standard library over “home
brew.”

For performance reasons, you wouldn’t use insert() and erase() in the middle of
a 100,000-element vector; for that, lists (and maps; see §21.6) are better. How-
ever, the insert() and erase() operations are available for all vectors, and their
performance is unbeatable when you are just moving a few words of data — or
even a few dozen words — because modern computers are really good at this
kind of copying; see exercise 20. Avoid (linked) lists for representing a list of a
few small elements.

20.9 Adapting built-in arrays to the STL
We have repeatedly pointed out the weaknesses of the built-in arrays: they im-
plicitly convert to pointers at the slightest provocation, they can’t be copied using
assignment, they don’t know their own size (§18.6.2), etc. We have also pointed
out their main strength: they model physical memory almost perfectly.

Stroustrup_book.indb 747Stroustrup_book.indb 747 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS748

To get the best of both worlds, we can build an array container that provides
the benefits of arrays without the weaknesses. A version of array was introduced
into the standard as part of a Technical Report. Since a feature from a TR is not
required to be part of every implementation, array may not be part of the imple-
mentation you use. However, the idea is simple and useful:

template <typename T, int N> // requires Element<T>()
struct array { // not quite the standard array
 using value_type = T;
 using iterator = T*;
 using const_iterator = const T*;
 using size_type = unsigned int; // the type of a subscript

 T elems[N];
 // no explicit construct/copy/destroy needed

 iterator begin() { return elems; }
 const_iterator begin() const { return elems; }
 iterator end() { return elems+N; }
 const_iterator end() const { return elems+N; }

 size_type size() const;

 T& operator[](int n) { return elems[n]; }
 const T& operator[](int n) const { return elems[n]; }

 const T& at(int n) const; // range-checked access
 T& at(int n); // range-checked access

 T * data() { return elems; }
 const T * data() const { return elems; }
};

This definition isn’t complete or completely standards-conforming, but it will give
you the idea. It will also give you something to use if your implementation doesn’t
yet provide the standard array. If available, it is in <array>. Note that because
array<T,N> “knows” that its size is N, we can (and do) provide assignment, ==, !=,
etc. just as for vector.

As an example, let’s use an array with the STL version of high() from §20.4.2:

void f()
{
 array<double,6> a = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };
 array<double,6>::iterator p = high(a.begin(), a.end());

Stroustrup_book.indb 748Stroustrup_book.indb 748 4/22/14 9:43 AM4/22/14 9:43 AM

20.10 CONTAINER OVERVIEW 749

 cout << "the highest value was " << *p << '\n';
}

Note that we did not think of array when we wrote high(). Being able to use high()
for an array is a simple consequence of following standard conventions for both.

20.10 Container overview
The STL provides quite a few containers:

Standard containers

vector a contiguously allocated sequence of elements; use it as the
default container

list a doubly-linked list; use it when you need to insert and
delete elements without moving existing elements

deque a cross between a list and a vector; don’t use it until you
have expert-level knowledge of algorithms and machine
architecture

map a balanced ordered tree; use it when you need to access
elements by value (see §21.6.1–3)

multimap a balanced ordered tree where there can be multiple copies
of a key; use it when you need to access elements by value
(see §21.6.1–3)

unordered_map a hash table; an optimized version of map; use for large
maps when you need high performance and can devise a
good hash function (see §21.6.4)

unordered_multimap a hash table where there can be multiple copies of a key; an
optimized version of multimap; use it for large maps when
you need high performance and can devise a good hash
function (see §21.6.4)

set a balanced ordered tree; use it when you need to keep track
of individual values (see §21.6.5)

multiset a balanced ordered tree where there can be multiple copies
of a key; use it when you need to keep track of individual
values (see §21.6.5)

unordered_set like unordered_map, but just with values, not (key,value)
pairs

unordered_multiset like unordered_multimap, but just with values, not
(key,value) pairs

array a fixed-size array that doesn’t suffer most of the problems
related to the built-in arrays (see §20.9)

Stroustrup_book.indb 749Stroustrup_book.indb 749 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS750

You can look up incredible amounts of additional information on these containers
and their use in books and online documentation. Here are a few quality infor-
mation sources:

Josuttis, Nicholai M. The C++ Standard Library: A Tutorial and Reference. Addison-
Wesley, 2012. ISBN 978-0321623218. Use only the 2nd edition.

Lippman, Stanley B., Jose Lajoie, and Barbara E. Moo. The C++ Primer.
Addison-Wesley, 2005. ISBN 0201721481. Use only the 5th edition.

Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley, 2012. ISBN
978-0321714114. Use only the 4th edition.

The documentation for the SGI implementation of the STL and the iostream
library: www.sgi.com/tech/stl. Note that they also provide complete code.

Do you feel cheated? Do you think we should explain all about containers
and their use to you? That’s just not possible. There are too many standard facil-
ities, too many useful techniques, and too many useful libraries for you to absorb
them all at once. Programming is too rich a field for anyone to know all facilities
and techniques — it can also be a noble art. As a programmer, you must acquire
the habit of seeking out new information about language facilities, libraries, and
techniques. Programming is a dynamic and rapidly developing field, so just being
content with what you know and are comfortable with is a recipe for being left
behind. “Look it up” is a perfectly reasonable answer to many problems, and as
your skills grow and mature, it will more and more often be the answer.

On the other hand, you will find that once you understand vector, list, and
map and the standard algorithms presented in Chapter 21, you’ll find other STL
and STL-style containers easy to use. You’ll also find that you have the basic
knowledge to understand non-STL containers and code using them.

What is a container? You can find the definition of an STL container in all of
the sources above. Here we will just give an informal definition. An STL container

• Is a sequence of elements [begin():end()).
• Provides copy operations that copy elements. Copying can be done with

assignment or a copy constructor.
• Names its element type value_type.
• Has iterator types called iterator and const_iterator. Iterators provide *,

++ (both prefi x and postfi x), ==, and != with the appropriate semantics.
The iterators for list also provide –– for moving backward in the sequence;
that’s called a bidirectional iterator. The iterators for vector also provide –– ,
[], +, and — and are called random-access iterators. (See §20.10.1.)

Stroustrup_book.indb 750Stroustrup_book.indb 750 4/22/14 9:43 AM4/22/14 9:43 AM

20.10 CONTAINER OVERVIEW 751

• Provides insert() and erase(), front() and back(), push_back() and pop_
back(), size(), etc.; vector and map also provide subscripting (e.g., op-
erator []).

• Provides comparison operators (==, !=, <, <=, >, and >=) that compare the
elements. Containers use lexicographical ordering for <, <=, >, and >=;
that is, they compare the elements in order starting with the fi rst.

The aim of this list is to give you an overview. For more detail see Appendix B.
For a more precise specification and complete list, see The C++ Programming Lan-
guage or the standard.

Some data types provide much of what is required from a standard container,
but not all. We sometimes refer to those as “almost containers.” The most inter-
esting of those are:

“Almost containers”

T[n] built-in array no size() or other member functions; prefer a container,
such as vector, string, or array, over a built-in array when
you have a choice

string holds only characters but provides operations useful for text
manipulation, such as concatenation (+ and +=); prefer the
standard string to other strings

valarray a numerical vector with vector operations, but with many
restrictions to encourage high-performance implementations;
use only if you do a lot of vector arithmetic

In addition, many people and many organizations have produced containers that
meet the standard container requirements, or almost do so.

If in doubt, use vector. Unless you have a solid reason not to, use vector.

20.10.1 Iterator categories
We have talked about iterators as if all iterators are interchangeable. They are
interchangeable if you do only the simplest operations, such as traversing a se-
quence once reading each value once. If you want to do more, such as iterating
backward or subscripting, you need one of the more advanced iterators.

Stroustrup_book.indb 751Stroustrup_book.indb 751 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS752

Iterator categories

input iterator We can iterate forward using ++ and read element values using
*. This is the kind of iterator that istream offers; see §21.7.2. If
(*p).m is valid, p–>m can be used as a shorthand.

output iterator We can iterate forward using ++ and write element values using *.
This is the kind of iterator that ostream offers; see §21.7.2.

forward iterator We can iterate forward repeatedly using ++ and read and write
(unless the elements are const, of course) element values using *.
If (*p).m is valid, p–>m can be used as a shorthand.

bidirectional
iterator

We can iterate forward (using ++) and backward (using — —) and
read and write (unless the elements are const) element values
using *. This is the kind of iterator that list, map, and set offer. If
(*p).m is valid, p–>m can be used as a shorthand.

random-access
iterator

We can iterate forward (using ++) and backward (using — —)
and read and write (unless the elements are const) element
values using * or []. We can subscript and add an integer to a
random-access iterator using + and subtract an integer using –. We
can find the distance between two random-access iterators to the
same sequence by subtracting one from the other. This is the kind
of iterator that vector offers. If (*p).m is valid, p–>m can be used
as a shorthand.

From the operations offered, we can see that wherever we can use an output iter-
ator or an input iterator, we can use a forward iterator. A bidirectional iterator is
also a forward iterator, and a random-access iterator is also a bidirectional iterator.
Graphically, we can represent the iterator categories like this:

random-access iterator

bidirectional iterator

forward iterator

input iterator output iterator

Note that since the iterator categories are not classes, this hierarchy is not a class
hierarchy implemented using derivation.

Stroustrup_book.indb 752Stroustrup_book.indb 752 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 REVIEW 753

Drill
 1. Define an array of ints with the ten elements { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }.
 2. Define a vector<int> with those ten elements.
 3. Define a list<int> with those ten elements.
 4. Define a second array, vector, and list, each initialized as a copy of the first

array, vector, and list, respectively.
 5. Increase the value of each element in the array by 2; increase the value of

each element in the vector by 3; increase the value of each element in the
list by 5.

 6. Write a simple copy() operation,

template<typename Iter1, typename Iter2>
 // requires Input_iterator<Iter1>() && Output_iterator<Iter2>()
Iter2 copy(Iter1 f1, Iter1 e1, Iter2 f2);

that copies [f1,e1) to [f2,f2+(e1–f1)) and returns f2+(e1–f1) just like the
standard library copy function. Note that if f1==e1 the sequence is empty,
so that there is nothing to copy.

 7. Use your copy() to copy the array into the vector and to copy the list into
the array.

 8. Use the standard library find() to see if the vector contains the value 3
and print out its position if it does; use find() to see if the list contains the
value 27 and print out its position if it does. The “position” of the first
element is 0, the position of the second element is 1, etc. Note that if find()
returns the end of the sequence, the value wasn’t found.

Remember to test after each step.

Review
 1. Why does code written by different people look different? Give examples.
 2. What are simple questions we ask of data?
 3. What are a few different ways of storing data?
 4. What basic operations can we do to a collection of data items?
 5. What are some ideals for the way we store our data?
 6. What is an STL sequence?
 7. What is an STL iterator? What operations does it support?
 8. How do you move an iterator to the next element?
 9. How do you move an iterator to the previous element?
 10. What happens if you try to move an iterator past the end of a sequence?
 11. What kinds of iterators can you move to the previous element?
 12. Why is it useful to separate data from algorithms?

Stroustrup_book.indb 753Stroustrup_book.indb 753 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS754

 13. What is the STL?
 14. What is a linked list? How does it fundamentally differ from a vector?
 15. What is a link (in a linked list)?
 16. What does insert() do? What does erase() do?
 17. How do you know if a sequence is empty?
 18. What operations does an iterator for a list provide?
 19. How do you iterate over a container using the STL?
 20. When would you use a string rather than a vector?
 21. When would you use a list rather than a vector?
 22. What is a container?
 23. What should begin() and end() do for a container?
 24. What containers does the STL provide?
 25. What is an iterator category? What kinds of iterators does the STL offer?
 26. What operations are provided by a random-access iterator, but not a bidi-

rectional iterator?

Terms
algorithm
array container
auto
begin()
container
contiguous
doubly-linked list
element

empty sequence
end()
erase()
insert()
iteration
iterator
linked list
sequence

singly-linked list
size_type
STL
traversal
using
type alias
value_type

Exercises
 1. If you haven’t already, do all Try this exercises in the chapter.
 2. Get the Jack-and-Jill example from §20.1.2 to work. Use input from a

couple of small files to test it.
 3. Look at the palindrome examples (§18.7); redo the Jack-and-Jill example

from §20.1.2 using that variety of techniques.
 4. Find and fix the errors in the Jack-and-Jill example from §20.3.1 by using

STL techniques throughout.
 5. Define an input and an output operator (>> and <<) for vector.
 6. Write a find-and-replace operation for Documents based on §20.6.2.
 7. Find the lexicographical last string in an unsorted vector<string>.
 8. Define a function that counts the number of characters in a Document.

Stroustrup_book.indb 754Stroustrup_book.indb 754 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 EXERCISES 755

 9. Define a program that counts the number of words in a Document. Provide
two versions: one that defines word as “a whitespace-separated sequence of
characters” and one that defines word as “a sequence of consecutive alpha-
betic characters.” For example, with the former definition, alpha.numeric
and as12b are both single words, whereas with the second definition they
are both two words.

 10. Define a version of the word-counting program where the user can spec-
ify the set of whitespace characters.

 11. Given a list<int> as a (by-reference) parameter, make a vector<double>
and copy the elements of the list into it. Verify that the copy was complete
and correct. Then print the elements sorted in order of increasing value.

 12. Complete the definition of list from §20.4.1–2 and get the high() example
to run. Allocate a Link to represent one past the end.

 13. We don’t really need a “real” one-past-the-end Link for a list. Modify your
solution to the previous exercise to use 0 to represent a pointer to the
(nonexistent) one-past-the-end Link (list<Elem>::end()); that way, the size
of an empty list can be equal to the size of a single pointer.

 14. Define a singly-linked list, slist, in the style of std::list. Which operations
from list could you reasonably eliminate from slist because it doesn’t have
back pointers?

 15. Define a pvector to be like a vector of pointers except that it contains
pointers to objects and its destructor deletes each object.

 16. Define an ovector that is like pvector except that the [] and * operators
return a reference to the object pointed to by an element rather than the
pointer.

 17. Define an ownership_vector that hold pointers to objects like pvector but
provides a mechanism for the user to decide which objects are owned by
the vector (i.e., which objects are deleted by the destructor). Hint: This
exercise is simple if you were awake for Chapter 13.

 18. Define a range-checked iterator for vector (a random-access iterator).
 19. Define a range-checked iterator for list (a bidirectional iterator).
 20. Run a small timing experiment to compare the cost of using vector and list.

You can find an explanation of how to time a program in §26.6.1. Generate
N random int values in the range [0:N). As each int is generated, insert
it into a vector<int> (which grows by one element each time). Keep the
vector sorted; that is, a value is inserted after every previous value that is
less than or equal to the new value and before every previous value that is
larger than the new value. Now do the same experiment using a list<int> to
hold the ints. For which N is the list faster than the vector? Try to explain
your result. This experiment was first suggested by John Bentley.

Stroustrup_book.indb 755Stroustrup_book.indb 755 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 20 • CONTAINERS AND ITERATORS756

Postscript
If we have N kinds of containers of data and M things we’d like to do with them,
we can easily end up writing N*M pieces of code. If the data is of K different types,
we could even end up with N*M*K pieces of code. The STL addresses this prolif-
eration by having the element type as a parameter (taking care of the K factor) and
by separating access to data from algorithms. By using iterators to access data in
any kind of container from any algorithm, we can make do with N+M algorithms.
This is a huge simplifi cation. For example, if we have 12 containers and 60 algo-
rithms, the brute-force approach would require 720 functions, whereas the STL
strategy requires only 60 functions and 12 defi nitions of iterators: we just saved
ourselves 90% of the work. In fact, this underestimates the saved effort because
many algorithms take two pairs of iterators and the pairs need not be of the same
type (e.g., see exercise 6). In addition, the STL provides conventions for defi ning
algorithms that simplify writing correct code and composable code, so the saving
is greater still.

Stroustrup_book.indb 756Stroustrup_book.indb 756 4/22/14 9:43 AM4/22/14 9:43 AM

757

21

Algorithms and Maps

“In theory, practice is simple.”

—Trygve Reenskaug

This chapter completes our presentation of the fundamental

ideas of the STL and our survey of the facilities it offers.

Here, we focus on algorithms. Our primary aim is to introduce

you to about a dozen of the most useful ones, which will save

you days, if not months, of work. Each is presented with exam-

ples of its uses and of programming techniques that it supports.

Our second aim here is to give you sufficient tools to write your

own — elegant and efficient — algorithms if and when you need

more than what the standard library and other available libraries

have to offer. In addition, we introduce three more containers:

map, set, and unordered_map.

Stroustrup_book.indb 757Stroustrup_book.indb 757 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS758

21.1 Standard library algorithms
The standard library offers about 80 algorithms. All are useful for someone some-
times; we focus on some that are often useful for many and on some that are
occasionally very useful for someone:

Selected standard algorithms

r=find(b,e,v) r points to the first occurrence of v in [b:e).

r=find_if(b,e,p) r points to the first element x in [b:e) so that
p(x) is true.

x=count(b,e,v) x is the number of occurrences of v in [b:e).

x=count_if(b,e,p) x is the number of elements in [b:e) so that
p(x) is true.

sort(b,e) Sort [b:e) using <.

sort(b,e,p) Sort [b:e) using p.

copy(b,e,b2) Copy [b:e) to [b2:b2+(e–b)); there had better
be enough elements after b2.

unique_copy(b,e,b2) Copy [b:e) to [b2:b2+(e–b)); don’t copy
adjacent duplicates.

merge(b,e,b2,e2,r) Merge two sorted sequences [b2:e2) and [b:e)
into [r:r+(e–b)+(e2–b2)).

r=equal_range(b,e,v) r is the subsequence of the sorted range [b:e)
with the value v, basically, a binary search for v.

 21.1 Standard library algorithms

 21.2 The simplest algorithm: find()
 21.2.1 Some generic uses

 21.3 The general search: find_if()

 21.4 Function objects
 21.4.1 An abstract view of function

objects
 21.4.2 Predicates on class members
 21.4.3 Lambda expressions

 21.5 Numerical algorithms
 21.5.1 Accumulate

 21.5.2 Generalizing accumulate()
 21.5.3 Inner product
 21.5.4 Generalizing inner_product()

 21.6 Associative containers
 21.6.1 map
 21.6.2 map overview
 21.6.3 Another map example
 21.6.4 unordered_map
 21.6.5 set

 21.7 Copying
 21.7.1 Copy
 21.7.2 Stream iterators
 21.7.3 Using a set to keep order
 21.7.4 copy_if

 21.8 Sorting and searching

 21.9 Container algorithms

Stroustrup_book.indb 758Stroustrup_book.indb 758 4/22/14 9:43 AM4/22/14 9:43 AM

21.2 THE SIMPLEST ALGORITHM: FIND() 759

Selected standard algorithms

equal(b,e,b2) Do all elements of [b:e) and [b2:b2+(e–b))
compare equal?

x=accumulate(b,e,i) x is the sum of i and the elements of [b:e).

x=accumulate(b,e,i,op) Like the other accumulate, but with the “sum”
calculated using op.

x=inner_product(b,e,b2,i) x is the inner product of [b:e) and
[b2:b2+(e–b)).

x=inner_product(b,e,b2,i,op,op2) Like the other inner_product, but with op
and op2 instead of + and *.

By default, comparison for equality is done using == and ordering is done based
on < (less than). The standard library algorithms are found in <algorithm>. For
more information, see §B.5 and the sources listed in §21.2–21.5. These algorithms
take one or more sequences. An input sequence is defined by a pair of iterators;
an output sequence is defined by an iterator to its first element. Typically an algo-
rithm is parameterized by one or more operations that can be defined as function
objects or as functions. The algorithms usually report “failure” by returning the
end of an input sequence. For example, find(b,e,v) returns e if it doesn’t find v.

21.2 The simplest algorithm: fi nd()
Arguably, the simplest useful algorithm is find(). It finds an element with a given
value in a sequence:

template<typename In, typename T>
 // requires Input_iterator<In>()
 // && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)
 // find the first element in [first,last) that equals val
{
 while (first!=last && *first != val) ++first;
 return first;
}

Let’s have a look at the definition of find(). Naturally, you can use find() without
knowing exactly how it is implemented — in fact, we have used it already (e.g.,
§20.6.2). However, the definition of find() illustrates many useful design ideas, so
it is worth looking at.

First of all, find() operates on a sequence defined by a pair of iterators. We are
looking for the value val in the half-open sequence [first:last). The result returned

Stroustrup_chs21-27.indd 759Stroustrup_chs21-27.indd 759 4/22/14 1:07 PM4/22/14 1:07 PM

CHAPTER 21 • ALGORITHMS AND MAPS760

by find() is an iterator. That result points either to the first element of the sequence
with the value val or to last. Returning an iterator to the one-beyond-the-last el-
ement of a sequence is the most common STL way of reporting “not found.” So
we can use find() like this:

void f(vector<int>& v, int x)
{
 auto p = find(v.begin(),v.end(),x);
 if (p!=v.end()) {
 // we found x in v
 }
 else {
 // no x in v
 }
 // . . .
}

Here, as is common, the sequence consists of all the elements of a container (an
STL vector). We check the returned iterator against the end of our sequence to
see if we found our value. The type of the value returned is the iterator passed as
an argument.

To avoid naming the type returned, we used auto. An object defined with the
“type” auto gets the type of its initializer. For example:

auto ch = 'c'; // ch is a char
auto d = 2.1; // d is a double

The auto type specifier is particularly useful in generic code, such as find()
where it can be tedious to name the actual type (here, vector<int>::iterator).

We now know how to use find() and therefore also how to use a bunch of
other algorithms that follow the same conventions as find(). Before proceeding
with more uses and more algorithms, let’s just have a closer look at that definition:

template<typename In, typename T>
 // requires Input_iterator<In>()
 // && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)
 // find the first element in [first,last) that equals val
{
 while (first!=last && *first != val) ++first;
 return first;
}

Stroustrup_chs21-27.indd 760Stroustrup_chs21-27.indd 760 4/22/14 1:07 PM4/22/14 1:07 PM

21.2 THE SIMPLEST ALGORITHM: FIND() 761

Did you find that loop obvious at first glance? We didn’t. It is actually minimal,
efficient, and a direct representation of the fundamental algorithm. However, until
you have seen a few examples, it is not obvious. Let’s write it “the pedestrian way”
and see how that version compares:

template<typename In, typename T>
 // requires Input_iterator<In>()
 // && Equality_comparable<Value_type<T>>() (§19.3.3)
In find(In first, In last, const T& val)
 // find the first element in [first,last) that equals val
{
 for (In p = first; p!=last; ++p)
 if (*p == val) return p;
 return last;
}

These two definitions are logically equivalent, and a really good compiler will
generate the same code for both. However, in reality many compilers are not good
enough to eliminate that extra variable (p) and to rearrange the code so that all the
testing is done in one place. Why worry and explain? Partly, because the style of
the first (and preferred) version of find() has become very popular, and you must
understand it to read other people’s code; partly, because performance matters
exactly for small, frequently used functions that deal with lots of data.

TRY THIS

Are you sure those two definitions are logically equivalent? How would
you be sure? Try constructing an argument for their being equivalent. That
done, try both on some data. A famous computer scientist (Don Knuth)
once said, “I have only proven the algorithm correct, not tested it.” Even
mathematical proofs can contain errors. To be confident, you need to both
reason and test.

21.2.1 Some generic uses
The find() algorithm is generic. That means that it can be used for different data
types. In fact, it is generic in two ways; it can be used for

• Any STL-style sequence
• Any element type

T

Stroustrup_chs21-27.indd 761Stroustrup_chs21-27.indd 761 4/22/14 1:07 PM4/22/14 1:07 PM

CHAPTER 21 • ALGORITHMS AND MAPS762

Here are some examples (consult the diagrams in §20.4 if you get confused):

void f(vector<int>& v, int x) // works for vector of int
{
 vector<int>::iterator p = find(v.begin(),v.end(),x);
 if (p!=v.end()) { /* we found x */ }
 // . . .
}

Here, the iteration operations used by find() are those of a vector<int>::iterator;
that is, ++ (in ++first) simply moves a pointer to the next location in memory
(where the next element of the vector is stored) and * (in *first) dereferences such
a pointer. The iterator comparison (in first!=last) is a pointer comparison, and
the value comparison (in *first!=val) simply compares two integers.

Let’s try with a list:

void f(list<string>& v, string x) // works for list of string
{
 list<string>::iterator p = find(v.begin(),v.end(),x);
 if (p!=v.end()) { /* we found x */ }
 // . . .
}

Here, the iteration operations used by find() are those of a list<string>::iterator.
The operators have the required meaning, so that the logic is the same as for the
vector<int> above. The implementation is very different, though; that is, ++ (in
++first) simply follows a pointer in the Link part of the element to where the next
element of the list is stored, and * (in *first) finds the value part of a Link. The
iterator comparison (in first!=last) is a pointer comparison of Link*s and the value
comparison (in *first!=val) compares strings using string’s != operator.

So, find() is extremely flexible: as long as we obey the simple rules for iter-
ators, we can use find() to find elements for any sequence we can think of and
for any container we care to define. For example, we can use find() to look for a
character in a Document as defined in §20.6:

void f(Document& v, char x) // works for Document of char
{
 Text_iterator p = find(v.begin(),v.end(),x);
 if (p!=v.end()) { /* we found x */ }
 // . . .
}

Stroustrup_book.indb 762Stroustrup_book.indb 762 4/22/14 9:43 AM4/22/14 9:43 AM

21.3 THE GENERAL SEARCH: FIND_IF() 763

This kind of flexibility is the hallmark of the STL algorithms and makes them
more useful than most people imagine when they first encounter them.

21.3 The general search: fi nd_if()
We don’t actually look for a specific value all that often. More often, we are in-
terested in finding a value that meets some criteria. We could get a much more
useful find operation if we could define our search criteria ourselves. Maybe we
want to find a value larger than 42. Maybe we want to compare strings without
taking case (upper case vs. lower case) into account. Maybe we want to find the
first odd value. Maybe we want to find a record where the address field is "17
Cherry Tree Lane".

The standard algorithm that searches based on a user-supplied criterion is
find_if():

template<typename In, typename Pred>
 // requires Input_iterator<In>() && Predicate<Pred,Value_type<In>>()
In find_if(In first, In last, Pred pred)
{
 while (first!=last && !pred(*first)) ++first;
 return first;
}

Obviously (when you compare the source code), it is just like find() except that it
uses !pred(*first) rather than *first!=val; that is, it stops searching once the predi-
cate pred() succeeds rather than when an element equals a value.

A predicate is a function that returns true or false. Clearly, find_if() requires
a predicate that takes one argument so that it can say pred(*first). We can easily
write a predicate that checks some property of a value, such as “Does the string
contain the letter x?” “Is the value larger than 42?” “Is the number odd?” For
example, we can find the first odd value in a vector of ints like this:

bool odd(int x) { return x%2; } // % is the modulo operator

void f(vector<int>& v)
{
 auto p = find_if(v.begin(), v.end(), odd);
 if (p!=v.end()) { /* we found an odd number */ }
 // . . .
}

Stroustrup_book.indb 763Stroustrup_book.indb 763 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS764

For that call of find_if(), find_if() calls odd() for each element until it finds the
first odd value. Note that when you pass a function as an argument, you don’t
add () to its name because doing so would call it.

Similarly, we can find the first element of a list with a value larger than 42
like this:

bool larger_than_42(double x) { return x>42; }

void f(list<double>& v)
{
 auto p = find_if(v.begin(), v.end(), larger_than_42);
 if (p!=v.end()) { /* we found a value > 42 */ }
 // . . .
}

This last example is not very satisfying, though. What if we next wanted to find
an element larger than 41? We would have to write a new function. Find an ele-
ment larger than 19? Write yet another function. There has to be a better way!

If we want to compare to an arbitrary value v, we need somehow to make
v an implicit argument to find_if()’s predicate. We could try (choosing v_val as a
name that is less likely to clash with other names)

double v_val; // the value to which larger_than_v() compares its argument
bool larger_than_v(double x) { return x>v_val; }

void f(list<double>& v, int x)
{
 v_val = 31; // set v_val to 31 for the next call of larger_than_v
 auto p = find_if(v.begin(), v.end(), larger_than_v);
 if (p!=v.end()) { /* we found a value > 31 */ }

 v_val = x; // set v_val to x for the next call of larger_than_v
 auto q = find_if(v.begin(), v.end(), larger_than_v);
 if (q!=v.end()) { /* we found a value > x */ }

 // . . .
}

Yuck! We are convinced that people who write such code will eventually get what
they deserve, but we pity their users and anyone who gets to maintain their code.
Again: there has to be a better way!

Stroustrup_book.indb 764Stroustrup_book.indb 764 4/22/14 9:43 AM4/22/14 9:43 AM

21.4 FUNCTION OBJECTS 765

TRY THIS

Why are we so disgusted with that use of v? Give at least three ways this
could lead to obscure errors. List three applications in which you’d particu-
larly hate to find such code.

21.4 Function objects
So, we want to pass a predicate to find_if(), and we want that predicate to compare
elements to a value we specify as some kind of argument. In particular, we want
to write something like this:

void f(list<double>& v, int x)
{
 auto p = find_if(v.begin(), v.end(), Larger_than(31));
 if (p!=v.end()) { /* we found a value > 31 */ }

 auto q = find_if(v.begin(), v.end(), Larger_than(x));
 if (q!=v.end()) { /* we found a value > x */ }

 // . . .
}

Obviously, Larger_than must be something that

• We can call as a predicate, e.g., pred(*fi rst)

• Can store a value, such as 31 or x, for use when called

For that we need a “function object,” that is, an object that can behave like a
function. We need an object because objects can store data, such as the value with
which to compare. For example:

class Larger_than {
 int v;
public:
 Larger_than(int vv) : v(vv) { } // store the argument
 bool operator()(int x) const { return x>v; } // compare
};

T

Stroustrup_book.indb 765Stroustrup_book.indb 765 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS766

Interestingly, this definition makes the example above work as specified. Now we
just have to figure out why it works. When we say Larger_than(31) we (obviously)
make an object of class Larger_than holding 31 in its data member v. For example:

find_if(v.begin(),v.end(),Larger_than(31))

Here, we pass that object to find_if() as its parameter called pred. For each ele-
ment of v, find_if() makes a call

pred(*first)

This invokes the call operator, called operator(), for our function object using the
argument *first. The result is a comparison of the element’s value, *first, with 31.

What we see here is that a function call can be seen as an operator, the “()
operator,” just like any other operator. The “() operator” is also called the func-
tion call operator and the application operator. So () in pred(*first) is given a mean-
ing by Larger_than::operator(), just as subscripting in v[i] is given a meaning by
 vector::operator[].

21.4.1 An abstract view of function objects
We have here a mechanism that allows for a “function” to “carry around” data
that it needs. Clearly, function objects provide us with a very general, powerful,
and convenient mechanism. Consider a more general notion of a function object:

class F { // abstract example of a function object
 S s; // state
public:
 F(const S& ss) :s(ss) { /* establish initial state */ }
 T operator() (const S& ss) const
 {
 // do something with ss to s
 // return a value of type T (T is often void, bool, or S)
 }

 const S& state() const { return s; } // reveal state
 void reset(const S& ss) { s = ss; } // reset state
};

An object of class F holds data in its member s. If needed, a function object can
have many data members. Another way of saying that something holds data is
that it “has state.” When we create an F, we can initialize that state. Whenever
we want to, we can read that state. For F, we provided an operation, state(), to

Stroustrup_book.indb 766Stroustrup_book.indb 766 4/22/14 9:43 AM4/22/14 9:43 AM

21.4 FUNCTION OBJECTS 767

read that state and another, reset(), to write it. However, when we design a func-
tion object we are free to provide any way of accessing its state that we consider
appropriate. And, of course, we can directly or indirectly call the function object
using the normal function call notation. We defined F to take a single argument
when it is called, but we can define function objects with as many parameters
as we need.

Use of function objects is the main method of parameterization in the STL.
We use function objects to specify what we are looking for in searches (§21.3), for
defining sorting criteria (§21.4.2), for specifying arithmetic operations in numer-
ical algorithms (§21.5), for defining what it means for values to be equal (§21.8),
and for much more. The use of function objects is a major source of flexibility
and generality.

Function objects are usually very efficient. In particular, passing a small func-
tion object by value to a template function typically leads to optimal performance.
The reason is simple, but surprising to people more familiar with passing functions
as arguments: typically, passing a function object leads to significantly smaller
and faster code than passing a function! This is true only if the object is small
(something like zero, one, or two words of data) or passed by reference and if the
function call operator is small (e.g., a simple comparison using <) and defined to
be inline (e.g., has its definition within its class itself). Most of the examples in this
chapter — and in this book — follow this pattern. The basic reason for the high per-
formance of small and simple function objects is that they preserve sufficient type
information for compilers to generate optimal code. Even older compilers with
unsophisticated optimizers can generate a simple “greater-than” machine instruc-
tion for the comparison in Larger_than rather than calling a function. Calling a
function typically takes 10 to 50 times longer than executing a simple comparison
operation. In addition, the code for a function call is several times larger than the
code for a simple comparison.

21.4.2 Predicates on class members
As we have seen, standard algorithms work well with sequences of elements of
basic types, such as int and double. However, in some application areas, con-
tainers of class values are far more common. Consider an example that is key to
applications in many areas, sorting a record by several criteria:

struct Record {
 string name; // standard string for ease of use
 char addr[24]; // old style to match database layout
 // . . .
};

vector<Record> vr;

Stroustrup_book.indb 767Stroustrup_book.indb 767 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS768

Sometimes we want to sort vr by name, and sometimes we want to sort it by
address. Unless we can do both elegantly and efficiently, our techniques are of
limited practical interest. Fortunately, doing so is easy. We can write

// . . .
sort(vr.begin(), vr.end(), Cmp_by_name()); // sort by name
// . . .
sort(vr.begin(), vr.end(), Cmp_by_addr()); // sort by addr
// . . .

Cmp_by_name is a function object that compares two Records by comparing their
name members. Cmp_by_addr is a function object that compares two Records
by comparing their addr members. To allow the user to specify such compari-
son criteria, the standard library sort algorithm takes an optional third argument
specifying the sorting criteria. Cmp_by_name() creates a Cmp_by_name for sort()
to use to compare Records. That looks OK — meaning that we wouldn’t mind
maintaining code that looked like that. Now all we have to do is to define Cmp_
by_name and Cmp_by_addr:

// different comparisons for Record objects:

struct Cmp_by_name {
 bool operator()(const Record& a, const Record& b) const
 { return a.name < b.name; }
};

struct Cmp_by_addr {
 bool operator()(const Record& a, const Record& b) const
 { return strncmp(a.addr, b.addr, 24) < 0; } // !!!
};

The Cmp_by_name class is pretty obvious. The function call operator, operator()
(), simply compares the name strings using the standard string’s < operator. How-
ever, the comparison in Cmp_by_addr is ugly. That is because we chose an ugly
representation of the address: an array of 24 characters (not zero terminated).
We chose that partly to show how a function object can be used to hide ugly and
error-prone code and partly because this particular representation was once pre-
sented to me as a challenge: “an ugly and important real-world problem that the
STL can’t handle.” Well, the STL could. The comparison function uses the stan-
dard C (and C++) library function strncmp() that compares fixed-length character
arrays, returning a negative number if the second “string” comes lexicographically
after the first. Look it up should you ever need to do such an obscure comparison
(e.g., §B.11.3).

Stroustrup_book.indb 768Stroustrup_book.indb 768 4/22/14 9:43 AM4/22/14 9:43 AM

21.4 FUNCTION OBJECTS 769

21.4.3 Lambda expressions
Defining a function object (or a function) in one place in a program and then
using it in another can be a bit tedious. In particular, it is a nuisance if the action
we want to perform is very easy to specify, easy to understand, and will never
again be needed. In that case, we can use a lambda expression (§15.3.3). Probably
the best way of thinking about a lambda expression is as a shorthand notation
for defining a function object (a class with an operator ()) and then immediately
creating an object of it. For example, we could have written

// . . .
sort(vr.begin(), vr.end(), // sort by name
 [] (const Record& a, const Record& b)
 { return a.name < b.name; }
);
// . . .
sort(vr.begin(), vr.end(), // sort by addr
 [] (const Record& a, const Record& b)
 { return strncmp(a.addr, b.addr, 24) < 0; }
);
// . . .

In this case, we wonder if a named function object wouldn’t give more maintain-
able code. Maybe Cmp_by_name and Cmp_by_addr have other uses.

However, consider the find_if() example from §21.4. There, we needed to
pass an operation as an argument and that operation needed to carry data with it:

void f(list<double>& v, int x)
{
 auto p = find_if(v.begin(), v.end(), Larger_than(31));
 if (p!=v.end()) { /* we found a value > 31 */ }

 auto q = find_if(v.begin(), v.end(), Larger_than(x));
 if (q!=v.end()) { /* we found a value > x */ }

 // . . .
}

Alternatively, and equivalently, we could write

void f(list<double>& v, int x)
{
 auto p = find_if(v.begin(), v.end(), [] (double a) { return a>31; });
 if (p!=v.end()) { /* we found a value > 31 */ }

Stroustrup_book.indb 769Stroustrup_book.indb 769 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS770

 auto q = find_if(v.begin(), v.end(), [&](double a) { return a>x; });
 if (q!=v.end()) { /* we found a value > x */ }

 // . . .
}

The comparison to the local variable x makes the lambda version attractive.

21.5 Numerical algorithms
Most of the standard library algorithms deal with data management issues: they
copy, sort, search, etc. data. However, a few help with numerical computations.
These numerical algorithms can be important when you compute, and they
serve as examples of how you can express numerical algorithms within the
STL framework.

There are just four STL-style standard library numerical algorithms:

Numerical algorithms

x=accumulate(b,e,i) Add a sequence of values; e.g., for {a,b,c,d}
produce i+a+b+c+d. The type of the result x is
the type of the initial value i.

x=inner_product(b,e,b2,i) Multiply pairs of values from two sequences and
sum the results; e.g., for {a,b,c,d} and {e,f,g,h}
produce i+a*e+b*f+c*g+d*h. The type of the
result x is the type of the initial value i.

r=partial_sum(b,e,r) Produce the sequence of sums of the first n
elements of a sequence; e.g., for {a,b,c,d}
produce {a, a+b, a+b+c, a+b+c+d}.

r=adjacent_difference(b,e,b2,r) Produce the sequence of differences between
elements of a sequence; e.g., for {a,b,c,d}
produce {a,b–a,c–b,d–c}.

They are found in <numeric>. We’ll describe the first two here and leave it for
you to explore the other two if you feel the need.

21.5.1 Accumulate
The simplest and most useful numerical algorithm is accumulate(). In its simplest
form, it adds a sequence of values:

Stroustrup_book.indb 770Stroustrup_book.indb 770 4/22/14 9:43 AM4/22/14 9:43 AM

21.5 NUMERICAL ALGORITHMS 771

template<typename In, typename T>
 // requres Input_iterator<T>() && Number<T>()
T accumulate(In first, In last, T init)
{
 while (first!=last) {
 init = init + *first;
 ++first;
 }
 return init;
}

Given an initial value, init, it simply adds every value in the [first:last) sequence to
it and returns the sum. The variable in which the sum is computed, init, is often
referred to as the accumulator. For example:

int a[] = { 1, 2, 3, 4, 5 };
cout << accumulate(a, a+sizeof(a)/sizeof(int), 0);

This will print 15, that is, 0+1+2+3+4+5 (0 is the initial value). Obviously,
 accumulate() can be used for all kinds of sequences:

void f(vector<double>& vd, int* p, int n)
{
 double sum = accumulate(vd.begin(), vd.end(), 0.0);
 int sum2 = accumulate(p,p+n,0);
}

The type of the result (the sum) is the type of the variable that accumulate() uses
to hold the accumulator. This gives a degree of flexibility that can be important.
For example:

void g(int* p, int n)
{
 int s1 = accumulate(p, p+n, 0); // sum into an int
 long sl = accumulate(p, p+n, long{0}); // sum the ints into a long
 double s2 = accumulate(p, p+n, 0.0); // sum the ints into a double
}

A long has more significant digits than an int on some computers. A double can
represent larger (and smaller) numbers than an int, but possibly with less preci-
sion. We’ll revisit the role of range and precision in numerical computations in
Chapter 24.

Stroustrup_book.indb 771Stroustrup_book.indb 771 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS772

Using the variable in which you want the result as the initializer is a popular
idiom for specifying the type of the accumulator:

void f(vector<double>& vd, int* p, int n)
{
 double s1 = 0;
 s1 = accumulate(vd.begin(), vd.end(), s1);
 int s2 = accumulate(vd.begin(), vd.end(), s2); // oops
 float s3 = 0;
 accumulate(vd.begin(), vd.end(), s3); // oops
}

Do remember to initialize the accumulator and to assign the result of accumulate()
to the variable. In this example, s2 was used as an initializer before it was itself ini-
tialized; the result is therefore undefined. We passed s3 to accumulate() (pass-by-
value; see §8.5.3), but the result is never assigned anywhere; that compilation is
just a waste of time.

21.5.2 Generalizing accumulate()
So, the basic three-argument accumulate() adds. However, there are many other
useful operations, such as multiply and subtract, that we might like to do on a se-
quence, so the STL offers a second four-argument version of accumulate() where
we can specify the operation to be used:

template<typename In, typename T, typename BinOp>
 // requires Input_iterator<In>() && Number<T>()
 // && Binary_operator<BinOp,Value_type<In>,T>()
T accumulate(In first, In last, T init, BinOp op)
{
 while (first!=last) {
 init = op(init, *first);
 ++first;
 }
 return init;
}

Any binary operation that accepts two arguments of the accumulator’s type can
be used here. For example:

vector<double> a = { 1.1, 2.2, 3.3, 4.4 };
cout << accumulate(a.begin(),a.end(), 1.0, multiplies<double>());

Stroustrup_chs21-27.indd 772Stroustrup_chs21-27.indd 772 4/22/14 1:05 PM4/22/14 1:05 PM

21.5 NUMERICAL ALGORITHMS 773

This will print 35.1384, that is, 1.0*1.1*2.2*3.3*4.4 (1.0 is the initial value). The bi-
nary operator supplied here, multiplies<double>(), is a standard library function
object that multiplies; multiplies<double> multiplies doubles, multiplies<int>
multiplies ints, etc. There are other binary function objects: plus (it adds), minus
(it subtracts), divides, and modulus (it takes the remainder). They are all defined
in <functional> (§B.6.2).

Note that for products of floating-point numbers, the obvious initial value
is 1.0.

As in the sort() example (§21.4.2), we are often interested in data within class
objects, rather than just plain built-in types. For example, we might want to calcu-
late the total cost of items given the unit prices and number of units:

struct Record {
 double unit_price;
 int units; // number of units sold
 // . . .
};

We can let accumulate’s operator extract the units from a Record element as well
as multiplying it to the accumulator value:

double price(double v, const Record& r)
{
 return v + r.unit_price * r.units; // calculate price and accumulate
}

void f(const vector<Record>& vr)
{
 double total = accumulate(vr.begin(), vr.end(), 0.0, price);
 // . . .
}

We were “lazy” and used a function, rather than a function object, to calculate the
price — just to show that we could do that also. We tend to prefer function objects

• If they need to store a value between calls, or
• If they are so short that inlining can make a difference (at most a handful

of primitive operations)

In this example, we might have chosen a function object for the second reason.

Stroustrup_book.indb 773Stroustrup_book.indb 773 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS774

TRY THIS

Define a vector<Record>, initialize it with four records of your choice, and
compute their total price using the functions above.

21.5.3 Inner product
Take two vectors, multiply each pair of elements with the same subscript, and add
all of those products. That’s called the inner product of the two vectors and is a most
useful operation in many areas (e.g., physics and linear algebra; see §24.6). If you
prefer code to words, here is the STL version:

template<typename In, typename In2, typename T>
 // requires Input_iterator<In> && Input_iterator<In2>
 // && Number<T> (§19.3.3)
T inner_product(In first, In last, In2 first2, T init)
 // note: this is the way we multiply two vectors (yielding a scalar)
{
 while(first!=last) {
 init = init + (*first) * (*first2); // multiply pairs of elements
 ++first;
 ++first2;
 }
 return init;
}

This generalizes the notion of inner product to any kind of sequence of any type
of element. As an example, consider a stock market index. The way that works
is to take a set of companies and assign each a “weight.” For example, in the Dow
Jones Industrial index Alcoa had a weight of 2.4808 when last we looked. To get
the current value of the index, we multiply each company’s share price with its
weight and add all the resulting weighted prices together. Obviously, that’s the
inner product of the prices and the weights. For example:

// calculate the Dow Jones Industrial index:
vector<double> dow_price = { // share price for each company
 81.86, 34.69, 54.45,
 // . . .
};

T

Stroustrup_book.indb 774Stroustrup_book.indb 774 4/22/14 9:43 AM4/22/14 9:43 AM

21.5 NUMERICAL ALGORITHMS 775

list<double> dow_weight = { // weight in index for each company
 5.8549, 2.4808, 3.8940,
 // . . .
};

double dji_index = inner_product(// multiply (weight,value) pairs and add
 dow_price.begin(), dow_price.end(),
 dow_weight.begin(),
 0.0);

cout << "DJI value " << dji_index << '\n';

Note that inner_product() takes two sequences. However, it takes only three ar-
guments: only the beginning of the second sequence is mentioned. The second
sequence is supposed to have at least as many elements as the first. If not, we have
a run-time error. As far as inner_product() is concerned, it is OK for the second
sequence to have more elements than the first; those “surplus elements” will sim-
ply not be used.

The two sequences need not be of the same type, nor do they need to have
the same element types. To illustrate this point, we used a vector to hold the prices
and a list to hold the weights.

21.5.4 Generalizing inner_product()
The inner_product() can be generalized just as accumulate() was. For inner_prod-
uct() we need two extra arguments, though: one to combine the accumulator with
the new value, exactly as for accumulate(), and one for combining the element
value pairs:

template<typename In, typename In2, typename T, typename BinOp,
typename BinOp2>
 // requires Input_iterator<In> && Input_iterator<In2> && Number<T>
 // && Binary_operation<BinOp,T, Value_type<In>()
 // && Binary_operation<BinOp2,T, Value_type<In2>()
T inner_product(In first, In last, In2 first2, T init, BinOp op, BinOp2 op2)
{
 while(first!=last) {
 init = op(init, op2(*first, *first2));
 ++first;
 ++first2;
 }
 return init;
}

Stroustrup_book.indb 775Stroustrup_book.indb 775 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS776

In §21.6.3, we return to the Dow Jones example and use this generalized inner_
product() as part of a more elegant solution.

21.6 Associative containers
After vector, the most useful standard library container is probably the map.
A map is an ordered sequence of (key,value) pairs in which you can look up a
value based on a key; for example, my_phone_book["Nicholas"] could be the
phone number of Nicholas. The only potential competitor to map in a popularity
contest is unordered_map (see §21.6.4), and that’s a map optimized for keys that
are strings. Data structures similar to map and unordered_map are known under
many names, such as associative arrays, hash tables, and red-black trees. Popular and
useful concepts always seem to have many names. In the standard library, we
collectively call all such data structures associative containers.

The standard library provides eight associative containers:

Associative containers

map an ordered container of (key,value) pairs

set an ordered container of keys

unordered_map an unordered container of (key,value) pairs

unordered_set an unordered container of keys

multimap a map where a key can occur multiple times

multiset a set where a key can occur multiple times

unordered_multimap an unordered_map where a key can occur multiple times

unordered_multiset an unordered_set where a key can occur multiple times

These containers are found in <map>, <set>, <unordered_map>, and
<unordered_set>.

21.6.1 map
Consider a conceptually simple task: make a list of the number of occurrences of
words in a text. The obvious way of doing this is to keep a list of words we have
seen together with the number of times we have seen each. When we read a new
word, we see if we have already seen it; if we have, we increase its count by one;
if not, we insert it in our list and give it the value 1. We could do that using a list
or a vector, but then we would have to do a search for each word we read. That
could be slow. A map stores its keys in a way that makes it easy to see if a key is
present, thus making the searching part of our task trivial:

Stroustrup_book.indb 776Stroustrup_book.indb 776 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 777

int main()
{
 map<string,int> words; // keep (word,frequency) pairs

 for (string s; cin>>s;)
 ++words[s]; // note: words is subscripted by a string

 for (const auto& p : words)
 cout << p.first << ": " << p.second << '\n';
}

The really interesting part of the program is ++words[s]. As we can see from the
first line of main(), words is a map of (string,int) pairs; that is, words maps strings
to ints. In other words, given a string, words can give us access to its correspond-
ing int. So, when we subscript words with a string (holding a word read from
our input), words[s] is a reference to the int corresponding to s. Let’s look at a
concrete example:

words["sultan"]

If we have not seen the string "sultan" before, "sultan" will be entered into words
with the default value for an int, which is 0. Now, words has an entry ("sultan",0).
It follows that if we haven’t seen "sultan" before, ++words["sultan"] will associate
the value 1 with the string "sultan". In detail: the map will discover that "sultan"
wasn’t found, insert a ("sultan",0) pair, and then ++ will increment that value,
yielding 1.

Now look again at the program: ++words[s] takes every “word” we get from
input and increases its value by one. The first time a new word is seen, it gets the
value 1. Now the meaning of the loop is clear:

for (string s; cin>>s;)
 ++words[s]; // note: words is subscripted by a string

This reads every (whitespace-separated) word on input and computes the num-
ber of occurrences for each. Now all we have to do is to produce the output. We
can iterate through a map, just like any other STL container. The elements of a
map<string,int> are of type pair<string,int>. The first member of a pair is called
first and the second member second, so the output loop becomes

 for (const auto& p : words)
 cout << p.first << ": " << p.second << '\n';

Stroustrup_book.indb 777Stroustrup_book.indb 777 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS778

As a test, we can feed the opening statements of the first edition of The C++
Programming Language to our program:

C++ is a general purpose programming language designed to make pro-
gramming more enjoyable for the serious programmer. Except for minor
details, C++ is a superset of the C programming language. In addition to
the facilities provided by C, C++ provides flexible and efficient facilities
for defining new types.

We get the output

C: 1
C++: 3
C,: 1
Except: 1
In: 1
a: 2
addition: 1
and: 1
by: 1
defining: 1
designed: 1
details,: 1
efficient: 1
enjoyable: 1
facilities: 2
flexible: 1
for: 3
general: 1
is: 2
language: 1
language.: 1
make: 1
minor: 1
more: 1
new: 1
of: 1
programmer.: 1
programming: 3
provided: 1
provides: 1
purpose: 1

Stroustrup_book.indb 778Stroustrup_book.indb 778 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 779

serious: 1
superset: 1
the: 3
to: 2
types.: 1

If we don’t like to distinguish between upper- and lowercase letters or would like
to eliminate punctuation, we can do so: see exercise 13.

21.6.2 map overview
So what is a map? There is a variety of ways of implementing maps, but the STL
map implementations tend to be balanced binary search trees; more specifically,
they are red-black trees. We will not go into the details, but now you know the
technical terms, so you can look them up in the literature or on the web, should
you want to know more.

A tree is built up from nodes (in a way similar to a list being built from links;
see §20.4). A Node holds a key, its corresponding value, and pointers to two de-
scendant Nodes.

Key first
Value second

Node* left
Node* right
. . .

Map node:

Here is the way a map<Fruit,int> might look in memory assuming we had inserted
(Kiwi,100), (Quince,0), (Plum,8), (Apple,7), (Grape,2345), and (Orange,99) into it:

Orange 99

Grape 2345 Quince 0

Apple 7 Kiwi 100 Plum 8 One beyond last

Fruits:

Given that the name of the Node member that holds the key value is first, the
basic rule of a binary search tree is

left–>first<first && first<right–>first

Stroustrup_book.indb 779Stroustrup_book.indb 779 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS780

That is, for every node,

• Its left sub-node has a key that is less than the node’s key, and
• The node’s key is less than the key of its right sub-node

You can verify that this holds for each node in the tree. That allows us to search
“down the tree from its root.” Curiously enough, in computer science literature
trees grow downward from their roots. In the example, the root node is (Orange,
99). We just compare our way down the tree until we find what we are looking
for or the place where it should have been. A tree is called balanced when (as in the
example above) each sub-tree has approximately as many nodes as every other
sub-tree that’s equally far from the root. Being balanced minimizes the average
number of nodes we have to visit to reach a node.

A Node may also hold some more data which the map will use to keep its tree
of nodes balanced. A tree is balanced when each node has about as many descen-
dants to its left as to its right. If a tree with N nodes is balanced, we have to at most
look at log2(N) nodes to find a node. That’s much better than the average of N/2
nodes we would have to examine if we had the keys in a list and searched from
the beginning (the worst case for such a linear search is N). (See also §21.6.4.) For
example, have a look at an unbalanced tree:

Orange 99

Grape 2345 Quince 0

Apple 7 Kiwi 100

Plum 8

One beyond last

Fruits:

This tree still meets the criteria that the key of every node is greater than that of
its left sub-node and less than that of its right sub-node:

left–>first<first && first<right–>first

However, this version of the tree is unbalanced, so we now have three “hops” to
reach Apple and Kiwi, rather than the two we had in the balanced tree. For trees
of many nodes the difference can be very significant, so the trees used to imple-
ment maps are balanced.

Stroustrup_book.indb 780Stroustrup_book.indb 780 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 781

We don’t have to understand about trees to use map. It is just reasonable
to assume that professionals understand at least the fundamentals of their tools.
What we do have to understand is the interface to map provided by the standard
library. Here is a slightly simplified version:

template<typename Key, typename Value, typename Cmp = less<Key>>
 // requires Binary_operation<Cmp,Value>() (§19.3.3)
class map {
 // . . .

using value_type = pair<Key,Value>; // a map deals in (Key,Value) pairs

 using iterator = sometype1; // similar to a pointer to a tree node
 using const_iterator = sometype2;

 iterator begin(); // points to first element
 iterator end(); // points one beyond the last element

Value& operator[](const Key& k); // subscript with k

 iterator find(const Key& k); // is there an entry for k?

 void erase(iterator p); // remove element pointed to by p
 pair<iterator, bool> insert(const value_type&); // insert a (key,value) pair
 // . . .
};

You can find the real version in <map>. You can imagine the iterator to be similar
to a Node*, but you cannot rely on your implementation using that specific type
to implement iterator.

The similarity to the interfaces for vector and list (§20.5 and §B.4) is obvious.
The main difference is that when you iterate, the elements are pairs — of type
pair<Key,Value>. That type is another useful STL type:

template<typename T1, typename T2>
struct pair { // simplified version of std::pair
 using first_type = T1;
 using second_type = T2;

 T1 first;
 T2 second;

Stroustrup_book.indb 781Stroustrup_book.indb 781 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS782

 // . . .
};

template<typename T1, typename T2>
pair<T1,T2> make_pair(T1 x, T2 y)
{
 return {x,y};
}

We copied the complete definition of pair and its useful helper function make_
pair() from the standard.

Note that when you iterate over a map, the elements will come in the order
defined by the key. For example, if we iterated over the fruits in the example, we
would get

(Apple,7) (Grape,2345) (Kiwi,100) (Orange,99) (Plum,8) (Quince,0)

The order in which we inserted those fruits doesn’t matter.
The insert() operation has an odd return value, which we most often ignore

in simple programs. It is a pair of an iterator to the (key,value) element and a bool
which is true if the (key,value) pair was inserted by this call of insert(). If the key
was already in the map, the insertion fails and the bool is false.

Note that you can define the meaning of the order used by a map by supply-
ing a third argument (Cmp in the map declaration). For example:

map<string, double, No_case> m;

No_case defines case-insensitive compare; see §21.8. By default the order is de-
fined by less<Key>, meaning “less than.”

21.6.3 Another map example
To better appreciate the utility of map, let’s return to the Dow Jones example from
§21.5.3. The code there was correct if and only if all weights appear in the same
position in their vector as their corresponding name. That’s implicit and could
easily be the source of an obscure bug. There are many ways of attacking that
problem, but one attractive one is to keep each weight together with its company’s
ticker symbol, e.g., (“AA”,2.4808). A “ticker symbol” is an abbreviation of a com-
pany name used where a terse representation is needed. Similarly we can keep the
company’s ticker symbol together with its share price, e.g., (“AA”,34.69). Finally,

Stroustrup_book.indb 782Stroustrup_book.indb 782 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 783

for those of us who don’t regularly deal with the U.S. stock market, we can keep
the company’s ticker symbol together with the company name, e.g., (“AA”,“Alcoa
Inc.”); that is, we could keep three maps of corresponding values.

First we make the (symbol,price) map:

map<string,double> dow_price = { // Dow Jones Industrial index (symbol,price);
 // for up-to-date quotes see
 // www.djindexes.com
 {"MMM",81.86},
 {"AA",34.69},
 {"MO",54.45},
 // . . .
};

The (symbol,weight) map:

map<string,double> dow_weight = { // Dow (symbol,weight)
 {"MMM", 5.8549},
 {"AA",2.4808},
 {"MO",3.8940},
 // . . .
};

The (symbol,name) map:

map<string,string> dow_name = { // Dow (symbol,name)
 {"MMM","3M Co."},
 {"AA"] = "Alcoa Inc."},
 {"MO"] = "Altria Group Inc."},
 // . . .
};

Given those maps, we can conveniently extract all kinds of information. For
example:

double alcoa_price = dow_price ["AAA"]; // read values from a map
double boeing_price = dow_price ["BA"];

if (dow_price.find("INTC") != dow_price.end()) // find an entry in a map
 cout << "Intel is in the Dow\n";

Stroustrup_book.indb 783Stroustrup_book.indb 783 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS784

Iterating through a map is easy. We just have to remember that the key is called
first and the value is called second:

// write price for each company in the Dow index:
for (const auto& p : dow_price) {
 const string& symbol = p.first; // the “ticker” symbol
 cout << symbol << '\t'

 << p.second << '\t'
 << dow_name[symbol] << '\n';

}

We can even do some computation directly using maps. In particular, we can
calculate the index, just as we did in §21.5.3. We have to extract share values
and weights from their respective maps and multiply them. We can easily write a
function for doing that for any two map<string,double>s:

double weighted_value(
 const pair<string,double>& a,
 const pair<string,double>& b
) // extract values and multiply
{
 return a.second * b.second;
}

Now we just plug that function into the generalized version of inner_product()
and we have the value of our index:

double dji_index =
 inner_product(dow_price.begin(), dow_price.end(), // all companies
 dow_weight.begin(), // their weights
 0.0, // initial value
 plus<double>(), // add (as usual)
 weighted_value); // extract values and weights
 // and multiply

Why might someone keep such data in maps rather than vectors? We used a map
to make the association between the different values explicit. That’s one common
reason. Another is that a map keeps its elements in the order defined by its key.
When we iterated through dow above, we output the symbols in alphabetical or-
der; had we used a vector we would have had to sort. The most common reason
to use a map is simply that we want to look up values based on the key. For large

Stroustrup_book.indb 784Stroustrup_book.indb 784 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 785

sequences, finding something using find() is far slower than looking it up in a
sorted structure, such as a map.

TRY THIS

Get this little example to work. Then add a few companies of your own
choice, with weights of your choice.

21.6.4 unordered_map
To find an element in a vector, find() needs to examine all the elements from the
beginning to the element with the right value or to the end. On average, the cost
is proportional to the length of the vector (N); we call that cost O(N).

To find an element in a map, the subscript operator needs to examine all the
elements of the tree from the root to the element with the right value or to a leaf.
On average the cost is proportional to the depth of the tree. A balanced binary
tree holding N elements has a maximum depth of log2(N); the cost is O(log2(N)).
O(log2(N)) — that is, cost proportional to log2(N) — is actually pretty good com-
pared to O(N):

N 15 128 1023 16,383
log2(N) 4 7 10 14

The actual cost will depend on how soon in our search we find our values and
how expensive comparisons and iterations are. It is usually somewhat more ex-
pensive to chase pointers (as the map lookup does) than to increment a pointer
(as find() does in a vector).

For some types, notably integers and character strings, we can do even better
than a map’s tree search. We will not go into details, but the idea is that given a
key, we compute an index into a vector. That index is called a hash value and a
container that uses this technique is typically called a hash table. The number of
possible keys is far larger than the number of slots in the hash table. For example,
we often use a hash function to map from the billions of possible strings into an
index for a vector with 1000 elements. This can be tricky, but it can be handled
well and is especially useful for implementing large maps. The main virtue of a
hash table is that on average the cost of a lookup is (near) constant and indepen-
dent of the number of elements in the table, that is, O(1). Obviously, that can be
a significant advantage for large maps, say a map of 500,000 web addresses. For
more information about hash lookup, you can look at the documentation for
unordered_map (available on the web) or just about any basic text on data struc-
tures (look for “hash table” and “hashing”).

T

Stroustrup_book.indb 785Stroustrup_book.indb 785 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS786

We can illustrate lookup in an (unsorted) vector, a balanced binary tree, and
a hash table graphically like this:

• Lookup in unsorted vector:

• Lookup in map (balanced binary tree):

• Lookup in unordered_map (hash table):

The STL unordered_map is implemented using a hash table, just as the STL map
is implemented using a balanced binary tree, and an STL vector is implemented
using an array. Part of the utility of the STL is to fit all of these ways of storing
and accessing data into a common framework together with algorithms. The rule
of thumb is:

• Use vector unless you have a good reason not to.
• Use map if you need to look up based on a value (and if your key type

has a reasonable and effi cient less-than operation).
• Use unordered_map if you need to do a lot of lookup in a large map and

you don’t need an ordered traversal (and if you can fi nd a good hash
function for your key type).

Here, we will not describe unordered_map in any detail. You can use an
unordered_map with a key of type string or int exactly like a map, except that

Stroustrup_book.indb 786Stroustrup_book.indb 786 4/22/14 9:43 AM4/22/14 9:43 AM

21.6 ASSOCIATIVE CONTAINERS 787

when you iterate over the elements, the elements will not be ordered. For exam-
ple, we could rewrite part of the Dow Jones example from §21.6.3 like this:

unordered_map<string,double> dow_price;

for (const auto& p : dow_price) {
 const string& symbol = p.first; // the “ticker” symbol
 cout << symbol << '\t'

 << p.second << '\t'
 << dow_name[symbol] << '\n';

}

Lookup in dow might now be faster. However, that would not be significant be-
cause there are only 30 companies in that index. Had we been keeping the prices
of all the companies on the New York Stock Exchange, we might have noticed a
performance difference. We will, however, notice a logical difference: the output
from the iteration will now not be in alphabetical order.

The unordered maps are new in the context of the C++ standard and not yet
quite “first-class members,” as they are defined in a Technical Report rather than
in the standard proper. They are widely available, though, and where they are not
you can often find their ancestors, called something like hash_map.

TRY THIS

Write a small program using #include<unordered_map>. If that doesn’t
work, unordered_map wasn’t shipped with your C++ implementation. If
your C++ implementation doesn’t provide unordered_map, you have to
download one of the available implementations (e.g., see www.boost.org).

21.6.5 set
We can think of a set as a map where we are not interested in the values, or rather
as a map without values. We can visualize a set node like this:

Key first

Node* left
Node* right

Set node:

T

Stroustrup_book.indb 787Stroustrup_book.indb 787 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS788

We can represent the set of fruits used in the map example (§21.6.2) like this:

Orange

Grape Quince

Apple Kiwi Plum One beyond last

Fruits:

What are sets useful for? As it happens, there are lots of problems that require
us to remember if we have seen a value. Keeping track of which fruits are avail-
able (independently of price) is one example; building a dictionary is another. A
slightly different style of usage is having a set of “records”; that is, the elements are
objects that potentially contain “lots of” information — we simply use a member
as the key. For example:

struct Fruit {
 string name;
 int count;
 double unit_price;
 Date last_sale_date;
 // . . .
};

struct Fruit_order {
 bool operator()(const Fruit& a, const Fruit& b) const
 {
 return a.name<b.name;
 }
};

set<Fruit, Fruit_order> inventory; // use Fruit_order(x,y) to compare Fruits

Here again, we see how using a function object can significantly increase the range
of problems for which an STL component is useful.

Since set doesn’t have a value type, it doesn’t support subscripting (operator[]
()) either. We must use “list operations,” such as insert() and erase(), instead. Un-
fortunately, map and set don’t support push_back() either — the reason is obvi-
ous: the set and not the programmer determines where the new value is inserted.
Instead use insert(). For example:

Stroustrup_book.indb 788Stroustrup_book.indb 788 4/22/14 9:43 AM4/22/14 9:43 AM

21.7 COPYING 789

inventory.insert(Fruit("quince",5));
inventory.insert(Fruit("apple",200,0.37));

One advantage of set over map is that you can use the value obtained from
an iterator directly. Since there is no (key,value) pair as for map (§21.6.3), the
dereference operator gives a value of the element type:

for (auto p = inventory.begin(), p!=inventory.end(); ++p)
 cout << *p << '\n';

Assuming, of course, that you have defined << for Fruit. Or we could equivalently
write

for (const auto& x : inventory)
 cout << x << '\n';

21.7 Copying
In §21.2, we deemed find() “the simplest useful algorithm.” Naturally, that point
can be argued. Many simple algorithms are useful — even some that are trivial to
write. Why bother to write new code when you can use what others have written
and debugged for you, however simple? When it comes to simplicity and utility,
copy() gives find() a run for its money. The STL provides three versions of copy:

Copy operations

copy(b,e,b2) Copy [b:e) to [b2:b2+(e–b)).

unique_copy(b,e,b2) Copy [b:e) to [b2:b2+(e–b)); suppress adjacent copies.

copy_if(b,e,b2,p) Copy [b:e) to [b2:b2+(e–b)), but only elements that meet
the predicate p.

21.7.1 Copy
The basic copy algorithm is defined like this:

template<typename In, typename Out>
 // requires Input_iterator<In>() && Output_iterator<Out>()
Out copy(In first, In last, Out res)
{

Stroustrup_book.indb 789Stroustrup_book.indb 789 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS790

 while (first!=last) {
 *res = *first; // copy element
 ++res;
 ++first;
 }
 return res;
}

Given a pair of iterators, copy() copies a sequence into another sequence specified
by an iterator to its first element. For example:

void f(vector<double>& vd, list<int>& li)
 // copy the elements of a list of ints into a vector of doubles
{
 if (vd.size() < li.size()) error("target container too small");
 copy(li.begin(), li.end(), vd.begin());
 // . . .
}

Note that the type of the input sequence of copy() can be different from the type of
the output sequence. That’s a useful generality of STL algorithms: they work for
all kinds of sequences without making unnecessary assumptions about their im-
plementation. We remembered to check that there was enough space in the output
sequence to hold the elements we put there. It’s the programmer’s job to check
such sizes. STL algorithms are programmed for maximal generality and optimal
performance; they do not (by default) do range checking or other potentially ex-
pensive tests to protect their users. At times, you’ll wish they did, but when you
want checking, you can add it as we did above.

21.7.2 Stream iterators
You will have heard the phrases “copy to output” and “copy from input.” That’s
a nice and useful way of thinking of some forms of I/O, and we can actually use
copy() to do exactly that.

Remember that a sequence is something

• With a beginning and an end
• Where we can get to the next element using ++

• Where we can get the value of the current element using *

We can easily represent input and output streams that way. For example:

Stroustrup_book.indb 790Stroustrup_book.indb 790 4/22/14 9:43 AM4/22/14 9:43 AM

21.7 COPYING 791

ostream_iterator<string> oo{cout}; // assigning to *oo is to write to cout

*oo = "Hello, "; // meaning cout << "Hello, "
++oo; // “get ready for next output operation”
*oo = "World!\n"; // meaning cout << "World!\n"

You can imagine how this could be implemented. The standard library provides
an ostream_iterator type that works like that; ostream_iterator<T> is an iterator
that you can use to write values of type T.

Similarly, the standard library provides the type istream_iterator<T> for read-
ing values of type T:

istream_iterator<string> ii{cin}; // reading *ii is to read a string from cin

string s1 = *ii; // meaning cin>>s1
++ii; // “get ready for the next input operation”
string s2 = *ii; // meaning cin>>s2

Using ostream_iterator and istream_iterator, we can use copy() for our I/O. For
example, we can make a “quick and dirty” dictionary like this:

int main()
{
 string from, to;
 cin >> from >> to; // get source and target file names

 ifstream is {from}; // open input stream
 ofstream os {to}; // open output stream

 istream_iterator<string> ii {is}; // make input iterator for stream
 istream_iterator<string> eos; // input sentinel
 ostream_iterator<string> oo {os,"\n"}; // make output iterator for stream

 vector<string> b {ii,eos}; // b is a vector initialized from input
 sort(b.begin() ,b.end()); // sort the buffer
 copy(b.begin() ,b.end() ,oo); // copy buffer to output
}

The iterator eos is the stream iterator’s representation of “end of input.” When
an istream reaches end of input (often referred to as eof), its istream_iterator will
equal the default istream_iterator (here called eos).

Stroustrup_book.indb 791Stroustrup_book.indb 791 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS792

Note that we initialized the vector by a pair of iterators. As the initializers for
a container, a pair of iterators (a,b) means “Read the sequence [a:b) into the con-
tainer.” Naturally, the pair of iterators that we used was (ii,eos) — the beginning
and end of input. That saves us from explicitly using >> and push_back(). We
strongly advise against the alternative

vector<string> b(max_size); // don’t guess about the amount of input!
copy(ii,eos,b.begin());

People who try to guess the maximum size of input usually find that they have
underestimated, and serious problems emerge — for them or for their users —
from the resulting buffer overflows. Such overflows are also a source of security
problems.

TRY THIS

First get the program as written to work and test it with a small file of, say,
a few hundred words. Then try the emphatically not recommended version that
guesses about the size of input and see what happens when the input buffer b
overflows. Note that the worst-case scenario is that the overflow led to noth-
ing bad in your particular example, so that you would be tempted to ship it
to users.

In our little program, we read in the words and then sorted them. That
seemed an obvious way of doing things at the time, but why should we put words
in “the wrong place” so that we later have to sort? Worse yet, we find that we store
a word and print it as many times as it appears in the input.

We can solve the latter problem by using unique_copy() instead of copy(). A
unique_copy() simply doesn’t copy repeated identical values. For example, using
plain copy() the program will take

the man bit the dog

and produce

bit
dog
man
the
the

T

Stroustrup_book.indb 792Stroustrup_book.indb 792 4/22/14 9:43 AM4/22/14 9:43 AM

21.7 COPYING 793

If we used unique_copy(), the program would write

bit
dog
man
the

Where did those newlines come from? Outputting with separators is so common
that the ostream_iterator’s constructor allows you to (optionally) specify a string
to be printed after each value:

ostream_iterator<string> oo {os,"\n"}; // make output iterator for stream

Obviously, a newline is a popular choice for output meant for humans to read, but
maybe we prefer spaces as separators? We could write

ostream_iterator<string> oo {os," "}; // make output iterator for stream

This would give us the output

bit dog man the

21.7.3 Using a set to keep order
There is an even easier way of getting that output; use a set rather than a vector:

int main()
{
 string from, to;
 cin >> from >> to; // get source and target file names

 ifstream is {from}; // make input stream
 ofstream os {to}; // make output stream

 set<string> b {istream_iterator<string>{is}, istream_iterator<string>{}};
copy(b.begin() ,b.end() , ostream_iterator<string>{os," "}); // copy buffer

// to output
}

When we insert values into a set, duplicates are ignored. Furthermore, the ele-
ments of a set are kept in order so no sorting is needed. With the right tools, most
tasks are easy.

Stroustrup_book.indb 793Stroustrup_book.indb 793 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS794

21.7.4 copy_if
The copy() algorithm copies unconditionally. The unique_copy() algorithm sup-
presses adjacent elements with the same value. The third copy algorithm copies
only elements for which a predicate is true:

template<typename In, typename Out, typename Pred>
 // requires Input_iterator<In>() && Output_operator<Out>() &&
 // Predicate<Pred, Value_type<In>>()
Out copy_if(In first, In last, Out res, Pred p)
 // copy elements that fulfill the predicate
{
 while (first!=last) {
 if (p(*first)) *res++ = *first;
 ++first;
 }
 return res;
}

Using our Larger_than function object from §21.4, we can find all elements of a
sequence larger than 6 like this:

void f(const vector<int>& v)
 // copy all elements with a value larger than 6
{
 vector<int> v2(v.size());
 copy_if(v.begin(), v.end(), v2.begin(), Larger_than(6));
 // . . .
}

Thanks to a mistake I made, this algorithm is missing from the 1998 ISO stan-
dard. This mistake has now been remedied, but you can still find implementations
without copy_if. If so, just use the definition from this section.

21.8 Sorting and searching
Often, we want our data ordered. We can achieve that either by using a data struc-
ture that maintains order, such as map and set, or by sorting. The most common
and useful sort operation in the STL is the sort() that we have already used several
times. By default, sort() uses < as the sorting criterion, but we can also supply our
own criteria:

Stroustrup_book.indb 794Stroustrup_book.indb 794 4/22/14 9:43 AM4/22/14 9:43 AM

21.8 SORTING AND SEARCHING 795

template<typename Ran>
 // requires Random_access_iterator<Ran>()
void sort(Ran first, Ran last);

template<typename Ran, typename Cmp>
 // requires Random_access_iterator<Ran>()
 // && Less_than_comparable<Cmp,Value_type<Ran>>()
void sort(Ran first, Ran last, Cmp cmp);

As an example of sorting based on a user-specified criterion, we’ll show how to
sort strings without taking case into account:

struct No_case { // is lowercase(x) < lowercase(y)?
 bool operator()(const string& x, const string& y) const
 {
 for (int i = 0; i<x.length(); ++i) {
 if (i == y.length()) return false; // y<x
 char xx = tolower(x[i]);
 char yy = tolower(y[i]);
 if (xx<yy) return true; // x<y
 if (yy<xx) return false; // y<x
 }
 if (x.length()==y.length()) return false; // x==y
 return true; // x<y (fewer characters in x)
 }
};

void sort_and_print(vector<string>& vc)
{
 sort(vc.begin(),vc.end(),No_case());

 for (const auto& s : vc)
 cout << s << '\n';
}

Once a sequence is sorted, we no longer need to search from the beginning using
find(); we can use the order to do a binary search. Basically, a binary search works
like this:

Assume that we are looking for the value x; look at the middle element:

• If the element’s value equals x, we found it!
• If the element’s value is less than x, any element with value x must be to

the right, so we look at the right half (doing a binary search on that half).

Stroustrup_book.indb 795Stroustrup_book.indb 795 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS796

• If the value of x is less than the element’s value, any element with value
x must be to the left, so we look at the left half (doing a binary search on
that half).

• If we have reached the last element (going left or right) without fi nding x,
then there is no element with that value.

For longer sequences, a binary search is much faster than find() (which is a linear
search). The standard library algorithms for binary search are binary_search()
and equal_range(). What do we mean by “longer”? It depends, but ten elements
are usually sufficient to give binary_search() an advantage over find(). For a se-
quence of 1000 elements, binary_search() will be something like 200 times faster
than find() because its cost is O(log2(N)); see §21.6.4.

The binary_search algorithm comes in two variants:

template<typename Ran, typename T>
bool binary_search(Ran first, Ran last, const T& val);

template<typename Ran, typename T, typename Cmp>
bool binary_search(Ran first, Ran last, const T& val, Cmp cmp);

These algorithms require and assume that their input sequence is sorted. If it
isn’t, “interesting things,” such as infinite loops, might happen. A binary_search()
simply tells us whether a value is present:

void f(vector<string>& vs) // vs is sorted
{
 if (binary_search(vs.begin(),vs.end(),"starfruit")) {
 // we have a starfruit
 }

 // . . .
}

So, binary_search() is ideal when all we care about is whether a value is in a se-
quence or not. If we care about the element we find, we can use lower_bound(),
upper_bound(), or equal_range() (§B.5.4, §23.4). In the cases where we care
which element is found, the reason is usually that it is an object containing more
information than just the key, that there can be many elements with the same key,
or that we want to know which element met a search criterion.

Stroustrup_book.indb 796Stroustrup_book.indb 796 4/22/14 9:43 AM4/22/14 9:43 AM

21.9 CONTAINER ALGORITHMS 797

21.9 Container algorithms
So, we define standard library algorithms in terms of sequences of elements spec-
ified by iterators. An input sequence is defined as a pair of iterators [b:e) where b
points to the first element of the sequence and e to the one-past-the-end element
of the sequence (§20.3). An output sequence is specified as simply an iterator to
its first element. For example:

void test(vector<int> & v)
{
 sort(v.begin(),v.end()); // sort v’s element from v.begin() to v.end()
}

This is nice and general. For example, we can sort half a vector:

void test(vector<int> & v)
{
 sort(v.begin(),v.begin()+v.size()); // sort first half of v’s elements
 sort(v.begin()+v.size(),v.end()); // sort second half of v’s elements
}

However, specifying the range of elements is a bit verbose, and most of the time,
we sort all of a vector and not just half. So, most of the time, we want to write

void test(vector<int> & v)
{
 sort(v); // sort v
}

That variant of sort() is not provided by the standard library, but we can define
it for ourselves:

template<typename C> // requires Container<C>()
void sort(C& c)
{
 std::sort(c.begin(),c.end());
}

In fact, we found it so useful that we added it to std_lib_facilities.h.

Stroustrup_book.indb 797Stroustrup_book.indb 797 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS798

Input sequences are easily handled like that, but to keep things simple, we
tend to leave return types as iterators. For example:

template<typename C, typename V> // requires Container<C>()
Iterator<C> find(C& c, Val v)
{
 return std::find(c.begin(),c.end(),v);
}

Naturally, Iterator<C> is C’s iterator type.

Drill
After each operation (as defi ned by a line of this drill) print the vector.

 1. Define a struct Item { string name; int iid; double value; /* . . . */ };, make
a vector<Item>, vi, and fill it with ten items from a file.

 2. Sort vi by name.
 3. Sort vi by iid.
 4. Sort vi by value; print it in order of decreasing value (i.e., largest value

first).
 5. Insert Item("horse shoe",99,12.34) and Item("Canon S400", 9988,499.95).
 6. Remove (erase) two Items identified by name from vi.
 7. Remove (erase) two Items identified by iid from vi.
 8. Repeat the exercise with a list<Item> rather than a vector<Item>.

Now try a map:

 1. Define a map<string,int> called msi.
 2. Insert ten (name,value) pairs into it, e.g., msi["lecture"]=21.
 3. Output the (name,value) pairs to cout in some format of your choice.
 4. Erase the (name,value) pairs from msi.
 5. Write a function that reads value pairs from cin and places them in msi.
 6. Read ten pairs from input and enter them into msi.
 7. Write the elements of msi to cout.
 8. Output the sum of the (integer) values in msi.
 9. Define a map<int,string> called mis.
 10. Enter the values from msi into mis; that is, if msi has an element

(" lecture",21), mis should have an element (21,"lecture").
 11. Output the elements of mis to cout.

Stroustrup_book.indb 798Stroustrup_book.indb 798 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 REVIEW 799

More vector use:

 1. Read some floating-point values (at least 16 values) from a file into a
 vector<double> called vd.

 2. Output vd to cout.
 3. Make a vector vi of type vector<int> with the same number of elements

as vd; copy the elements from vd into vi.
 4. Output the pairs of (vd[i],vi[i]) to cout, one pair per line.
 5. Output the sum of the elements of vd.
 6. Output the difference between the sum of the elements of vd and the sum

of the elements of vi.
 7. There is a standard library algorithm called reverse that takes a sequence

(pair of iterators) as arguments; reverse vd, and output vd to cout.
 8. Compute the mean value of the elements in vd; output it.
 9. Make a new vector<double> called vd2 and copy all elements of vd with

values lower than (less than) the mean into vd2.
 10. Sort vd; output it again.

Review
 1. What are examples of useful STL algorithms?
 2. What does find() do? Give at least five examples.
 3. What does count_if() do?
 4. What does sort(b,e) use as its sorting criterion?
 5. How does an STL algorithm take a container as an input argument?
 6. How does an STL algorithm take a container as an output argument?
 7. How does an STL algorithm usually indicate “not found” or “failure”?
 8. What is a function object?
 9. In which ways does a function object differ from a function?
 10. What is a predicate?
 11. What does accumulate() do?
 12. What does inner_product() do?
 13. What is an associative container? Give at least three examples.
 14. Is list an associative container? Why not?
 15. What is the basic ordering property of binary tree?
 16. What (roughly) does it mean for a tree to be balanced?
 17. How much space per element does a map take up?
 18. How much space per element does a vector take up?
 19. Why would anyone use an unordered_map when an (ordered) map is

available?
 20. How does a set differ from a map?

Stroustrup_book.indb 799Stroustrup_book.indb 799 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 • ALGORITHMS AND MAPS800

 21. How does a multimap differ from a map?
 22. Why use a copy() algorithm when we could “just write a simple loop”?
 23. What is a binary search?

Terms
accumulate()
algorithm
application: ()
associative container
balanced tree
binary_search()
copy()
copy_if()
equal_range()
fi nd()

fi nd_if()
function object
generic
hash function
inner_product()
lambda
lower_bound()
map
predicate

searching
sequence
set
sort()
sorting
stream iterator
unique_copy()
unordered_map
upper_bound()

Exercises
 1. Go through the chapter and do all Try this exercises that you haven’t

already done.
 2. Find a reliable source of STL documentation and list every standard li-

brary algorithm.
 3. Implement count() yourself. Test it.
 4. Implement count_if() yourself. Test it.
 5. What would we have to do if we couldn’t return end() to indicate “not

found”? Redesign and re-implement find() and count() to take iterators to
the first and last elements. Compare the results to the standard versions.

 6. In the Fruit example in §21.6.5, we copy Fruits into the set. What if
we didn’t want to copy the Fruits? We could have a set<Fruit*> instead.
However, to do that, we’d have to define a comparison operation for that
set. Implement the Fruit example using a set<Fruit*, Fruit_comparison>.
Discuss the differences between the two implementations.

 7. Write a binary search function for a vector<int> (without using the stan-
dard one). You can choose any interface you like. Test it. How confident
are you that your binary search function is correct? Now write a binary
search function for a list<string>. Test it. How much do the two binary
search functions resemble each other? How much do you think they
would have resembled each other if you had not known about the STL?

 8. Take the word-frequency example from §21.6.1 and modify it to output
its lines in order of frequency (rather than in lexicographical order). An
example line would be 3: C++ rather than C++: 3.

Stroustrup_book.indb 800Stroustrup_book.indb 800 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 21 POSTSCRIPT 801

 9. Define an Order class with (customer) name, address, data, and
vector<Purchase> members. Purchase is a class with a (product) name,
unit_price, and count members. Define a mechanism for reading and
writing Orders to and from a file. Define a mechanism for printing Or-
ders. Create a file of at least ten Orders, read it into a vector<Order>, sort
it by name (of customer), and write it back out to a file. Create another
file of at least ten Orders of which about a third are the same as in the first
file, read it into a list<Order>, sort it by address (of customer), and write
it back out to a file. Merge the two files into a third using std::merge().

 10. Compute the total value of the orders in the two files from the previ-
ous exercise. The value of an individual Purchase is (of course) its
unit_price*count.

 11. Provide a GUI interface for entering Orders into files.
 12. Provide a GUI interface for querying a file of Orders; e.g., “Find all or-

ders from Joe,” “Find the total value of orders in file Hardware,” and “List
all orders in file Clothing.” Hint: First design a non-GUI interface; then,
build the GUI on top of that.

 13. Write a program to “clean up” a text file for use in a word query program;
that is, replace punctuation with whitespace, put words into lower case,
replace don’t with do not (etc.), and remove plurals (e.g., ships becomes ship).
Don’t be too ambitious. For example, it is hard to determine plurals in gen-
eral, so just remove an s if you find both ship and ships. Use that program
on a real-world text file with at least 5000 words (e.g., a research paper).

 14. Write a program (using the output from the previous exercise) to answer
questions such as: “How many occurrences of ship are there in a file?”
“Which word occurs most frequently?” “Which is the longest word in
the file?” “Which is the shortest?” “List all words starting with s.” “List all
four-letter words.”

 15. Provide a GUI for the program from the previous exercise.

Postscript
The STL is the part of the ISO C++ standard library concerned with containers
and algorithms. As such it provides very general, fl exible, and useful basic tools.
It can save us a lot of work: reinventing the wheel can be fun, but it is rarely
productive. Unless there are strong reasons not to, use the STL containers and
basic algorithms. What is more, the STL is an example of generic programming,
showing how concrete problems and concrete solutions can give rise to a collec-
tion of powerful and general tools. If you need to manipulate data — and most
programmers do — the STL provides an example, a set of ideas, and an approach
that often can help.

Stroustrup_book.indb 801Stroustrup_book.indb 801 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 802Stroustrup_book.indb 802 4/22/14 9:43 AM4/22/14 9:43 AM

Part IV
Broadening

the View

Stroustrup_book.indb 803Stroustrup_book.indb 803 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 804Stroustrup_book.indb 804 4/22/14 9:43 AM4/22/14 9:43 AM

805

22

Ideals and History

“When someone says,
‘I want a programming language

in which I need only say what I wish done,’
give him a lollipop.”

—Alan Perlis

This chapter is a very brief and very selective history of

programming languages and the ideals they have been de-

signed to serve. The ideals and the languages that express them

are the basis for professionalism. Because C++ is the language

we use in this book, we focus on C++ and languages that influ-

enced C++. The aim is to give a background and a perspective

to the ideas presented in this book. For each language, we present

its designer or designers: a language is not just an abstract cre-

ation, but a concrete solution designed by individuals in response

to problems they faced at the time.

Stroustrup_book.indb 805Stroustrup_book.indb 805 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY806

22.1 History, ideals, and professionalism
“History is bunk,” Henry Ford famously declared. The contrary opinion has been
widely quoted since antiquity: “He who does not know history is condemned to
repeat it.” The problem is to choose which parts of history to know and which
parts to discard: “95% of everything is bunk” is another relevant quote (with
which we concur, though 95% is probably an underestimate). Our view of the
relation of history to current practice is that there can be no professionalism with-
out some understanding of history. If you know too little of the background of
your field, you are gullible because the history of any field of work is littered with
plausible ideas that didn’t work. The “real meat” of history is ideas and ideals that
have proved their worth in practical use.

We would have loved to talk about the origins of key ideas in many more
languages and in all kinds of software, such as operating systems, databases,
graphics, networking, the web, scripting, etc., but you’ll have to find those im-
portant and useful areas of software and programming elsewhere. We have
barely enough space to scratch the surface of the ideals and history of program-
ming languages.

The ultimate aim of programming is always to produce useful systems. In the
heat of discussions about programming techniques and programming languages,
that’s easily forgotten. Don’t forget that! If you need a reminder, take another
look at Chapter 1.

 22.1 History, ideals, and professionalism
 22.1.1 Programming language aims and philosophies

 22.1.2 Programming ideals

 22.1.3 Styles/paradigms

 22.2 Programming language history overview
 22.2.1 The earliest languages

 22.2.2 The roots of modern languages

 22.2.3 The Algol family

 22.2.4 Simula

 22.2.5 C

 22.2.6 C++

 22.2.7 Today

 22.2.8 Information sources

Stroustrup_book.indb 806Stroustrup_book.indb 806 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 807

22.1.1 Programming language aims and philosophies
What is a programming language? What is a programming language supposed to
do for us? Popular answers to “What is a programming language?” include

• A tool for instructing machines
• A notation for algorithms
• A means of communication among programmers
• A tool for experimentation
• A means of controlling computerized devices
• A way of expressing relationships among concepts
• A means of expressing high-level designs

Our answer is “All of the above — and more!” Clearly, we are thinking about
general-purpose programming languages here, as we will throughout this chapter.
In addition, there are special-purpose languages and domain-specific languages
serving narrower and typically more precisely defined aims.

What properties of a programming language do we consider desirable?

• Portability
• Type safety
• Precisely defi ned
• High performance
• Ability to concisely express ideas
• Anything that eases debugging
• Anything that eases testing
• Access to all system resources
• Platform independence
• Runs on all platforms (e.g., Linux, Windows, smartphones, embedded

systems)
• Stability over decades
• Prompt improvements in response to changes in application areas
• Ease of learning
• Small
• Support for popular programming styles (e.g., object-oriented program-

ming and generic programming)
• Whatever helps analysis of programs

Stroustrup_book.indb 807Stroustrup_book.indb 807 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY808

• Lots of facilities
• Supported by a large community
• Supportive of novices (students, learners)
• Comprehensive facilities for experts (e.g., infrastructure builders)
• Lots of software development tools available
• Lots of software components available (e.g., libraries)
• Supported by an open software community
• Supported by major platform vendors (Microsoft, IBM, etc.)

Unfortunately, we can’t have all this at the same time. That’s sad because every
one of these “properties” is objectively a good thing: each provides benefits, and a
language that doesn’t provide them imposes added work and complications on its
users. The reason we can’t have it all is equally fundamental: several of the prop-
erties are mutually exclusive. For example, you cannot be 100% platform indepen-
dent and also access all system resources; a program that accesses a resource that
is not available on every platform cannot run everywhere. Similarly, we obviously
want a language (and the tools and libraries we need to use it) that is small and
easy to learn, but that can’t be achieved while providing comprehensive support
for programming on all kinds of systems and for all kinds of application areas.

This is where ideals become important. Ideals are what guide the technical
choices and trade-offs that every language, library, tool, and program designer
must make. Yes, when you write a program you are a designer and must make
design choices.

22.1.2 Programming ideals
The preface of The C++ Programming Language starts, “C++ is a general purpose
programming language designed to make programming more enjoyable for the
serious programmer.” Say what? Isn’t programming all about delivering prod-
ucts? About correctness, quality, and maintainability? About time-to-market?
About efficiency? About supporting software engineering? That, too, of course,
but we shouldn’t forget the programmer. Consider another example: Don Knuth
said, “The best thing about the Alto is that it doesn’t run faster at night.” The Alto
was a computer from the Xerox Palo Alto Research Center (PARC) that was one
of the first “personal computers,” as opposed to the shared computers for which
there was a lot of competition for daytime access.

Our tools and techniques for programming exist to make a programmer, a
human, work better and produce better results. Please don’t forget that. So what
guidelines can we articulate to help a programmer produce the best software with
the least pain? We have made our ideals explicit throughout the book so this sec-
tion is basically a summary.

Stroustrup_book.indb 808Stroustrup_book.indb 808 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 809

The main reason we want our code to have a good structure is that the struc-
ture is what allows us to make changes without excessive effort. The better the
structure, the easier it is to make a change, find and fix a bug, add a new feature,
port it to a new architecture, make it run faster, etc. That’s exactly what we mean
by “good.”

For the rest of this section, we will

• Revisit what we are trying to achieve, that is, what we want from our code
• Present two general approaches to software development and decide that

a combination is better than either alternative by itself
• Consider key aspects of program structure as expressed in code:

• Direct expression of ideas
• Abstraction level
• Modularity
• Consistency and minimalism

Ideals are meant to be used. They are tools for thinking, not simply fancy phrases
to trot out to please managers and examiners. Our programs are meant to approx-
imate our ideals. When we get stuck in a program, we step back to see if our prob-
lems come from a departure from some ideal; sometimes that helps. When we
evaluate a program (preferably before we ship it to users), we look for departures
from the ideals that might cause problems in the future. Apply ideals as widely as
possible, but remember that practical concerns (e.g., performance and simplicity)
and weaknesses in a language (no language is perfect) will often prevent you from
achieving more than a good approximation of the ideals.

Ideals can guide us when making specific technical decisions. For example,
we can’t just make every single decision about interfaces for a library individually
and in isolation (§14.1). The result would be a mess. Instead we must go back
to our first principles, decide what is important about this particular library, and
then produce a consistent set of interfaces. Ideally, we would articulate our design
principles and trade-offs for that particular design in the documentation and in
comments in the code.

During the start of a project, review the ideals and see how they relate to
the problems and the early ideas for their solution. This can be a good way to
get ideas and to refine ideas. Later in the design and development process, when
you are stuck, step back and see where your code has most departed from the
ideals — this is where the bugs are most likely to lurk and the design problems
are most likely to occur. This is an alternative to the default technique of re-
petitively looking in the same place and trying the same techniques to find the
bug. “The bug is always where you are not looking — or you would have found
it already.”

Stroustrup_book.indb 809Stroustrup_book.indb 809 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY810

22.1.2.1 What we want
Typically, we want

• Correctness: Yes, it can be diffi cult to defi ne what we mean by “correct,” but
doing so is an important part of the complete job. Often, others defi ne for
us what is correct for a given project, but then we have to interpret what
they say.

• Maintainability: Every successful program will be changed over time; it will
be ported to new hardware and software platforms, it will be extended
with new facilities, and new bugs will be found that must be fi xed. The
sections below about ideals for program structure address this ideal.

• Performance: Performance (“effi ciency”) is a relative term. Performance has
to be adequate for the program’s purpose. It is often claimed that effi cient
code is necessarily low-level and that concerns with a good, high-level
structure of the code cause ineffi ciency. On the contrary, we fi nd that
acceptable performance is often achieved through adherence to the ideals
and approaches we recommend. The STL is an example of code that is
simultaneously abstract and very effi cient. Poor performance can as easily
arise from an obsession with low-level details as it can from disdain for
such details.

• On-time delivery: Delivering the perfect program a year late is usually not
good enough. Obviously, people expect the impossible, but we need
to deliver quality software in a reasonable time. There is a myth that
“completed on time” implies shoddiness. On the contrary, we fi nd that
emphasis on good structure (e.g., resource management, invariants, and
interface design), design for testability, and use of appropriate libraries
(often designed for a specifi c application or application area) is a good way
to meet deadlines.

This leads to a concern for structure in our code:

• If there is a bug in a program (and every large program has bugs), it is
easier to fi nd in a program with a clear structure.

• If a program needs to be understood by a new person or needs to be mod-
ifi ed in some way, a clear structure is comprehensible with far less effort
than a mess of low-level details.

• If a program hits a performance problem, it is often easier to tune a high-
level program (one that is a good approximation of the ideals and has a
well-defi ned structure) than a low-level or messy one. For starters, the
high-level one is more likely to be understandable. Second, the high-level
one is often ready for testing and tuning long before the low-level one.

Stroustrup_book.indb 810Stroustrup_book.indb 810 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 811

Note the point about a program being understandable. Anything that helps us
understand a program and helps us reason about it is good. Fundamentally, regu-
larity is better than irregularity — as long as the regularity is not achieved through
oversimplification.

22.1.2.2 General approaches
There are two approaches to writing correct software:

• Bottom-up: Compose the system using only components proved to be correct.
• Top-down: Compose the system out of components assumed to contain

errors and catch all errors.

Interestingly, the most reliable systems combine these two — apparently contrary —
approaches. The reason for that is simple: for a large real-world system, neither
approach will deliver the needed correctness, adaptability, and maintainability:

• We can’t build and “prove” enough basic components to eliminate all
sources of errors.

• We can’t completely compensate for the fl aws of buggy basic components
(libraries, subsystems, class hierarchies, etc.) when combining them in the
fi nal system.

However, a combination of approximations to the two approaches can deliver
more than either in isolation: we can produce (or borrow or buy) components
that are sufficiently good, so that the problems that remain can be compensated
for by error handling and systematic testing. Also, if we keep building better
components, a larger part of a system can be constructed from them, reducing the
amount of “messy ad hoc code” needed.

Testing is an essential part of software development. It is discussed in some
detail in Chapter 26. Testing is the systematic search for errors. “Test early and
often” is a popular slogan. We try to design our programs to simplify testing and
to make it harder for errors to “hide” in messy code.

22.1.2.3 Direct expression of ideas

When we express something — be it high-level or low-level — the ideal is to express
it directly in code, rather than through work-arounds. The fundamental ideal of
representing our ideas directly in code has a few specific variants:

• Represent ideas directly in code. For example, it is better to represent an argu-
ment as a specifi c type (e.g., Month or Color) than as a more general one
(e.g., int).

• Represent independent ideas independently in code. For example, with a few
exceptions, the standard sort() can sort any standard container of any

Stroustrup_book.indb 811Stroustrup_book.indb 811 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY812

element type; the concepts of sorting, sorting criteria, container, and ele-
ment type are independent. Had we built a “vector of objects allocated on
the free store where the elements are of a class derived from Object with
a before() member function defi ned for use by vector::sort()” we would
have a far less general sort() because we made assumptions about storage,
class hierarchy, available member functions, ordering, etc.

• Represent relationships among ideas directly in code. The most common relation-
ships that can be directly represented are inheritance (e.g., a Circle is a
kind of Shape) and parameterization (e.g., a vector<T> represents what’s
common for all vectors independently of a particular element type).

• Combine ideas expressed in code freely — where and only where combinations make
sense. For example, sort() allows us to use a variety of element types and a
variety of containers, but the elements must support < (if they do not, we
use the sort() with an extra argument specifying the comparison criteria),
and the containers we sort must support random-access iterators.

• Express simple ideas simply. Following the ideals listed above can lead to
overly general code. For example, we may end up with class hierarchies
with a more complicated taxonomy (inheritance structure) than anyone
needs or with seven parameters to every (apparently) simple class. To
avoid every user having to face every possible complication, we try to
provide simple versions that deal with the most common or most impor-
tant cases. For example, we have a sort(b,e) that implicitly sorts using less
than in addition to the general version sort(b,e,op) that sorts using op.
We could also provide versions sort(c) for sorting a standard container
using less than and sort(c,op) for sorting a standard container using op.

22.1.2.4 Abstraction level
We prefer to work at the highest feasible level of abstraction; that is, our ideal is to express
our solutions in as general a way as possible.

For example, consider how to represent entries for a phone book (as we might
keep it on a PDA or a cell phone). We could represent a set of (name,value) pairs
as a vector<pair<string,Value_type>>. However, if we essentially always accessed
that set using a name, map<string,Value_type> would be a higher level of ab-
straction, saving us the bother of writing (and debugging) access functions. On
the other hand, vector<pair<string,Value_type>> is itself a higher level of abstrac-
tion than two arrays, string[max] and Value_type[max], where the relationship
between the string and its value is implicit. The lowest level of abstraction would
be something like an int (number of elements) plus two void*s (pointing to some
form of representation, known to the programmer but not to the compiler). In our

Stroustrup_book.indb 812Stroustrup_book.indb 812 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 813

example, every suggestion so far could be seen as too low-level because it focuses
on the representation of the pair of values, rather than their function. We could
move closer to the application by defining a class that directly reflects a use. For
example, we could write our application code using a class Phonebook with an in-
terface designed for convenient use. That Phonebook class could be implemented
using any one of the representations suggested.

The reason for preferring the higher level of abstraction (when we have an
appropriate abstraction mechanism and if our language supports it with accept-
able efficiency) is that such formulations are closer to the way we think about our
problems and solutions than solutions that have been expressed at the level of
computer hardware.

The reason given for dropping to a lower level of abstraction is typically
“efficiency.” This should be done only when really needed (§25.2.2). Using a
lower-level (more primitive) language feature does not necessarily give better
performance. Sometimes, it eliminates optimization opportunities. For example,
using a Phonebook class, we have a choice of implementations, say, between
string[max] plus Value_type[max] and map<string,Value_type>. For some ap-
plications the former is more efficient and for others the latter is. Naturally,
performance would not be a major concern in an application involving only
your personal directory. However, this kind of trade-off becomes interesting
when we have to keep track of — and manipulate — millions of entries. More
seriously, after a while, the use of low-level features soaks up the programmer’s
time so that opportunities for improvements (performance or otherwise) are
missed because of lack of time.

22.1.2.5 Modularity

Modularity is an ideal. We want to compose our systems out of “components”
(functions, classes, class hierarchies, libraries, etc.) that we can build, under-
stand, and test in isolation. Ideally, we also want to design and implement such
components so that they can be used in more than one program (“reused”).
Reuse is the building of systems out of previously tested components that have
been used elsewhere — and the design and use of such components. We have
touched upon this in our discussions of classes, class hierarchies, interface de-
sign, and generic programming. Much of what we say about “programming
styles” (in §22.1.3) relates to the design, implementation, and use of potentially
“reusable” components. Please note that not every component can be used in
more than one program; some code is simply too specialized and is not easily
improved to be usable elsewhere.

Modularity in code should reflect important logical distinctions in the ap-
plication. We do not “increase reuse” simply by putting two completely separate

Stroustrup_book.indb 813Stroustrup_book.indb 813 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY814

classes A and B into a “reusable component” called C. By providing the union of
A’s and B’s interfaces, the introduction of C complicates our code:

C

A BA B

User 1 User 2

User 1 User 2

Here, both User 1 and User 2 use C. Unless you look into C, you might think
that User 1 and User 2 gained benefits from sharing a popular component. Ben-
efits from sharing (“reuse”) would (in this case, wrongly) be assumed to include
better testing, less total code, larger user base, etc. Unfortunately, except for a bit
of oversimplification, this is not a particularly rare phenomenon.

What would help? Maybe a common interface to A and B could be provided:

A&BInterface

A specifics B specifics

User 1 User 2 User 1 User 2

A B

These diagrams are intended to suggest inheritance and parameterization, re-
spectively. In both cases, the interface provided must be smaller than a simple
union of A’s and B’s interfaces for the exercise to be worthwhile. In other words,
A and B have to have a fundamental commonality for users to benefit from.
Note how we again came back to interfaces (§9.7, §25.4.2) and by implication
to invariants (§9.4.3).

22.1.2.6 Consistency and minimalism
Consistency and minimalism are primarily ideals for expressing ideas. So we
might dismiss them as being about appearance. However, it is really hard to pre-
sent a messy design elegantly, so demands of consistency and minimalism can be
used as design criteria and affect even the most minute details of a program:

• Don’t add a feature if you are in doubt about its utility.
• Do give similar facilities similar interfaces (and names), but only if the

similarity is fundamental.
• Do give different facilities different names (and possibly different interface

styles), but only if the differences are fundamental.

Stroustrup_book.indb 814Stroustrup_book.indb 814 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 815

Consistent naming, interface style, and implementation style help maintenance.
When code is consistent, a new programmer doesn’t have to learn a new set of
conventions for every part of a large system. The STL is an example (Chapters
20–21, §B.4–6). When such consistency is impossible (for example, for ancient
code or code in another language), it can be an idea to supply an interface that
matches the style of the rest of the program. The alternative is to let the foreign
(“strange,” “poor”) style infect every part of a program that needs to access the
offending code.

One way of preserving minimalism and consistency is to carefully (and con-
sistently) document every interface. That way, inconsistencies and duplication
are more likely to be noticed. Documenting pre-conditions, post-conditions, and
invariants can be especially useful as can careful attention to resource manage-
ment and error reporting. A consistent error-handling and resource management
strategy is essential for simplicity (§19.5).

To some programmers, the key design principle is KISS (“Keep It Simple,
Stupid”). We have even heard it claimed that KISS is the only worthwhile design
principle. However, we prefer less evocative formulations, such as “Keep simple
things simple” and “Keep it simple: as simple as possible, but no simpler.” The
latter is a quote from Albert Einstein, which reflects that there is a danger of sim-
plifying beyond the point where it makes sense, thus damaging the design. The
obvious question is, “Simple for whom and compared to what?”

22.1.3 Styles/paradigms
When we design and implement a program, we aim for a consistent style. C++
supports four major styles that can be considered fundamental:

• Procedural programming
• Data abstraction
• Object-oriented programming
• Generic programming

These are sometimes (somewhat pompously) called “programming paradigms.”
There are many more “paradigms,” such as functional programming, logic pro-
gramming, rule-based programming, constraints-based programming, and aspect-
oriented programming. However, C++ doesn’t support those directly, and we
just can’t cover everything in a single beginner’s book, so we’ll leave those to
“future work” together with the mass of details that we must leave out about the
paradigms/styles we do cover:

• Procedural programming: the idea of composing a program out of functions
operating on arguments. Examples are libraries of mathematical func-
tions, such as sqrt() and cos(). C++ supports this style of programming
through the notion of functions (Chapter 8). The ability to choose to
pass arguments by value, by reference, and by const reference can be

Stroustrup_book.indb 815Stroustrup_book.indb 815 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY816

most valuable. Often, data is organized into data structures represented
as structs. Explicit abstraction mechanisms (such as private data mem-
bers or member functions of a class) are not used. Note that this style of
programming — and functions — is an integral part of every other style.

• Data abstraction: the idea of fi rst providing a set of types suitable for an ap-
plication area and then writing the program using those. Matrices provide
a classic example (§24.3–6). Explicit data hiding (e.g., the use of private
data members of a class) is heavily used. The standard string and vector
are popular examples, which show the strong relationship between data
abstraction and parameterization as used by generic programming. This
is called “abstraction” because a type is used through an interface, rather
than by directly accessing its implementation.

• Object-oriented programming: the idea of organizing types into hierarchies to
express their relationships directly in code. The classic example is the
Shape hierarchy from Chapter 14. This is obviously valuable when the
types really have fundamental hierarchical relationships. However, there
has been a strong tendency to overuse; that is, people built hierarchies of
types that do not belong together for fundamental reasons. When people
derive, ask why. What is being expressed? How does the base/derived
distinction help me in this particular case?

• Generic programming: the idea of taking concrete algorithms and “lifting”
them to a higher level of abstraction by adding parameters to express
what can be varied without changing the essence of an algorithm. The
high() example from Chapter 20 is a simple example of lifting. The fi nd()
and sort() algorithms from the STL are classic algorithms expressed in
very general forms using generic programming. See Chapters 20–21 and
the following example.

All together now! Often, people talk about programming styles (“paradigms”) as
if they were simple disjointed alternatives: either you use generic programming or
you use object-oriented programming. If your aim is to express solutions to prob-
lems in the best possible way, you will use a combination of styles. By “best,” we
mean easy to read, easy to write, easy to maintain, and sufficiently efficient. Con-
sider an example: the classic “Shape example” originated with Simula (§22.2.4)
and is usually seen as an example of object-oriented programming. A first solution
might look like this:

void draw_all(vector<Shape*>& v)
{
 for(int i = 0; i<v.size(); ++i) v[i]–>draw();
}

Stroustrup_book.indb 816Stroustrup_book.indb 816 4/22/14 9:43 AM4/22/14 9:43 AM

22.1 HISTORY, IDEALS, AND PROFESSIONALISM 817

This does indeed look “rather object-oriented.” It critically relies on a class hier-
archy and on the virtual function call finding the right draw() function for every
given Shape; that is, for a Circle, it calls Circle::draw() and for an Open_polyline,
it calls Open_polyline::draw(). But the vector<Shape*> is basically a generic pro-
gramming construct: it relies on a parameter (the element type) that is resolved at
compile time. We could emphasize that by using a simple standard library algo-
rithm to express the iteration over all elements:

void draw_all(vector<Shape*>& v)
{
 for_each(v.begin(),v.end(),mem_fun(&Shape::draw));
}

The third argument of for_each() is a function to be called for each element of the
sequence specified by the first two arguments (§B.5.1). Now, that third function
call is assumed to be an ordinary function (or a function object) called using the
f(x) syntax, rather than a member function called by the p–>f() syntax. So, we use
the standard library function mem_fun() (§B.6.2) to say that we really want to call
a member function (the virtual function Shape::draw()). The point is that for_
each() and mem_fun(), being templates, really aren’t very “OO-like”; they clearly
belong to what we usually consider generic programming. More interesting still,
mem_fun() is a freestanding (template) function returning a class object. In other
words, it can easily be classified as plain data abstraction (no inheritance) or even
procedural programming (no data hiding). So, we could claim that this one line
of code uses key aspects of all of the four fundamental styles supported by C++.

But why would we write the second version of the “draw all Shapes” exam-
ple? It fundamentally does the same thing as the first version; it even takes a few
more characters to write it in that way! We could argue that expressing the loop
using for_each() is “more obvious and less error-prone” than writing out the for-
loop, but for many that’s not a terribly convincing argument. A better one is that
“for_each() says what is to be done (iterate over a sequence) rather than how it
is to be done.” However, for most people the convincing argument is simply that
“it’s useful”: it points the way to a generalization (in the best generic programming
tradition) that allows us to solve more problems. Why are the shapes in a vector?
Why not a list? Why not a general sequence? So we can write a third (and more
general) version:

template<class Iter> void draw_all(Iter b, Iter e)
{
 for_each(b,e,mem_fun(&Shape::draw));
}

Stroustrup_book.indb 817Stroustrup_book.indb 817 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY818

This will now work for all kinds of sequences of shapes. In particular, we can even
call it for the elements of an array of Shapes:

Point p {0,100};
Point p2 {50,50};
Shape* a[] = { new Circle(p,50), new Triangle(p,p2,Point(25,25)) };
draw_all(a,a+2);

We could also provide a version that is simpler to use by restricting it to work on
containers:

template<class Cont> void draw_all(Cont& c)
{
 for (auto& p : c) p->draw();
}

Or even, using C++14 concepts (§19.3.3):

void draw_all(Container& c)
{
 for (auto& p : c) p->draw();
}

The point is still that this code is clearly object-oriented, generic, and very like ordi-
nary procedural code. It relies on data abstraction in its class hierarchy and the im-
plementation of the individual containers. For lack of a better term, programming
using the most appropriate mix of styles has been called multi-paradigm programming.
However, I have come to think of this as simply programming: the “paradigms” pri-
marily reflect a restricted view of how problems can be solved and weaknesses in
the programming languages we use to express our solutions. I predict a bright fu-
ture for programming with significant improvements in technique, programming
languages, and support tools.

22.2 Programming language history overview
In the very beginning, programmers chiseled the zeros and ones into stones by
hand! Well, almost. Here, we’ll start (almost) from the beginning and quickly
introduce some of the major developments in the history of programming lan-
guages as they relate to programming using C++.

There are a lot of programming languages. The rate of language invention
is at least 2000 a decade, and the rate of “language death” is about the same.
Here, we cover almost 60 years by briefly mentioning ten languages. For more
information, see http://research.ihost.com/hopl/HOPL.html. There, you can find
links to all the articles of the three ACM SIGPLAN HOPL (History of Program-
ming Languages) conferences. These are extensively peer-reviewed papers — and

Stroustrup_book.indb 818Stroustrup_book.indb 818 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 819

therefore far more trustworthy and complete than the average web source of in-
formation. The languages we discuss here were all represented at HOPL. Note
that if you type the full title of a famous paper into a web search engine, there is a
good chance that you’ll find the paper. Also, most computer scientists mentioned
here have home pages where you can find much information about their work.

Our presentation of a language in this chapter is necessarily very brief: each
language mentioned — and hundreds not mentioned — deserves a whole book.
We are also very selective in what we mention about a language. We hope you
take this as a challenge to learn more rather than thinking, “So that’s all there is
to language X!” Remember, every language mentioned here was a major accom-
plishment and made an important contribution to our world. There is just no way
we could do justice to these languages in this short space — but not mentioning
any would be worse. We would have liked to supply a bit of code for each lan-
guage, but sorry, this is not the place for such a project (see exercises 5 and 6).

Far too often, an artifact (e.g., a programming language) is presented as sim-
ply what it is or as the product of some anonymous “development process.” This
misrepresents history: typically — especially in the early and formative years — a
language is the result of the ideals, work, personal tastes, and external constraints
on one or (typically) more individuals. Thus, we emphasize key people associated
with the languages. IBM, Bell Labs, Cambridge University, etc. do not design
languages; individuals from such organizations do — typically in collaboration
with friends and colleagues.

Please note a curious phenomenon that often skews our view of history. Pho-
tographs of famous scientists and engineers are most often taken when they are
famous and distinguished, members of national academies, Fellows of the Royal
Society, Knights of St. John, recipients of the Turing Award, etc. — in other words,
when they are decades older than when they did their most spectacular work.
Almost all were/are among the most productive members of their profession until
late in life. However, when you look back to the birth of your favorite language
features and programming techniques, try to imagine a young man (there are
still far too few women in science and engineering) trying to figure out if he has
sufficient cash to invite a girlfriend out to a decent restaurant or a parent trying to
decide if a crucial paper can be submitted to a conference at a time and place that
can be combined with a vacation for a young family. The gray beards, balding
heads, and dowdy clothes come much later.

22.2.1 The earliest languages
When — starting in 1949 — the first “modern” stored-program electronic comput-
ers appeared, each had its own language. There was a one-to-one correspondence
between the expression of an algorithm (say, a calculation of a planetary orbit)
and instructions for a specific machine. Obviously, the scientist (the users were
most often scientists) had notes with mathematical formulas, but the program

Stroustrup_book.indb 819Stroustrup_book.indb 819 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY820

was a list of machine instructions. The first primitive lists were decimal or oc-
tal numbers — exactly matching their representation in the computer’s memory.
Later, assemblers and “auto codes” appeared; that is, people developed languages
where machine instructions and machine facilities (such as registers) had symbolic
names. So, a programmer might write “LD R0 123” to load the contents of the
memory with the address 123 into register 0. However, each machine had its own
set of instructions and its own language.

David Wheeler from the University of Cambridge Computer Laboratory is the
obvious candidate for representing programming language designers of that time.
In 1949, he wrote the first real program ever to run on a stored-program computer
(the “table of squares” program we saw in §4.4.2.1). He is one of about ten people
who have a claim on having written the first compiler (for a machine-specific “auto
code”). He invented the function call (yes, even something so apparently simple
needs to have been invented at some point). He wrote a brilliant paper on how to
design libraries in 1951; that paper was at least 20 years ahead of its time! He was
co-author with Maurice Wilkes (look him up) and D. J. Gill of the first book about
programming. He received the first Ph.D. in computer science (from Cambridge
in 1951) and later made major contributions to hardware (cache architectures and
early local-area networks) and algorithms (e.g., the TEA encryption algorithm
[§25.5.6] and the “Burrows-Wheeler transform” [the compression algorithm used
in bzip2]). David Wheeler happens to have been Bjarne Stroustrup’s Ph.D. thesis
adviser — computer science is a young discipline. David Wheeler did some of his
most important work as a grad student. He worked on to become a professor at
Cambridge and a Fellow of the Royal Society.

References
Burrows, M., and David Wheeler. “A Block Sorting Lossless Data Compression

Algorithm.” Technical Report 124, Digital Equipment Corporation, 1994.
Bzip2 link: www.bzip.org/.

Stroustrup_book.indb 820Stroustrup_book.indb 820 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 821

Cambridge Ring website: http://koo.corpus.cam.ac.uk/projects/earlyatm/cr82.
Campbell-Kelly, Martin. “David John Wheeler.” Biographical Memoirs of Fellows of the

Royal Society, Vol. 52, 2006. (His technical biography.)
EDSAC: http://en.wikipedia.org/wiki/EDSAC.
Knuth, Donald. The Art of Computer Programming. Addison-Wesley, 1968, and many

revisions. Look for “David Wheeler” in the index of each volume.
TEA link: http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm.
Wheeler, D. J. “The Use of Sub-routines in Programmes.” Proceedings of the

1952 ACM National Meeting. (That’s the library design paper from 1951.)
Wilkes, M. V., D. Wheeler, and D. J. Gill. Preparation of Programs for an Electronic

Digital Computer. Addison-Wesley, 1951; 2nd edition, 1957. The first book on
programming.

22.2.2 The roots of modern languages
Here is a chart of important early languages:

Lisp

Fortran

Algol60

Simula

BCPL

PL/I

Algol68

Pascal

Classic C COBOL

1950s: 1960s: 1970s:

These languages are important partly because they were (and in some cases still
are) widely used or because they became the ancestors to important modern lan-
guages — often direct descendants with the same name. In this section, we address
the three early languages — Fortran, COBOL, and Lisp — to which most modern
languages trace their ancestry.

22.2.2.1 Fortran
The introduction of Fortran in 1956 was arguably the most significant step in the
development of programming languages. “Fortran” stands for “Formula Trans-
lation,” and the fundamental idea was to generate efficient machine code from a
notation designed for people rather than machines. The model for the Fortran
notation was what scientists and engineers wrote when solving problems using

Stroustrup_book.indb 821Stroustrup_book.indb 821 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY822

mathematics, rather than the machine instructions provided by the (then very
new) electronic computers.

From a modern perspective, Fortran can be seen as the first attempt to directly
represent an application domain in code. It allowed programmers to write linear
algebra much as they found it in textbooks. Fortran provided arrays, loops, and
standard mathematical functions (using the standard mathematical notation, such
as x+y and sin(x)). There was a standard library of mathematical functions, mech-
anisms for I/O, and a user could define additional functions and libraries.

The notation was largely machine independent so that Fortran code could
often be moved from computer to computer with only minor modification. This
was a huge improvement over the state of the art. Therefore, Fortran is considered
the first high-level programming language.

It was considered essential that the machine code generated from the Fortran
source code was close to optimally efficient: machines were room size and enor-
mously expensive (many times the yearly salary of a team of good programmers),
they were (by modern standards) ridiculously slow (such as 100,000 instructions/
second), and they had absurdly small memories (such as 8K bytes). However,
people were fitting useful programs into those machines, and an improvement in
notation (leading to better programmer productivity and portability) could not be
allowed to get in the way of that.

Fortran was hugely successful in its target domain of scientific and engineer-
ing calculations and has been under continuous evolution ever since. The main
versions of the Fortran language are II, IV, 77, 90, 95, 03. It is still debated whether
Fortran77 or Fortran90 is more widely used today.

Stroustrup_book.indb 822Stroustrup_book.indb 822 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 823

The first definition of and implementation of Fortran were done by a team at
IBM led by John Backus: “We did not know what we wanted and how to do it.
It just sort of grew.” How could he have known? Nothing like that had been done
before, but along the way they developed or discovered the basic structure of com-
pilers: lexical analysis, syntax analysis, semantic analysis, and optimization. To
this day, Fortran leads in the optimization of numerical computations. One thing
that emerged (after the initial Fortran) was a notation for specifying grammars:
the Backus-Naur Form (BNF). It was first used for Algol60 (§22.2.3.1) and is now
used for most modern languages. We use a version of BNF for our grammars in
Chapters 6 and 7.

Much later, John Backus pioneered a whole new branch of programming lan-
guages (“functional programming”), advocating a mathematical approach to pro-
gramming as opposed to the machine view based on reading and writing memory
locations. Note that pure math does not have the notion of assignment, or even
actions. Instead you “simply” state what must be true given a set of conditions.
Some of the roots of functional programming are in Lisp (§22.2.2.3), and some
of the ideas from functional programming are reflected in the STL (Chapter 21).

References
Backus, John. “Can Programming Be Liberated from the von Neumann Style?”

Communications of the ACM, 1977. (His Turing award lecture.)
Backus, John. “The History of FORTRAN I, II, and III.” ACM SIGPLAN No-

tices, Vol. 13 No. 8, 1978. Special Issue: History of Programming Languages
Conference.

Hutton, Graham. Programming in Haskell. Cambridge University Press, 2007. ISBN
0521692695.

ISO/IEC 1539. Programming Languages — Fortran. (The “Fortran95” standard.)
Paulson, L. C. ML for the Working Programmer. Cambridge University Press, 1991.

ISBN 0521390222.

22.2.2.2 COBOL
COBOL (“The Common Business-Oriented Language”) was (and sometimes
still is) for business programmers what Fortran was (and sometimes still is) for
scientific programmers. The emphasis was on data manipulation:

• Copying
• Storing and retrieving (record keeping)
• Printing (reports)

Calculation/computation was (often correctly in COBOL’s core application do-
mains) seen as a minor matter. It was hoped/claimed that COBOL was so close to
“business English” that managers could program and programmers would soon

Stroustrup_book.indb 823Stroustrup_book.indb 823 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY824

become redundant. That is a hope we have heard frequently repeated over the
years by managers keen on cutting the cost of programming. It has never been
even remotely true.

COBOL was initially designed by a committee (CODASYL) in 1959–60 at
the initiative of the U.S. Department of Defense and a group of major computer
manufacturers to address the needs of business-related computing. The design
built directly on the FLOW-MATIC language invented by Grace Hopper. One
of her contributions was the use of a close-to-English syntax (as opposed to the
mathematical notation pioneered by Fortran and still dominant today). Like For-
tran — and like all successful languages — COBOL underwent continuous evolu-
tion. The major revisions were 60, 61, 65, 68, 70, 80, 90, and 04.

Grace Murray Hopper had a Ph.D. in mathematics from Yale University. She
worked for the U.S. Navy on the very first computers during World War II. She
returned to the navy after a few years in the early computer industry:

“Rear Admiral Dr. Grace Murray Hopper (U.S. Navy) was a remarkable
woman who grandly rose to the challenges of programming the first com-
puters. During her lifetime as a leader in the field of software development
concepts, she contributed to the transition from primitive programming tech-
niques to the use of sophisticated compilers. She believed that ‘we’ve always
done it that way’ was not necessarily a good reason to continue to do so.”

—Anita Borg, at the “Grace Hopper Celebration of
Women in Computing” conference, 1994

Grace Murray Hopper is often credited with being the first person to call an
error in a computer a “bug.” She certainly was among the early users of the term
and documented a use:

Stroustrup_book.indb 824Stroustrup_book.indb 824 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 825

As can be seen, that bug was real (a moth), and it affected the hardware directly.
Most modern bugs appear to be in the software and have less graphical appeal.

References
A biography of G. M. Hopper: http://tergestesoft.com/~eddysworld/hopper.htm.
ISO/IEC 1989:2002. Information Technology — Programming Languages — COBOL.
Sammet, Jean E. “The Early History of COBOL.” ACM SIGPLAN Notices, Vol.

13 No. 8, 1978. Special Issue: History of Programming Languages Conference.

22.2.2.3 Lisp
Lisp was originally designed in 1958 by John McCarthy at MIT for linked-list and
symbolic processing (hence its name: “LISt Processing”). Initially Lisp was (and
is often still) interpreted, as opposed to compiled. There are dozens (most likely
hundreds) of Lisp dialects. In fact, it is often claimed that “Lisp has an im-
plied plural.” The current most popular dialects are Common Lisp and Scheme.
This family of languages has been (and is) the mainstay of artificial intelligence
(AI) research (though delivered products have often been in C or C++). One
of the main sources of inspiration for Lisp was the (mathematical notion of)
lambda calculus.

Fortran and COBOL were specifically designed to help deliver solutions to
real-world problems in their respective application areas. The Lisp community
was much more concerned with programming itself and the elegance of pro-
grams. Often these efforts were successful. Lisp was the first language to separate
its definition from the hardware and base its semantics on a form of math. If Lisp
had a specific application domain, it is far harder to define precisely: “AI” and
“symbolic computation” don’t map as clearly into common everyday tasks as
“business processing” and “scientific programming.” Ideas from Lisp (and from
the Lisp community) can be found in many more modern languages, notably the
functional languages.

Stroustrup_book.indb 825Stroustrup_book.indb 825 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY826

John McCarthy’s B.S. was in mathematics from the California Institute of
Technology and his Ph.D. was in mathematics from Princeton University. You
may notice that there are a lot of math majors among the programming language
designers. After his memorable work at MIT, McCarthy moved to Stanford in
1962 to help found the Stanford AI lab. He is widely credited for inventing the
term artificial intelligence and made many contributions to that field.

References
Abelson, Harold, and Gerald J. Sussman. Structure and Interpretation of Computer

Programs, Second Edition. MIT Press, 1996. ISBN 0262011530.
ANSI INCITS 226-1994 (formerly ANSI X3.226:1994). American National Stan-

dard for Programming Language — Common LISP.
McCarthy, John. “History of LISP.” ACM SIGPLAN Notices, Vol. 13 No. 8, 1978.

Special Issue: History of Programming Languages Conference.
Steele, Guy L., Jr. Common Lisp: The Language. Digital Press, 1990. ISBN 1555580416.
Steele, Guy L., Jr., and Richard Gabriel. “The Evolution of Lisp.” Proceedings of

the ACM History of Programming Languages Conference (HOPL-2). ACM
SIGPLAN Notices, Vol. 28 No. 3, 1993.

22.2.3 The Algol family
In the late 1950s, many felt that programming was getting too complicated, too ad
hoc, and too unscientific. They felt that the variety of programming languages was
unnecessarily great and that those languages were put together with insufficient
concern for generality and sound fundamental principles. This is a sentiment that
has surfaced many times since then, but a group of people came together under
the auspices of IFIP (the International Federation of Information Processing), and
in just a couple of years they created a new language that revolutionized the way
we think about languages and their definition. Most modern languages — includ-
ing C++ — owe much to this effort.

Stroustrup_book.indb 826Stroustrup_book.indb 826 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 827

22.2.3.1 Algol60
The “ALGOrithmic Language,” Algol, which resulted from the efforts of the
IFIP 2.1 group, was a breakthrough of modern programming language concepts:

• Lexical scope
• Use of grammar to defi ne the language
• Clear separation of syntactic and semantic rules
• Clear separation of language defi nition and implementation
• Systematic use of (static, i.e., compile-time) types
• Direct support for structured programming

The very notion of a “general-purpose programming language” came with Algol.
Before that, languages were scientific (e.g., Fortran), business (e.g., COBOL), list
manipulation (e.g., Lisp), simulation, etc. Of these languages, Algol60 is most
closely related to Fortran.

Unfortunately, Algol60 never reached major nonacademic use. It was seen
as “too weird” by many in the industry, “too slow” by Fortran programmers,
“not supportive of business processing” by COBOL programmers, “not flexible
enough” by Lisp programmers, “too academic” by most people in the industry
(including the managers who controlled investment in tools), and “too European”
by many Americans. Most of the criticisms were correct. For example, the Algol60
report didn’t define any I/O mechanism! However, similar criticisms could have
been leveled at just about any contemporary language — and Algol set the new
standard for many areas.

One problem with Algol60 was that no one knew how to implement it. That
problem was solved by a team of programmers led by Peter Naur (the editor of
the Algol60 report) and Edsger Dijkstra:

Peter Naur was educated (as an astronomer) at the University of Copen-
hagen and worked at the Technical University of Copenhagen (DTH) and for

Stroustrup_book.indb 827Stroustrup_book.indb 827 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY828

the Danish computer manufacturer Regnecentralen. He learned programming
early (1950–51) in the Computer Laboratory in Cambridge, England (Denmark
didn’t have computers that early), and later had a distinguished career spanning
the academia/industry gulf. He was co-inventor of BNF (the Backus-Naur Form)
used to describe grammars and a very early proponent of formal reasoning about
programs (Bjarne Stroustrup first — in 1971 or so — learned the use of invariants
from Peter Naur’s technical articles). Naur consistently maintained a thoughtful
perspective on computing, always considering the human aspects of program-
ming. In fact, his later work could reasonably be considered part of philosophy
(except that he considers conventional academic philosophy utter nonsense). He
was the first professor of Datalogi at the University of Copenhagen (the Danish
term datalogi is best translated as “informatics”; Peter Naur hates the term computer
science as a misnomer — computing is not primarily about computers).

Edsger Dijkstra was another of computer science’s all-time greats. He stud-
ied physics in Leyden but did his early work in computing in Mathematisch
Centrum in Amsterdam. He later worked in quite a few places, including Eind-
hoven University of Technology, Burroughs Corporation, and the University of
Texas (Austin). In addition to his seminal work on Algol, he was a pioneer and
strong proponent of the use of mathematical logic in programming, algorithms,
and one of the designers and implementers of THE operating system — one of
the first operating systems to systematically deal with concurrency. THE stands
for “Technische Hogeschool Eindhoven” — the university where Edsger Dijkstra
worked at the time. Arguably, his most famous paper was “Go-To Statement
Considered Harmful,” which convincingly demonstrated the problems with un-
structured control flows.

Stroustrup_book.indb 828Stroustrup_book.indb 828 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 829

The Algol family tree is impressive:

Algol60

Simula67

Algol68

Pascal

Algol58

Note Simula67 and Pascal. These languages are the ancestors to many (probably
most) modern languages.

References
Dijkstra, Edsger W. “Algol 60 Translation: An Algol 60 Translator for the x1 and

Making a Translator for Algol 60.” Report MR 35/61. Mathematisch Centrum
(Amsterdam), 1961.

Dijkstra, Edsger. “Go-To Statement Considered Harmful.” Communications of the
ACM, Vol. 11 No. 3, 1968.

Lindsey, C. H. “The History of Algol68.” Proceedings of the ACM History of
Programming Languages Conference (HOPL-2). ACM SIGPLAN Notices, Vol.
28 No. 3, 1993.

Naur, Peter, ed. “Revised Report on the Algorithmic Language Algol 60.” A/S
Regnecentralen (Copenhagen), 1964.

Naur, Peter. “Proof of Algorithms by General Snapshots.” BIT, Vol. 6, 1966, pp.
310–16. (Probably the first paper on how to prove programs correct.)

Naur, Peter. “The European Side of the Last Phase of the Development of AL-
GOL 60.” ACM SIGPLAN Notices, Vol. 13 No. 8, 1978. Special Issue: History of
Programming Languages Conference.

Perlis, Alan J. “The American Side of the Development of Algol.” ACM SIGPLAN
Notices, Vol. 13 No. 8, 1978. Special Issue: History of Programming Languages
Conference.

van Wijngaarden, A., B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff,
C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker, eds. Revised Report on the
Algorithmic Language Algol 68 (Sept. 1973). Springer-Verlag, 1976.

22.2.3.2 Pascal
The Algol68 language mentioned in the Algol family tree was a large and ambi-
tious project. Like Algol60, it was the work of “the Algol committee” (IFIP work-
ing group 2.1), but it took “forever” to complete and many were impatient and
doubtful that something useful would ever come from that project. One member

Stroustrup_book.indb 829Stroustrup_book.indb 829 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY830

of the Algol committee, Niklaus Wirth, decided simply to design and implement
his own successor to Algol. In contrast to Algol68, that language, called Pascal,
was a simplification of Algol60.

Pascal was completed in 1970 and was indeed simple and somewhat inflexible
as a result. It was often claimed to be intended just for teaching, but early papers
describe it as an alternative to Fortran on the supercomputers of the day. Pascal was
indeed easy to learn, and after a very portable implementation became available it
became very popular as a teaching language, but it proved to be no threat to Fortran.

Pascal was the work of Professor Niklaus Wirth (photos from 1969 and 2004)
of the Technical University of Switzerland in Zurich (ETH). His Ph.D. (in elec-
trical engineering and computer science) is from the University of California at
Berkeley, and he maintains a lifelong connection with California. Professor Wirth
is the closest thing the world has had to a professional language designer. Over a
period of 25 years, he designed and implemented

• Algol W
• PL/360
• Euler
• Pascal
• Modula
• Modula-2
• Oberon
• Oberon-2
• Lola (a hardware description language)

Stroustrup_book.indb 830Stroustrup_book.indb 830 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 831

Niklaus Wirth describes this as his unending quest for simplicity. His work has
been most influential. Studying that series of languages is a most interesting exer-
cise. Professor Wirth is the only person ever to present two languages at HOPL.

In the end, pure Pascal proved to be too simple and rigid for industrial suc-
cess. In the 1980s, it was saved from extinction primarily through the work of
Anders Hejlsberg. Anders Hejlsberg was one of the three founders of Borland.
He first designed and implemented Turbo Pascal (providing, among other things,
more flexible argument-passing facilities) and later added a C++-like object model
(but with just single inheritance and a nice module mechanism). He was educated
at the Technical University in Copenhagen, where Peter Naur occasionally lec-
tured — it’s sometimes a very small world. Anders Hejlsberg later designed Delphi
for Borland and C# for Microsoft.

The (necessarily simplified) Pascal family tree looks like this:

Pascal

Modula Modula-2 Oberon

Turbo Pascal Borland Pascal Delphi

Oberon-2

Pascal-2

Ada

References
Borland/Turbo Pascal. http://en.wikipedia.org/wiki/Turbo_Pascal.
Hejlsberg, Anders, Scott Wiltamuth, and Peter Golde. The C# Programming Lan-

guage, Second Edition. Microsoft .NET Development Series. ISBN 0321334434.
Wirth, Niklaus. “The Programming Language Pascal.” Acta Informatics, Vol. 1 Fasc

1, 1971.
Wirth, Niklaus. “Design and Implementation of Modula.” Software—Practice and

Experience, Vol. 7 No. 1, 1977.
Wirth, Niklaus. “Recollections about the Development of Pascal.” Proceedings of

the ACM History of Programming Languages Conference (HOPL-2). ACM
SIGPLAN Notices, Vol. 28 No. 3, 1993.

Wirth, Niklaus. Modula-2 and Oberon. Proceedings of the Third ACM SIGPLAN
Conference on the History of Programming Languages (HOPL-III). San Di-
ego, CA, 2007. http://portal.acm.org/toc.cfm?id=1238844.

Stroustrup_book.indb 831Stroustrup_book.indb 831 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY832

22.2.3.3 Ada
The Ada programming language was designed to be a language for all the pro-
gramming needs of the U.S. Department of Defense. In particular, it was to be a
language in which to deliver reliable and maintainable code for embedded systems
programming. Its most obvious ancestors are Pascal and Simula (see §22.2.3.2
and §22.2.4). The leader of the group that designed Ada was Jean Ichbiah — a past
chairman of the Simula Users’ Group. The Ada design emphasized

• Data abstraction (but no inheritance until 1995)
• Strong static type checking
• Direct language support concurrency

The design of Ada aimed to be the embodiment of software engineering in pro-
gramming languages. Consequently, the U.S. DoD did not design the language;
it designed an elaborate process for designing the language. A huge number of
people and organizations contributed to the design process, which progressed
through a series of competitions, to produce the best specification and next to
produce the best language embodying the ideas of the winning specification. This
immense 20-year project (1975–98) was from 1980 managed by a department
called AJPO (Ada Joint Program Office).

In 1979, the resulting language was named after Lady Augusta Ada Lovelace
(a daughter of Lord Byron, the poet). Lady Lovelace could be claimed to have
been the first programmer of modern times (for some definition of “modern”)
because she had worked with Charles Babbage (the Lucasian Professor of Math-
ematics in Cambridge — that’s Newton’s chair!) on a revolutionary mechanical
computer in the 1840s. Unfortunately, Babbage’s machine was unsuccessful as a
practical tool.

Stroustrup_book.indb 832Stroustrup_book.indb 832 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 833

Thanks to the elaborate process, Ada has been considered the ultimate design-
by-committee language. The lead designer of the winning design team, Jean Ich-
biah from the French company Honeywell Bull, emphatically denied that. How-
ever, I suspect (based on discussion with him) that he could have designed a better
language, had he not been so constrained by the process.

Ada’s use was mandated for military applications by the DoD for many years,
leading to the saying “Ada, it’s not just a good idea, it’s the law!” Initially, the use
of Ada was just “mandated,” but when many projects received “waivers” to use
other languages (typically C++), the U.S. Congress passed a law requiring the use
of Ada in most military applications. That law was later rescinded in the face of
commercial and technical realities. Bjarne Stroustrup is one of the very few people
to have had his work banned by the U.S. Congress.

That said, we insist that Ada is a much better language than its reputation
would indicate. We suspect that if the U.S. DoD had been less heavy-handed about
its use and the exact way in which it was to be used (standards for application de-
velopment processes, software development tools, documentation, etc.), it could
have become noticeably more successful. To this day, Ada is important in aero-
space applications and similar advanced embedded systems application areas.

Ada became a military standard in 1980, an ANSI standard in 1983 (the first
implementation was done in 1983 — three years after the first standard!), and an
ISO standard in 1987. The ISO standard was extensively (but of course com-
patibly) revised for a 1995 ISO standard. Notable improvements included more
flexibility in the concurrency mechanisms and support for inheritance.

References
Barnes, John. Programming in Ada 2005. Addison-Wesley, 2006. ISBN 0321340787.
Consolidated Ada Reference Manual, consisting of the international standard

(ISO/IEC 8652:1995). Information Technology — Programming Languages — Ada, as up-
dated by changes from Technical Corrigendum 1 (ISO/IEC 8652:1995:TC1:2000).

Ada information page: www.adaic.org/.
Whitaker, William A. ADA — The Project: The DoD High Order Language Working

Group. Proceedings of the ACM History of Programming Languages Confer-
ence (HOPL-2). ACM SIGPLAN Notices, Vol. 28 No. 3, 1993.

22.2.4 Simula
Simula was developed in the early to mid-1960s by Kristen Nygaard and Ole-
Johan Dahl at the Norwegian Computing Center and Oslo University. Simula is
indisputably a member of the Algol family of languages. In fact, Simula is almost
completely a superset of Algol60. However, we choose to single out Simula for
special attention because it is the source of most of the fundamental ideas that

Stroustrup_book.indb 833Stroustrup_book.indb 833 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY834

today are referred to as “object-oriented programming.” It was the first language to
provide inheritance and virtual functions. The words class for “user-defined type”
and virtual for a function that can be overridden and called through the interface
provided by a base class come from Simula.

Simula’s contribution is not limited to language features. It came with
an articulated notion of object-oriented design based on the idea of modeling
real-world phenomena in code:

• Represent ideas as classes and class objects.
• Represent hierarchical relations as class hierarchies (inheritance).

Thus, a program becomes a set of interacting objects rather than a monolith.

Kristen Nygaard — the co-inventor (with Ole-Johan Dahl, to the left, wearing
glasses) of Simula67 — was a giant by most measures (including height), with
an intensity and generosity to match. He conceived of the fundamental ideas of
object-oriented programming and design, notably inheritance, and pursued their
implications over decades. He was never satisfied with simple, short-term, and
shortsighted answers. He had a constant social involvement that lasted over dec-
ades. He can be given a fair bit of credit for Norway staying out of the European
Union, which he saw as a potential centralized and bureaucratic nightmare that
would be insensitive to the needs of a small country at the far edge of the Union —
Norway. In the mid-1970s Kristen Nygaard spent significant time in the computer
science department of the University of Aarhus, Denmark (where, at the time,
Bjarne Stroustrup was studying for his master’s degree).

Stroustrup_book.indb 834Stroustrup_book.indb 834 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 835

Kristen Nygaard’s master’s degree is in mathematics from the University of
Oslo. He died in 2002, just a month before he was (together with his lifelong
friend Ole-Johan Dahl) to receive the ACM’s Turing Award, arguably the highest
professional honor for a computer scientist.

Ole-Johan Dahl was a more conventional academic. He was very interested
in specification languages and formal methods. In 1968, he became the first full
professor of informatics (computer science) at Oslo University.

In August 2000 Dahl and Nygaard were made Commanders of the Order of
Saint Olav by the King of Norway. Even true geeks can gain recognition in their
hometown!

References
Birtwistle, G., O-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA Begin. Student-

litteratur (Lund. Sweden), 1979. ISBN 9144062125.
Holmevik, J. R. “Compiling SIMULA: A Historical Study of Technological Gen-

esis.” IEEE Annals of the History of Computing, Vol. 16 No. 4, 1994, pp. 25–37.
Krogdahl, S. “The Birth of Simula.” Proceedings of the HiNC 1 Conference in

Trondheim, June 2003 (IFIP WG 9.7, in cooperation with IFIP TC 3).
Nygaard, Kristen, and Ole-Johan Dahl. “The Development of the SIMULA Lan-

guages.” ACM SIGPLAN Notices, Vol. 13 No. 8, 1978. Special Issue: History of
Programming Languages Conference.

SIMULA Standard. DATA Processing — Programming Languages — SIMULA. Swed-
ish Standard, Stockholm, Sweden (1987). ISBN 9171622349.

Stroustrup_book.indb 835Stroustrup_book.indb 835 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY836

22.2.5 C
In 1970, it was “well known” that serious systems programming — in particular
the implementation of an operating system — had to be done in assembly code
and could not be done portably. That was much as the situation had been for
scientific programming before Fortran. Several individuals and groups set out to
challenge that orthodoxy. In the long run, the C programming language (Chapter
27) was by far the most successful of those efforts.

Dennis Ritchie designed and implemented the C programming language in
Bell Telephone Laboratories’ Computer Science Research Center in Murray Hill,
New Jersey. The beauty of C is that it is a deliberately simple programming lan-
guage sticking very close to the fundamental aspects of hardware. Most of the
current complexities (most of which reappear in C++ for compatibility reasons)
were added after his original design and in several cases over Dennis Ritchie’s ob-
jections. Part of C’s success was its early wide availability, but its real strength was
its direct mapping of language features to hardware facilities (see §25.4–5). Dennis
Ritchie succinctly described C as “a strongly typed, but weakly checked language”;
that is, C has a static (compile-time) type system, and a program that uses an object
in a way that differs from its definition is not legal. However, a C compiler can’t
check that. That made sense when the C compiler had to run in 48K bytes of
memory. Soon after C came into use, people devised a program, called lint, that
separately from the compiler verified conformance to the type system.

Together with Ken Thompson, Dennis Ritchie is the co-inventor of Unix,
easily the most influential operating system of all times. C was — and is — as-
sociated with the Unix operating system and through that with Linux and the
open-source movement.

Stroustrup_book.indb 836Stroustrup_book.indb 836 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 837

For 40 years, Dennis Ritchie worked in Bell Laboratories’ Computer Science
Research Center. He was a graduate of Harvard University (physics); his Ph.D.
in applied mathematics from Harvard University was never granted because he
either forgot to or refused to pay a small ($60) registration fee.

In the early years, 1974–79, many people in Bell Labs influenced the design
of C and its adoption. Doug McIlroy was everybody’s favorite critic, discussion
partner, and ideas man. He influenced C, C++, Unix, and much more.

Stroustrup_book.indb 837Stroustrup_book.indb 837 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY838

Brian Kernighan is a programmer and writer extraordinaire. Both his code
and his prose are models of clarity. The style of this book is in part derived from
the tutorial sections of his masterpiece, The C Programming Language (known as
“K&R” after its co-authors, Brian Kernighan and Dennis Ritchie).

It is not enough to have good ideas; to be useful on a large scale, those ideas
have to be reduced to their simplest form and articulated clearly in a way that
is accessible to large numbers of people in their target audience. Verbosity is
among the worst enemies of such presentation of ideas; so is obfuscation and
over-abstraction. Purists often scoff at the results of such popularization and prefer
“original results” presented in a way accessible only to experts. We don’t: getting a
nontrivial, but valuable, idea into the head of a novice is difficult, essential to the
growth of professionalism, and valuable to society at large.

Over the years, Brian Kernighan has been involved with many influential
programming and publishing projects. Two examples are AWK — an early script-
ing language named by the initials of its authors (Aho, Weinberger, and Ker-
nighan) — and AMPL, “A Mathematical Programming Language.”

Brian Kernighan is currently a professor at Princeton University; he is of
course an excellent teacher, specializing in making otherwise complex topics clear.
For more than 30 years he worked in Bell Laboratories’ Computer Science Re-
search Center. Bell Labs later became AT&T Bell Labs and later still split into
AT&T Labs and Lucent Bell Labs. He is a graduate of the University of Toronto
(physics); his Ph.D. is in electrical engineering from Princeton University.

The C language family tree looks like this:

Classic C BCPL B CPL

C89

C++
C++98

C99

Martin Richards,
Cambridge, 1967

Christopher Strachey,
Cambridge, mid-1960s

Ken Thompson,
BTL, 1972

The origins of C lay in the never-completed CPL project in England, the
BCPL (Basic CPL) language that Martin Richards did while visiting MIT on
leave from Cambridge University, and an interpreted language, called B, done
by Ken Thompson. Later, C was standardized by ANSI and the ISO, and there
were a lot of influences from C++ (e.g., function argument checking and consts).

Stroustrup_book.indb 838Stroustrup_book.indb 838 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 839

CPL was a joint project between Cambridge University and Imperial College
in London. Initially, the project had been done in Cambridge, so “C” officially
stood for “Cambridge.” When Imperial College became a partner, the official ex-
planation of the “C” became “Combined.” In reality (or so we are told), it always
stood for “Christopher” after Christopher Strachey, CPL’s main designer.

References
Brian Kernighan’s home pages: http://cm.bell-labs.com/cm/cs/who/bwk and www.

cs.princeton.edu/~bwk/.
Dennis Ritchie’s home page: http://cm.bell-labs.com/cm/cs/who/dmr.
ISO/IEIC 9899:1999. Programming Languages — C. (The C standard.)
Kernighan, Brian, and Dennis Ritchie. The C Programming Language. Prentice Hall,

1978. Second Edition, 1988. ISBN 0131103628.
A list of members of the Bell Labs’ Computer Science Research Center: http://

cm.bell-labs.com/cm/cs/alumni.html.
Ritchards, Martin. BCPL — The Language and Its Compiler. Cambridge University

Press, 1980. ISBN 0521219655.
Ritchie, Dennis. “The Development of the C Programming Language. Proceed-

ings of the ACM History of Programming Languages Conference (HOPL-2).
ACM SIGPLAN Notices, Vol. 28 No. 3, 1993.

Salus, Peter. A Quarter Century of UNIX. Addison-Wesley, 1994. ISBN 0201547775.

22.2.6 C++
C++ is a general-purpose programming language with a bias toward systems
programming that

• Is a better C
• Supports data abstraction
• Supports object-oriented programming
• Supports generic programming

It was originally designed and implemented by Bjarne Stroustrup in Bell Tele-
phone Laboratories’ Computer Science Research Center in Murray Hill, New
Jersey, that is, down the corridor from Dennis Ritchie, Brian Kernighan, Ken
Thompson, Doug McIlroy, and other Unix greats.

Stroustrup_book.indb 839Stroustrup_book.indb 839 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY840

Bjarne Stroustrup received a master’s degree (in mathematics with computer
science) from the university in his hometown, Aarhus in Denmark. Then he went
to Cambridge, where he got his Ph.D. (in computer science) working for David
Wheeler. The main contributions of C++ were to

• Make abstraction techniques affordable and manageable for mainstream
projects

• Pioneer the use of object-oriented and generic programming techniques in
application areas where effi ciency is a premium

Before C++, these techniques (often sloppily lumped together under the label of
“object-oriented programming”) were mostly unknown in the industry. As with
scientific programming before Fortran and systems programming before C, it was
“well known” that these techniques were too expensive for real-world use and also
too complicated for “ordinary programmers” to master.

The work on C++ started in 1979 and led to a commercial release in 1985.
After its initial design and implementation, Bjarne Stroustrup developed it further
together with friends at Bell Labs and elsewhere until its standardization officially
started in 1990. Since then, the definition of C++ has been developed by first
ANSI (the national standards body for the United States) and since 1991 by ISO
(the international standards organization). Bjarne Stroustrup has taken a major

Stroustrup_book.indb 840Stroustrup_book.indb 840 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 841

part in that effort as the chairman of the key subgroup in charge of new language
features. The first international standard (C++98) was ratified in 1998 and the
second in 2011 (C++11). The next ISO standard will be C++14, and the one
after that, sometimes referred to as C++1y, may become C++17.

The most significant development in C++ after its initial decade of growth
was the STL — the standard library’s facilities for containers and algorithms. It
was the outcome of work — primarily by Alexander Stepanov — over decades aim-
ing at producing the most general and efficient software, inspired by the beauty
and utility of mathematics.

Alex Stepanov is the inventor of the STL and a pioneer of generic program-
ming. He is a graduate of the University of Moscow and has worked on robotics,
algorithms, and more, using a variety of languages (including Ada, Scheme, and
C++). Since 1979, he has worked in U.S. academia and industry, notably at GE
Labs, AT&T Bell Labs, Hewlett-Packard, Silicon Graphics, and Adobe.

The C++ family tree looks like this:

C with Classes C++ C++98 C++14ARM C++

1979—84 1989

C++11
Classic C

Simula 67

1978—89

“C with Classes” was Bjarne Stroustrup’s initial synthesis of C and Simula
ideas. It died immediately following the implementation of its successor, C++.

Stroustrup_book.indb 841Stroustrup_book.indb 841 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY842

Language discussions often focus on elegance and advanced features. How-
ever, C and C++ didn’t become two of the most successful languages in the
history of computing that way. Their strengths were flexibility, performance, and
stability. Major software systems live over decades, often exhaust their hardware
resources, and often suffer completely unexpected changes of requirements. C
and C++ have been able to thrive in that environment. Our favorite Dennis
Ritchie quote is, “Some languages are designed to prove a point; others are de-
signed to solve a problem.” By “others,” he primarily meant C. Bjarne Stroustrup
is fond of saying, “Even I knew how to design a prettier language than C++.” The
aim for C++ — as for C — was not abstract beauty (though we strongly appreciate
that when we can get it), but utility.

References
Alexander Stepanov’s publications: www.stepanovpapers.com.
Bjarne Stroustrup’s home page: www.stroustrup.com.
ISO/IEC 14882:2011. Programming Languages — C++. (The C++ standard.)
Stroustrup, Bjarne. “A History of C++: 1979–1991. Proceedings of the ACM

History of Programming Languages Conference (HOPL-2). ACM SIGPLAN
Notices, Vol. 28 No. 3, 1993.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition. Addison-Wesley,
2013. ISBN 978-0321563842.

Stroustrup, Bjarne. A Tour of C++. Addison-Wesley, 2013. ISBN 978-0321958310.
Stroustrup, Bjarne. “C and C++: Siblings”; “C and C++: A Case for Compat-

ibility”; and “C and C++: Case Studies in Compatibility.” The C/C++ Users
Journal. July, Aug., and Sept. 2002.

Stroustrup, Bjarne. “Evolving a Language in and for the Real World: C++ 1991–
2006. Proceedings of the Third ACM SIGPLAN Conference on the History of
Programming Languages (HOPL-III). San Diego, CA, 2007. http://portal.acm
.org/toc.cfm?id=1238844.

22.2.7 Today
What programming languages are currently used and for what? That’s a really
hard question to answer. The family tree of current languages is — even in a most
abbreviated form — somewhat crowded and messy:

Stroustrup_book.indb 842Stroustrup_book.indb 842 4/22/14 9:43 AM4/22/14 9:43 AM

22.2 PROGRAMMING LANGUAGE HISTORY OVERVIEW 843

C89 C++

Lisp

Pascal

Perl COBOL89

COBOL04
Object Pascal

Visual Basic

Smalltalk
Fortran77

Simula67

Python

Java95 Java04 Eiffel

PHP

ADA C#2.0ADA98

C++98

JavaScript

C++14C++11

C#

In fact, most of the statistics we find on the web (and elsewhere) are hardly better
than rumors because they measure things that are only weakly correlated with
use, such as number of web postings containing the name of a programming lan-
guage, compiler shipments, academic papers, book sales, etc. All such measures
favor the new over the established. Anyway, what is a programmer? Someone
who uses a programming language every day? How about a student who writes
small programs just to learn? A professor who just talks about programming? A
physicist who writes a program almost every year? Is a professional programmer
who — almost by definition — uses several programming languages every week
counted many times or just once? We have seen each of these questions answered
each way for different statistics.

However, we feel obliged to give you an opinion, so in 2014 there are about
10 million professional programmers in the world. For that opinion we rely on
IDC (a data-gathering firm), discussions with publishers and compiler suppliers,
and various web sources. Feel free to quibble, but we know the number is larger
than 1 million and less than 100 million for any halfway reasonable definition of
programmer. Which language do they use? Ada, C, C++, C#, COBOL, Fortran,
Java, PERL, PHP, Python, and Visual Basic probably (just probably) account for
significantly more than 90% of all programs.

In addition to the languages mentioned here, we could list dozens or even
hundreds more. Apart from trying to be fair to interesting or important languages,
we see no point. Please seek out information yourself as needed. A professional

Stroustrup_book.indb 843Stroustrup_book.indb 843 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY844

knows several languages and learns new ones as needed. There is no “one true
language” for all people and all applications. In fact, all major systems we can
think of use more than one language.

22.2.8 Information sources
Each individual language description above has a reference list. These are refer-
ences covering several languages:

More language designer links/photos
www.angelfire.com/tx4/cus/people/.

A few examples of languages
http://dmoz.org/Computers/Programming/Languages/.

Textbooks
Scott, Michael L. Programming Language Pragmatics. Morgan Kaufmann, 2000.

ISBN 1558604421.
Sebesta, Robert W. Concepts of Programming Languages. Addison-Wesley, 2003. ISBN

0321193628.

History books
Bergin, T. J., and R. G. Gibson, eds. History of Programming Languages — II. Addison-

Wesley, 1996. ISBN 0201895021.
Hailpern, Brent, and Barbara G. Ryder, eds. Proceedings of the Third ACM SIG-

PLAN Conference on the History of Programming Languages (HOPL-III).
San Diego, CA, 2007. http://portal.acm.org/toc.cfm?id=1238844.

Lohr, Steve. Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wiz-
ards, Maverick Scientists and Iconoclasts—The Programmers Who Created the Software
Revolution. Basic Books, 2002. ISBN 978-0465042265.

Sammet, Jean. Programming Languages: History and Fundamentals. Prentice Hall, 1969.
ISBN 0137299885.

Wexelblat, Richard L., ed. History of Programming Languages. Academic Press, 1981.
ISBN 0127450408.

Review
 1. What are some uses of history?
 2. What are some uses of a programming language? List examples.
 3. List some fundamental properties of programming languages that are ob-

jectively good.
 4. What do we mean by abstraction? By higher level of abstraction?

Stroustrup_book.indb 844Stroustrup_book.indb 844 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 REVIEW 845

 5. What are our four high-level ideals for code?
 6. List some potential advantages of high-level programming.
 7. What is reuse and what good might it do?
 8. What is procedural programming? Give a concrete example.
 9. What is data abstraction? Give a concrete example.
 10. What is object-oriented programming? Give a concrete example.
 11. What is generic programming? Give a concrete example.
 12. What is multi-paradigm programming? Give a concrete example.
 13. When was the first program run on a stored-program computer?
 14. What work made David Wheeler noteworthy?
 15. What was the primary contribution of John Backus’s first language?
 16. What was the first language designed by Grace Murray Hopper?
 17. In which field of computer science did John McCarthy primarily work?
 18. What were Peter Naur’s contributions to Algol60?
 19. What work made Edsger Dijkstra noteworthy?
 20. What languages did Niklaus Wirth design and implement?
 21. What languages did Anders Hejlsberg design?
 22. What was Jean Ichbiah’s role in the Ada project?
 23. What style of programming did Simula pioneer?
 24. Where (outside Oslo) did Kristen Nygaard teach?
 25. What work made Ole-Johan Dahl noteworthy?
 26. Ken Thompson was the main designer of which operating system?
 27. What work made Doug McIlroy noteworthy?
 28. What is Brian Kernighan’s most famous book?
 29. Where did Dennis Ritchie work?
 30. What work made Bjarne Stroustrup noteworthy?
 31. What languages did Alex Stepanov use trying to design the STL?
 32. List ten languages not described in §22.2.
 33. Scheme is a dialect of which language?
 34. What are C++’s two most prominent ancestors?
 35. What does the “C” in C++ stand for?
 36. Is Fortran an acronym? If so, what for?
 37. Is COBOL an acronym? If so, what for?
 38. Is Lisp an acronym? If so, what for?
 39. Is Pascal an acronym? If so, what for?
 40. Is Ada an acronym? If so, what for?
 41. Which is the best programming language?

Stroustrup_book.indb 845Stroustrup_book.indb 845 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY846

Terms
In this chapter “Terms” are really languages, people, and organizations.

• Languages:
• Ada
• Algol
• BCPL
• C
• C++
• COBOL
• Fortran
• Lisp
• Pascal
• Scheme
• Simula

• People:
• Charles Babbage
• John Backus
• Ole-Johan Dahl
• Edsger Dijkstra
• Anders Hejlsberg
• Grace Murray Hopper
• Jean Ichbiah
• Brian Kernighan
• John McCarthy
• Doug McIlroy
• Peter Naur
• Kristen Nygaard
• Dennis Ritchie
• Alex Stepanov
• Bjarne Stroustrup
• Ken Thompson
• David Wheeler
• Niklaus Wirth

• Organizations:
• Bell Laboratories
• Borland
• Cambridge University (England)
• ETH (Swiss Federal Technical University)
• IBM
• MIT
• Norwegian Computer Center
• Princeton University
• Stanford University
• Technical University of Copenhagen
• U.S. Department of Defense
• U.S. Navy

Stroustrup_book.indb 846Stroustrup_book.indb 846 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 EXERCISES 847

Exercises
 1. Define programming.
 2. Define programming language.
 3. Go through the book and look at the chapter vignettes. Which ones were

from computer scientists? Write one paragraph summarizing what each
of those scientists contributed.

 4. Go through the book and look at the chapter vignettes. Which ones were
not from computer scientists? Identify the country of origin and field of
work of each.

 5. Write a “Hello, World!” program in each of the languages mentioned in
this chapter.

 6. For each language mentioned in this chapter, look at a popular text-
book and see what is used as the first complete program. Write that
program in all of the other languages. Warning: This could easily be a
100-program project.

 7. We have obviously “missed” many important languages. In particular,
we essentially had to cut all developments after C++. Make a list of five
modern languages that you think ought to be covered and write a page
and a half — along the lines of the language sections in this chapter — on
three of those.

 8. What is C++ used for and why? Write a 10- to 20-page report.
 9. What is C used for and why? Write a 10- to 20-page report.
 10. Pick one language (not C or C++) and write a 10- to 20-page description

of its origins, aims, and facilities. Give plenty of concrete examples. Who
uses it and for what?

 11. Who currently holds the Lucasian Chair in Cambridge?
 12. Of the language designers mentioned in this chapter, who has a degree in

mathematics? Who does not?
 13. Of the language designers mentioned in this chapter, who has a Ph.D.? In

which field? Who does not have a Ph.D.?
 14. Of the language designers mentioned in this chapter, who has received

the Turing Award? What is that? Find the actual Turing Award citations
for the winners mentioned here.

 15. Write a program that, given a file of (name,year) pairs, such as (Al-
gol,1960) and (C,1974), graphs the names on a timeline.

 16. Modify the program from the previous exercise so that it reads a file
of (name,year,(ancestors)) tuples, such as (Fortran,1956,()), (Algol,1960,
(Fortran)), and (C++,1985,(C,Simula)), and graphs them on a timeline
with arrows from ancestors to descendants. Use this program to draw
improved versions of the diagrams in §22.2.2 and §22.2.7.

Stroustrup_book.indb 847Stroustrup_book.indb 847 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 22 • IDEALS AND HISTORY848

Postscript
Obviously, we have only scratched the surface of both the history of program-
ming languages and of the ideals that fuel the quest for better software. We consid-
er history and ideals suffi ciently important to feel really bad about that. We hope
to have conveyed some of our excitement and some idea of the immensity of the
quest for better software and better programming as it manifests itself through the
design and implementation of programming languages. That said, please remem-
ber that programming — the development of quality software — is the fundamen-
tal and important topic; a programming language is just a tool for that.

Stroustrup_book.indb 848Stroustrup_book.indb 848 4/22/14 9:43 AM4/22/14 9:43 AM

849

23

Text Manipulation

“Nothing is so obvious that it’s obvious . . .
The use of the word ‘obvious’ indicates

the absence of a logical argument.”

—Errol Morris

This chapter is mostly about extracting information from

text. We store lots of our knowledge as words in docu-

ments, such as books, email messages, or “printed” tables, just

to later have to extract it into some form that is more useful for

computation. Here, we review the standard library facilities most

used in text processing: strings, iostreams, and maps. Then, we

introduce regular expressions (regexs) as a way of expressing

patterns in text. Finally, we show how to use regular expressions

to find and extract specific data elements, such as ZIP codes

(postal codes), from text and to verify the format of text files.

Stroustrup_book.indb 849Stroustrup_book.indb 849 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION850

 23.1 Text

 23.2 Strings

 23.3 I/O streams

 23.4 Maps
 23.4.1 Implementation details

 23.5 A problem

 23.6 The idea of regular expressions
 23.6.1 Raw string literals

 23.7 Searching with regular
expressions

 23.8 Regular expression syntax
 23.8.1 Characters and special characters

 23.8.2 Character classes
 23.8.3 Repeats
 23.8.4 Grouping
 23.8.5 Alternation
 23.8.6 Character sets and ranges
 23.8.7 Regular expression errors

 23.9 Matching with regular expressions

 23.10 References

23.1 Text
We manipulate text essentially all the time. Our books are full of text, much of
what we see on our computer screens is text, and our source code is text. Our
communication channels (of all sorts) overflow with words. Everything that is
communicated between two humans could be represented as text, but let’s not go
overboard. Images and sound are usually best represented as images and sound
(i.e., just bags of bits), but just about everything else is fair game for program text
analysis and transformation.

We have been using iostreams and strings since Chapter 3, so here, we’ll
just briefly review those libraries. Maps (§23.4) are particularly useful for text
processing, so we present an example of their use for email analysis. After this
review, this chapter is concerned with searching for patterns in text using regular
expressions (§23.5–10).

23.2 Strings
A string contains a sequence of characters and provides a few useful operations,
such as adding a character to a string, giving the length of the string, and concat-
enating strings. Actually, the standard string provides quite a few operations, but
most are useful only when you have to do fairly complicated text manipulation at
a low level. Here, we just mention a few of the more useful. You can look up their
details (and the full set of string operations) in a manual or expert-level textbook
should you need them. They are found in <string> (note: not <string.h>):

Stroustrup_book.indb 850Stroustrup_book.indb 850 4/22/14 9:43 AM4/22/14 9:43 AM

23.2 STRINGS 851

Selected string operations

s1 = s2 Assign s2 to s1; s2 can be a string or a C-style string.

s += x Add x at end; x can be a character, a string, or a C-style string.

s[i] Subscripting.

s1+s2 Concatenation; the characters in the resulting string will be a
copy of those from s1 followed by a copy of those from s2.

s1==s2 Comparison of string values; s1 or s2, but not both, can be a
C-style string. Also !=.

s1<s2 Lexicographical comparison of string values; s1 or s2, but not
both, can be a C-style string. Also <=, >, and >=.

s.size() Number of characters in s.

s.length() Number of characters in s.

s.c_str() C-style version of characters in s.

s.begin() Iterator to first character.

s.end() Iterator to one beyond the end of s.

s.insert(pos,x) Insert x before s[pos]; x can be a string or a C-style string. s
expands to make room for the characters from x.

s.append(x) Insert x after the last character of s; x can be a string or a
C-style string. s expands to make room for the characters from x.

s.erase(pos) Remove trailing characters from s starting with s[pos]. s’s size
becomes pos.

s.erase(pos,n) Remove n characters from s starting at s[pos]. s’s size becomes
max(pos,size–n).

pos = s.find(x) Find x in s; x can be a character, a string, or a C-style string;
pos is the index of the first character found, or string::npos (a
position off the end of s).

in>>s Read a whitespace-separated word into s from in.

getline(in,s) Read a line into s from in.

out<<s Write from s to out.

The I/O operations are explained in Chapters 10 and 11 and summarized in
§23.3. Note that the input operations into a string expand the string as needed, so
that overflow cannot happen.

The insert() and append() operations may move characters to make room for
new characters. The erase() operation moves characters “forward” in the string
to make sure that no gap is left where we erased a character.

Stroustrup_book.indb 851Stroustrup_book.indb 851 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION852

The standard library string is really a template, called basic_string, that sup-
ports a variety of character sets, such as Unicode, providing thousands of characters
(such as £, Ω, μ, δ, ☺, and ♬ in addition to “ordinary characters”). For example, if
you have a type holding a Unicode character, such as Unicode, you can write

basic_string<Unicode> a_unicode_string;

The standard string, string, which we have been using, is simply the basic_string
of an ordinary char:

using string = basic_string<char> ; // string means basic_string<char> (§20.5)

We do not cover Unicode characters or Unicode strings here, but if you need
them you can look them up, and you’ll find that they can be handled (by the
language, by string, by iostreams, and by regular expressions) much as ordinary
characters and strings. If you need to use Unicode characters, it is best to ask
someone experienced for advice; to be useful, your code has to follow not just the
language rules but also some system conventions.

In the context of text processing, it is important that just about anything can
be represented as a string of characters. For example, here on this page, the num-
ber 12.333 is represented as a string of six characters (surrounded by whitespace).
If we read this number, we must convert those characters to a floating-point num-
ber before we can do arithmetic operations on the number. This leads to a need
to convert values to strings and strings to values. In §11.4, we saw how to turn an
integer into a string using an ostringstream. This technique can be generalized to
any type that has a << operator:

template<typename T> string to_string(const T& t)
{
 ostringstream os;
 os << t;
 return os.str();
}

For example:

string s1 = to_string(12.333);
string s2 = to_string(1+5*6–99/7);

The value of s1 is now "12.333" and the value of s2 is "17". In fact, to_string()
can be used not just for numeric values, but for any class T with a << operator.

Stroustrup_book.indb 852Stroustrup_book.indb 852 4/22/14 9:43 AM4/22/14 9:43 AM

23.2 STRINGS 853

The opposite conversion, from strings to numeric values, is about as easy, and
as useful:

struct bad_from_string : std::bad_cast { // class for reporting string cast errors
 const char* what() const override
 {
 return "bad cast from string";
 }
};

template<typename T> T from_string(const string& s)
{
 istringstream is {s};
 T t;
 if (!(is >> t)) throw bad_from_string{};
 return t;
}

For example:

double d = from_string<double>("12.333");

void do_something(const string& s)
try
{
 int i = from_string<int>(s);
 // . . .
}
catch (bad_from_string e) {
 error("bad input string",s);
}

The added complication of from_string() compared to to_string() comes be-
cause a string can represent values of many types. This implies that we must
say which type of value we want to extract from a string. It also implies that the
string we are looking at may not hold a representation of a value of the type we
expect. For example:

int d = from_string<int>("Mary had a little lamb"); // oops!

Stroustrup_book.indb 853Stroustrup_book.indb 853 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION854

So there is a possibility of error, which we have represented by the exception
bad_from_string. In §23.9, we demonstrate how from_string() (or an equivalent
function) is essential for serious text processing because we need to extract nu-
meric values from text fields. In §16.4.3, we saw how an equivalent function
get_int() was used in GUI code.

Note how to_string() and from_string() are similar in function. In fact, they
are roughly inverses of each other; that is (ignoring details of whitespace, round-
ing, etc.), for every “reasonable type T” we have

s==to_string(from_string<T>(s)) // for all s

and

t==from_string<T>(to_string(t)) // for all t

Here, “reasonable” means that T should have a default constructor, a >> operator,
and a matching << operator defined.

Note also how the implementations of to_string() and from_string() both use
a stringstream to do all the hard work. This observation has been used to define
a general conversion operation between any two types with matching << and >>
operations:

template<typename Target, typename Source>
Target to(Source arg)
{
 stringstream interpreter;
 Target result;

 if (!(interpreter << arg) // write arg into stream
 || !(interpreter >> result) // read result from stream
 || !(interpreter >> std::ws).eof()) // stuff left in stream?
 throw runtime_error{"to<>() failed"};

 return result;
}

The curious and clever !(interpreter>>std::ws).eof() reads any whitespace that
might be left in the stringstream after we have extracted the result. Whitespace
is allowed, but there should be no more characters in the input and we can check
that by seeing if we are at “end of file.” So if we try to read an int from a string,
both to<int>("123") and to<int>("123 ") will succeed, but to<int>("123.5") will not
because of that last .5.

Stroustrup_book.indb 854Stroustrup_book.indb 854 4/22/14 9:43 AM4/22/14 9:43 AM

23.4 MAPS 855

23.3 I/O streams
Considering the connection between strings and other types, we get to I/O
streams. The I/O stream library doesn’t just do input and output; it also per-
forms conversions between string formats and types in memory. The standard
library I/O streams provide facilities for reading, writing, and formatting strings
of characters. The iostream library is described in Chapters 10 and 11, so here
we’ll just summarize:

Stream I/O

in >> x Read from in into x according to x’s type.

out << x Write x to out according to x’s type.

in.get(c) Read a character from in into c.

getline(in,s) Read a line from in into the string s.

The standard streams are organized into a class hierarchy (§14.3):

istream

iostream ostringstream ofstream

fstreamstringstream

istringstream ifstream

ostream

Together, these classes supply us with the ability to do I/O to and from files and
strings (and anything that can be made to look like a file or a string, such as a
keyboard and a screen; see Chapter 10). As described in Chapters 10 and 11, the
iostreams provide fairly elaborate formatting facilities. The arrows indicate inher-
itance (see §14.3), so that, for example, a stringstream can be used as an iostream
or as an istream or as an ostream.

Like string, iostreams can be used with larger character sets such as Unicode,
much like ordinary characters. Please again note that if you need to use Unicode
I/O, it is best to ask someone experienced for advice; to be useful, your code has
to follow not just the language rules but also some system conventions.

23.4 Maps
Associative arrays (maps, hash tables) are key (pun intended) to a lot of text pro-
cessing. The reason is simply that when we process text, we collect information,

Stroustrup_book.indb 855Stroustrup_book.indb 855 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION856

and that information is often associated with text strings, such as names, ad-
dresses, postal codes, Social Security numbers, job titles, etc. Even if some of
those text strings could be converted into numeric values, it is often more con-
venient and simpler to treat them as text and use that text for identification. The
word-counting example (§21.6) is a good simple example. If you don’t feel com-
fortable using maps, please reread §21.6 before proceeding.

Consider email. We often search and analyze email messages and email logs —
usually with the help of some program (e.g., Thunderbird or Outlook). Mostly,
those programs save us from seeing the complete source of the messages, but all
the information about who sent, who received, where the message went along the
way, and much more is presented to the programs as text in a message header.
That’s a complete message. There are thousands of tools for analyzing the head-
ers. Most use regular expressions (as described in §23.5–9) to extract information
and some form of associative arrays to associate related messages. For example,
we often search a mail file to collect all messages with the same sender, the same
subject, or containing information on a particular topic.

Here, we will use a very simplified mail file to illustrate some of the tech-
niques for extracting data from text files. The headers are real RFC2822 headers
from www.faqs.org/rfcs/rfc2822.html. Consider:

xxx
xxx
––––
From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 –0600
Message–ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".
––––
From: Joe Q. Public <john.q.public@example.com>
To: Mary Smith <@machine.tld:mary@example.net>, , jdoe@test .example
Date: Tue, 1 Jul 2003 10:52:37 +0200
Message–ID: <5678.21–Nov–1997@example.com>

Hi everyone.
––––
To: "Mary Smith: Personal Account" <smith@home.example>
From: John Doe <jdoe@machine.example>
Subject: Re: Saying Hello

Stroustrup_book.indb 856Stroustrup_book.indb 856 4/22/14 9:43 AM4/22/14 9:43 AM

23.4 MAPS 857

Date: Fri, 21 Nov 1997 11:00:00 –0600
Message–ID: <abcd.1234@local.machine.tld>
In–Reply–To: <3456@example.net>
References: <1234@local.machine.example> <3456@example.net>

This is a reply to your reply.
––––
––––

Basically, we have abbreviated the file by throwing most of the information away
and eased the analysis by terminating each message by a line containing just ––––
(four dashes). We will write a small “toy application” that finds all messages sent
by “John Doe” and write out their “Subject.” If we can do that, we can do many
interesting things.

First, we must consider whether we want random access to the data or just
to analyze it as it streams by in an input stream. We choose the former because in
a real program, we would probably be interested in several senders or in several
pieces of information from a given sender. Also, it’s actually the harder of the two
tasks, so it will allow us to examine more techniques. In particular, we get to use
iterators again.

Our basic idea is to read a complete mail file into a structure (which we
call a Mail_file). This structure will hold all the lines of the mail file (in a
 vector<string>) and indicators of where each individual message starts and ends
(in a vector<Message>):

vector<Message>

––––

. . .

. . .

From: John Doe

To: Mary Smith

Subject: Saying Hello

. . . etc. . . .

––––

vector<string>

Mail file:

Stroustrup_book.indb 857Stroustrup_book.indb 857 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION858

To this, we will add iterators and begin() and end() functions, so that we can
iterate through the lines and through the messages in the usual way. This “boiler-
plate” will allow us convenient access to the messages. Given that, we will write
our “toy application” to gather all the messages from each sender so that they are
easy to access together:

vector<Message>

multimap<string,Message*>

“John Doe”

“John Doe”

“John O. Public”

Mail file:

Finally, we will write out all the subject headers of messages from “John Doe” to
illustrate a use of the access structures we have created.

We use many of the basic standard library facilities:

#include<string>
#include<vector>
#include<map>
#include<fstream>
#include<iostream>
using namespace std;

We define a Message as a pair of iterators into a vector<string> (our vector of
lines):

Stroustrup_book.indb 858Stroustrup_book.indb 858 4/22/14 9:43 AM4/22/14 9:43 AM

23.4 MAPS 859

typedef vector<string>::const_iterator Line_iter;

class Message { // a Message points to the first and the last lines of a message
 Line_iter first;
 Line_iter last;
public:
 Message(Line_iter p1, Line_iter p2) :first{p1}, last{p2} { }
 Line_iter begin() const { return first; }
 Line_iter end() const { return last; }
 // . . .
};

We define a Mail_file as a structure holding lines of text and messages:

using Mess_iter = vector<Message>::const_iterator;

struct Mail_file { // a Mail_file holds all the lines from a file
 // and simplifies access to messages
 string name; // file name
 vector<string> lines; // the lines in order
 vector<Message> m; // Messages in order

 Mail_file(const string& n); // read file n into lines

 Mess_iter begin() const { return m.begin(); }
 Mess_iter end() const { return m.end(); }
};

Note how we added iterators to the data structures to make it easy to systemati-
cally traverse them. We are not actually going to use standard library algorithms
here, but if we wanted to, the iterators are there to allow it.

To find information in a message and extract it, we need two helper functions:

// find the name of the sender in a Message;
// return true if found
// if found, place the sender’s name in s:
bool find_from_addr(const Message* m, string& s);

// return the subject of the Message, if any, otherwise "":
string find_subject(const Message* m);

Stroustrup_book.indb 859Stroustrup_book.indb 859 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION860

Finally, we can write some code to extract information from a file:

int main()
{
 Mail_file mfile {"my–mail–file.txt"}; // initialize mfile from a file

 // first gather messages from each sender together in a multimap:

 multimap<string, const Message*> sender;

 for (const auto& m : mfile) {
 string s;
 if (find_from_addr(&m,s))
 sender.insert(make_pair(s,&m));
 }

 // now iterate through the multimap
 // and extract the subjects of John Doe’s messages:
 auto pp = sender.equal_range("John Doe <jdoe@machine.example>");
 for(auto p = pp.first; p!=pp.second; ++p)
 cout << find_subject(p–>second) << '\n';
}

Let us examine the use of maps in detail. We used a multimap (§20.10, §B.4)
because we wanted to gather many messages from the same address together
in one place. The standard library multimap does that (makes it easy to access
elements with the same key). Obviously (and typically), we have two parts to
our task:

• Build the map.
• Use the map.

We build the multimap by traversing all the messages and inserting them into the
multimap using insert():

for (const auto& m : mfile) {
 string s;
 if (find_from_addr(&m,s))
 sender.insert(make_pair(s,&m));
}

What goes into a map is a (key,value) pair, which we make with make_pair(). We
use our “homemade” find_from_addr() to find the name of the sender.

Stroustrup_book.indb 860Stroustrup_book.indb 860 4/22/14 9:43 AM4/22/14 9:43 AM

23.4 MAPS 861

Why did we first put the Messages in a vector and then later build a multi-
map? Why didn’t we just put the Messages into a map immediately? The reason
is simple and fundamental:

• First, we build a general structure that we can use for many things.
• Then, we use that for a particular application.

That way, we build up a collection of more or less reusable components. Had we
immediately built a map in the Mail_file, we would have had to redefine it when-
ever we wanted to do some different task. In particular, our multimap (significantly
called sender) is sorted based on the Address field of a message. Most other ap-
plications would not find that order particularly useful: they might be looking at
Return fields, Recipients, Copy-to fields, Subject fields, time stamps, etc.

This way of building applications in stages (or layers, as the parts are some-
times called) can dramatically simplify the design, implementation, documenta-
tion, and maintenance of programs. The point is that each part does only one
thing and does it in a straightforward way. On the other hand, doing everything
at once would require cleverness. Obviously, our “extracting information from
an email header” program was just a tiny example of an application. The value
of keeping separate things separate, modularization, and gradually building an
application increases with size.

To extract information, we simply find all the entries with the key "John
Doe" using the equal_range() function (§B.4.10). Then we iterate through all the
elements in the sequence [first,second) returned by equal_range(), extracting the
subject by using find_subject():

auto pp = sender.equal_range("John Doe <jdoe@machine.example>");

for (auto p = pp.first; p!=pp.second; ++p)
 cout << find_subject(p–>second) << '\n';

When we iterate over the elements of a map, we get a sequence of (key,value)
pairs, and as with all pairs, the first element (here, the string key) is called first and
the second (here, the Message value) is called second (§21.6).

23.4.1 Implementation details
Obviously, we need to implement the functions we use. It was tempting to save a
tree by leaving this as an exercise, but we decided to make this example complete.
The Mail_file constructor opens the file and constructs the lines and m vectors:

Mail_file::Mail_file(const string& n)
 // open file named n
 // read the lines from n into lines

Stroustrup_book.indb 861Stroustrup_book.indb 861 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION862

 // find the messages in the lines and compose them in m
 // for simplicity assume every message is ended by a –––– line
{
 ifstream in {n}; // open the file
 if (!in) {
 cerr << "no " << n << '\n';
 exit(1); // terminate the program
 }

 for (string s; getline(in,s);) // build the vector of lines
 lines.push_back(s);

 auto first = lines.begin(); // build the vector of Messages
 for (auto p = lines.begin(); p!=lines.end(); ++p) {
 if (*p == "––––") { // end of message
 m.push_back(Message(first,p));
 first = p+1; // –––– not part of message
 }
 }
}

The error handling is rudimentary. If this were a program we planned to give to
friends to use, we’d have to do better.

TRY THIS

We really mean it: do run this example and make sure you understand the re-
sult. What would be “better error handling”? Modify Mail_file’s constructor
to handle likely formatting errors related to the use of –––– .

The find_from_addr() and find_subject() functions are simple placeholders
until we can do a better job of identifying information in a file (using regular ex-
pressions; see §23.6–10):

int is_prefix(const string& s, const string& p)
 // is p the first part of s?
{
 int n = p.size();
 if (string(s,0,n)==p) return n;
 return 0;
}

T

Stroustrup_book.indb 862Stroustrup_book.indb 862 4/22/14 9:43 AM4/22/14 9:43 AM

23.4 MAPS 863

bool find_from_addr(const Message* m, string& s)
{
 for (const auto& x : m)
 if (int n = is_prefix(x, "From: ")) {
 s = string(x,n);
 return true;
 }
 return false;
}

string find_subject(const Message* m)
{
 for (const auto& x : m)
 if (int n = is_prefix(x, "Subject: ")) return string(x,n);
 return "";
}

Note the way we use substrings: string(s,n) constructs a string consisting of the
tail of s from s[n] onward (s[n]..s[s.size()–1]), whereas string(s,0,n) constructs
a string consisting of the characters s[0]..s[n–1]. Since these operations actually
construct new strings and copy characters, they should be used with care where
performance matters.

Why are the find_from_addr() and find_subject() functions so different? For
example, one returns a bool and the other a string. They are different because we
wanted to make a point:

• fi nd_from_addr() distinguishes between fi nding an address line with an
empty address ("") and fi nding no address line. In the fi rst case, fi nd_
from_addr() returns true (because it found an address) and sets s to ""
(because the address just happens to be empty). In the second case, it
returns false (because there was no address line).

• fi nd_subject() returns "" if there was an empty subject or if there was no
subject line.

Is the distinction made by find_from_addr() useful? Necessary? We think that
the distinction can be useful and that we definitely should be aware of it. It is a
distinction that comes up again and again when looking for information in a data
file: did we find the field we were looking for and was there something useful in
it? In a real program, both the find_from_addr() and find_subject() functions
would have been written in the style of find_from_addr() to allow users to make
that distinction.

This program is not tuned for performance, but it is probably fast enough
for most uses. In particular, it reads its input file only once, and it does not keep

Stroustrup_book.indb 863Stroustrup_book.indb 863 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION864

multiple copies of the text from that file. For large files, it may be a good idea
to replace the multimap with an unordered_multimap, but unless you measure,
you’ll never know.

See §21.6 for an introduction to the standard library associative containers
(map, multimap, set, unordered_map, and unordered_multimap).

23.5 A problem
I/O streams and string help us read and write sequences of characters, help us
store them, and help with basic manipulation. However, it is very common to do
operations on text where we need to consider the context of a string or involve
many similar strings. Consider a trivial example. Take an email message (a se-
quence of words) and see if it contains a U.S. state abbreviation and ZIP code
(two letters followed by five digits):

for (string s; cin>>s;) {
 if (s.size()==7
 && isalpha(s[0]) && isalpha(s[1])
 && isdigit(s[2]) && isdigit(s[3]) && isdigit(s[4])
 && isdigit(s[5]) && isdigit(s[6]))
 cout << "found " << s << '\n';
}

Here, isalpha(x) is true if x is a letter and isdigit(x) is true if x is a digit (see §11.6).
There are several problems with this simple (too simple) solution:

• It’s verbose (four lines, eight function calls).
• We miss (intentionally?) every postal code not separated from its context

by whitespace (such as "TX77845", TX77845–1234, and ATX77845).
• We miss (intentionally?) every postal code with a space between the let-

ters and the digits (such as TX 77845).
• We accept (intentionally?) every postal code with the letters in lower case

(such as tx77845).
• If we decide to look for a postal code in a different format (such as CB3

0FD), we have to completely rewrite the code.

There has to be a better way! Before revealing that way, let’s just consider the
problems we would encounter if we decided to stay with the “good old simple
way” of writing more code to handle more cases.

Stroustrup_book.indb 864Stroustrup_book.indb 864 4/22/14 9:43 AM4/22/14 9:43 AM

23.5 A PROBLEM 865

• If we want to deal with more than one format, we’d have to start adding
if-statements or switch-statements.

• If we want to deal with upper and lower case, we’d explicitly have to con-
vert (usually to lower case) or add yet another if-statement.

• We need to somehow (how?) describe the context of what we want to
fi nd. That implies that we must deal with individual characters rather
than with strings, and that implies that we lose many of the advantages
provided by iostreams (§7.8.2).

If you like, you can try to write the code for that, but it is obvious that on this
track we are headed for a mess of if-statements dealing with a mess of special
cases. Even for this simple example, we need to deal with alternatives (e.g., both
five- and nine-digit ZIP codes). For many other examples, we need to deal with
repetition (e.g., any number of digits followed by an exclamation mark, such as
123! and 123456!). Eventually, we would also have to deal with both prefixes
and suffixes. As we observed (§11.1–2), people’s tastes in output formats are not
limited by a programmer’s desire for regularity and simplicity. Just think of the
bewildering variety of ways people write dates:

2007–06–05
June 5, 2007
jun 5, 2007
5 June 2007
6/5/2007
5/6/07
. . .

At this point — if not earlier — the experienced programmer declares, “There has
to be a better way!” (than writing more ordinary code) and proceeds to look for it.
The simplest and most popular solution is using what are called regular expressions.
Regular expressions are the backbone of much text processing, the basis for the
Unix grep command (see exercise 8), and an essential part of languages heavily
used for such processing (such as AWK, PERL, and PHP).

The regular expressions we will use are part of the C++ standard library.
They are compatible with the regular expressions in PERL. This makes many
explanations, tutorials, and manuals available. For example, see the C++ stan-
dard committee’s working paper (look for “WG21” on the web), John Maddock’s
boost::regex documentation, and most PERL tutorials. Here, we will describe
the fundamental concepts and some of the most basic and useful ways of using
regular expressions.

Stroustrup_book.indb 865Stroustrup_book.indb 865 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION866

TRY THIS

The last two paragraphs “carelessly” used several names and acronyms with-
out explanation. Do a bit of web browsing to see what we are referring to.

23.6 The idea of regular expressions
The basic idea of a regular expression is that it defines a pattern that we can look
for in a text. Consider how we might concisely describe the pattern for a simple
U.S. postal code, such as TX77845. Here is a first attempt:

wwddddd

Here, w represents “any letter” and d represents “any digit.” We use w (for “word”)
because l (for “letter”) is too easily confused with the digit 1. This notation works
for this simple example, but let’s try it for the nine-digit ZIP code format (such as
TX77845–5629). How about

wwddddd–dddd

That looks OK, but how come that d means “any digit” but – means “plain”
dash? Somehow, we ought to indicate that w and d are special: they represent
character classes rather than themselves (w means “an a or a b or a c or . . .” and
d means “a 1 or a 2 or a 3 or . . .”). That’s too subtle. Let’s prefix a letter that is a
name of a class of characters with a backslash in the way special characters have
always been indicated in C++ (e.g., \n is newline in a string literal). This way we
get

\w\w\d\d\d\d\d–\d\d\d\d

This is a bit ugly, but at least it is unambiguous, and the backslashes make it obvi-
ous that “something unusual is going on.” Here, we represent repetition of a char-
acter by simply repeating. That can be a bit tedious and is potentially error-prone.
Quick: Did we really get the five digits before the dash and four after it right? We
did, but nowhere did we actually say 5 and 4, so you had to count to make sure.
We could add a count after a character to indicate repetition. For example:

\w2\d5–\d4

T

Stroustrup_book.indb 866Stroustrup_book.indb 866 4/22/14 9:43 AM4/22/14 9:43 AM

23.6 THE IDEA OF REGULAR EXPRESSIONS 867

However, we really ought to have some syntax to show that the 2, 5, and 4 in that
pattern are counts, rather than just the alphanumeric characters 2, 5, and 4. Let’s
indicate counts by putting them in curly braces:

\w{2}\d{5}–\d{4}

That makes { special in the same way as \ (backslash) is special, but that can’t be
helped and we can deal with that.

So far, so good, but we have to deal with two more messy details: the final
four digits in a ZIP code are optional. We somehow have to be able to say that
we will accept both TX77845 and TX77845–5629. There are two fundamental ways
of expressing that:

\w{2}\d{5} or \w{2}\d{5}–\d{4}

and

\w{2}\d{5} and optionally – \d{4}

To say that concisely and precisely, we first have to express the idea of grouping
(or sub-pattern) to be able to speak about the \w{2}\d{5} and – \d{4} parts of \w{2}\
d{5}–\d{4}. Conventionally, we use parentheses to express grouping:

(\w{2}\d{5})(–\d{4})

Now we have split the pattern into two sub-patterns, so we just have to say
what we want to do with them. As usual, the cost of introducing a new facility is
to introduce another special character: (is now “special” just like \ and {. Conven-
tionally | is used to express “or” (alternatives) and ? is used to express something
conditional (optional), so we might write

(\w{2}\d{5})|(\w{2}\d{5}–\d{4})

and

(\w{2}\d{5})(–\d{4})?

As with the curly braces in the count notation (e.g., \w{2}), we use the question
mark (?) as a suffix. For example, (–\d{4})? means “optionally –\d{4}”; that is, we
accept four digits preceded by a dash as a suffix. Actually, we are not using the

Stroustrup_book.indb 867Stroustrup_book.indb 867 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION868

parentheses around the pattern for the five-digit ZIP code (\w{2}\d{5}) for any-
thing, so we could leave them out:

\w{2}\d{5}(–\d{4})?

To complete our solution to the problem stated in §23.5, we could add an optional
space after the two letters:

\w{2} ?\d{5}(–\d{4})?

That “ ?” looks a bit odd, but of course it’s a space character followed by the ?,
indicating that the space character is optional. If we wanted to avoid a space being
so unobtrusive that it looks like a bug, we could put it in parentheses:

\w{2}()?\d{5}((–\d{4})?

If someone considered that still too obscure, we could invent a notation for a
whitespace character, such as \s (s for “space”). That way we could write

\w{2}\s?\d{5}(–\d{4})?

But what if someone wrote two spaces after the letters? As defined so far, the
pattern would accept TX77845 and TX 77845 but not TX 77845. That’s a bit subtle.
We need to be able to say “zero or more whitespace characters,” so we introduce
the suffix * to mean “zero or more” and get

\w{2}\s*\d{5}(–\d{4})?

This makes sense if you followed every step of the logical progression. This no-
tation for patterns is logical and extremely terse. Also, we didn’t pick our design
choices at random: this particular notation is extremely common and popular. For
many text-processing tasks, you need to read and write this notation. Yes, it looks
a bit as if a cat walked over the keyboard, and yes, typing a single character wrong
(even a space) completely changes the meaning, but please just get used to it. We
can’t suggest anything dramatically better, and this style of notation has already
been wildly popular for more than 30 years since it was first introduced for the
Unix grep command — and it wasn’t completely new even then.

23.6.1 Raw string literals
Note all of those backslashes in the regular expression patterns. To get a backslash
(\) into a C++ string literal we have to precede it with a backslash. Consider our
postal code pattern:

Stroustrup_book.indb 868Stroustrup_book.indb 868 4/22/14 9:43 AM4/22/14 9:43 AM

23.7 SEARCHING WITH REGULAR EXPRESSIONS 869

\w{2}\s*\d{5}(–\d{4})?

To represent that pattern as a string literal, we have to write

"\\w{2}\\s*\\d{5}(–\\d{4})?"

Thinking a bit ahead, we realize that many of the patterns we would like to match
contain double quotes ("). To get a double quote into a string literal we have to
precede it with a backslash. This can quickly become unmanageable. In fact, in
real use this “special character problem” gets so annoying that C++ and other
languages have introduced the notion of raw string literals to be able to cope with
realistic regular expression patterns. In a raw string literal a backslash is simply a
backslash character (rather than an escape character) and a double quote is simply
a double quote character (rather than an end of string). As a raw string literal our
postal code pattern becomes

R"(\w{2}\s*\d{5}(–\d{4})?)"

The R"(starts the string and)" terminates it, so the 22 characters of the string are

\w{2}\s*\d{5}(–\d{4})?

not counting the terminating zero.

23.7 Searching with regular expressions
Now, we will use the postal code pattern from the previous section to find postal
codes in a file. The program defines the pattern and then reads a file line by line,
searching for the pattern. If the program finds an occurrence of the pattern in a
line, it writes out the line number and what it found:

#include <regex>
#include <iostream>
#include <string>
#include <fstream>
using namespace std;

int main()
{
 ifstream in {"file.txt"}; // input file
 if (!in) cerr << "no file\n";

 regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"}; // postal code pattern

Stroustrup_book.indb 869Stroustrup_book.indb 869 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION870

 int lineno = 0;
 for (string line; getline(in,line);) { // read input line into input buffer
 ++lineno;
 smatch matches; // matched strings go here
 if (regex_search(line, matches, pat))
 cout << lineno << ": " << matches[0] << '\n';
 }
}

This requires a bit of a detailed explanation. We find the standard library regular
expressions in <regex>. Given that, we can define a pattern pat:

regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"}; // postal code pattern

A regex pattern is a kind of string, so we can initialize it with a string. Here,
we used a raw string literal. However, a regex is not just a string, but the somewhat
sophisticated mechanism for pattern matching that is created when you initialize
a regex (or assign to one) is hidden and beyond the scope of this book. However,
once we have initialized a regex with our pattern for postal codes, we can apply it
to each line of our file:

smatch matches;
if (regex_search(line, matches, pat))
 cout << lineno << ": " << matches[0] << '\n';

The regex_search(line, matches, pat) searches the line for anything that matches
the regular expression stored in pat, and if it finds any matches, it stores them
in matches. Naturally, if no match was found, regex_search(line, matches, pat)
returns false.

The matches variable is of type smatch. The s stands for “sub” or for “string.”
Basically, an smatch is a vector of sub-matches of type string. The first element,
here matches[0], is the complete match. We can treat matches[i] as a string if i<-
matches.size(). So if — for a given regular expression — the maximum number of
sub-patterns is N, we find matches.size()==N+1.

So, what is a sub-pattern? A good first answer is “Anything in parentheses in
the pattern.” Looking at \w{2}\s*\d{5}(–\d{4})?, we see the parentheses around the
four-digit extension of the ZIP code. That’s the only sub-pattern we see, so we
guess (correctly) that matches.size()==2. We also guess that we can easily access
those last four digits. For example:

for (string line; getline(in,line);) {
 smatch matches;
 if (regex_search(line, matches, pat)) {

Stroustrup_book.indb 870Stroustrup_book.indb 870 4/22/14 9:43 AM4/22/14 9:43 AM

23.7 SEARCHING WITH REGULAR EXPRESSIONS 871

 cout << lineno << ": " << matches[0] << '\n'; // whole match
 if (1<matches.size() && matches[1].matched)
 cout << "\t: " << matches[1] << '\n'; // sub-match
 }
}

Strictly speaking, we didn’t have to test 1<matches.size() because we already had
a good look at the pattern, but we felt like being paranoid (because we have been
experimenting with a variety of patterns in pat and they didn’t all have just one
sub-pattern). We can ask if a sub-match succeeded by looking at its matched mem-
ber, here matches[1].matched. In case you wonder: when matches[i].matched is
false, the unmatched sub-pattern matches[i] prints as the empty string. Similarly,
a sub-pattern that doesn’t exist, such as matches[17] for the pattern above, is
treated as an unmatched sub-pattern.

We tried this program with a file containing

address TX77845
ffff tx 77843 asasasaa
ggg TX3456–23456
howdy
zzz TX23456–3456sss ggg TX33456–1234
cvzcv TX77845–1234 sdsas
xxxTx77845xxx
TX12345–123456

and got the output

pattern: "\w{2}\s*\d{5}(–\d{4})?"
1: TX77845
2: tx 77843
5: TX23456–3456
 : –3456
6: TX77845–1234
 : –1234
7: Tx77845
8: TX12345–1234
 : –1234

Note that we

• Did not get fooled by the ill-formatted “postal code” on the line that starts
with ggg (what’s wrong with that one?)

• Only found the fi rst postal code from the line with zzz (we only asked for
one per line)

Stroustrup_book.indb 871Stroustrup_book.indb 871 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION872

• Found the correct suffi xes on lines 5 and 6
• Found the postal code “hidden” among the xxxs on line 7
• Found (unfortunately?) the postal code “hidden” in TX12345–123456

23.8 Regular expression syntax
We have seen a rather basic example of regular expression matching. Now is
the time to consider regular expressions (in the form they are used in the regex
library) a bit more systematically and completely.

Regular expressions (“regexps” or “regexs”) is basically a little language for ex-
pressing patterns of characters. It is a powerful (expressive) and terse language,
and as such it can be quite cryptic. After decades of use, there are many subtle
features and several dialects. Here, we will just describe a (large and useful) subset
of what appears to be the currently most widely used dialect (the PERL one).
Should you need more to express what you need to say or to understand the
regular expressions of others, go look on the web. Tutorials (of wildly differing
quality) and specifications abound.

The library also supports the ECMAScript, POSIX, awk, grep, and egrep
notations and a host of search options. This can be extremely useful, especially
if you need to match some pattern specified in another language. You can look
up those options if you feel the need to go beyond the basic facilities described
here. However, remember that “using the most features” is not an aim of good
programming. Whenever you can, take pity on the poor maintenance program-
mer (maybe yourself in a couple of months) who has to read and understand
your code: write code that is not unnecessarily clever and avoid obscure features
whenever you can.

23.8.1 Characters and special characters
A regular expression specifies a pattern that can be used to match characters from
a string. By default, a character in a pattern matches itself in a string. For example,
the regular expression (pattern) "abc" will match the abc in Is there an abc here?

The real power of regular expressions comes from “special characters” and
character combinations that have special meanings in a pattern:

Characters with special meaning

. any single character (a “wildcard”)

[character class

{ count

Stroustrup_book.indb 872Stroustrup_book.indb 872 4/22/14 9:43 AM4/22/14 9:43 AM

23.8 REGULAR EXPRESSION SYNTAX 873

Characters with special meaning (continued)

(begin grouping

) end grouping

\ next character has a special meaning

* zero or more

+ one or more

? optional (zero or one)

| alternative (or)

^ start of line; negation

$ end of line

For example,

x.y

matches any three-character string starting with an x and ending with a y, such as
xxy, x3y, and xay, but not yxy, 3xy, and xy.

Note that { . . . }, *, +, and ? are suffix operators. For example, \d+ means “one
or more decimal digits.”

If you want to use one of the special characters in a pattern, you have to “es-
cape it” using a backslash; for example, in a pattern + is the one-or-more operator,
but \+ is a plus sign.

23.8.2 Character classes
The most common combinations of characters are represented in a terse form as
“special characters”:

Special characters for character classes

\d a decimal digit [[:digit:]]

\l a lowercase character [[:lower:]]

\s a space (space, tab, etc.) [[:space:]]

\u an uppercase character [[:upper:]]

\w a letter (a–z or A–Z) or digit (0–9) or an underscore (_) [[:alnum:]]

\D not \d [^[:digit:]]

Stroustrup_book.indb 873Stroustrup_book.indb 873 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION874

Special characters for character classes (continued)

\L not \l [^[:lower:]]

\S not \s [^[:space:]]

\U not \u [^[:upper:]]

\W not \w [^[:alnum:]]

Note that an uppercase special character means “not the lowercase version of
that special character.” In particular, \W means “not a letter” rather than “an
uppercase letter.”

The entries in the third column (e.g., [[:digit:]]) give an alternative syntax
using a longer name.

Like the string and iostream libraries, the regex library can handle large char-
acter sets, such as Unicode. As with string and iostream, we just mention this so
that you can look for help and more information should you need it. Dealing with
Unicode text manipulation is beyond the scope of this book.

23.8.3 Repeats
Repeating patterns are specified by the suffix operators:

Repetition

{n} exactly n times

{n,} n or more times

{n,m} at least n and at most m times

* zero or more, that is, {0,}

+ one or more, that is, {1,}

? optional (zero or one), that is, {0,1}

For example,

Ax*

matches an A followed by zero or more xs, such as

A
Ax
Axx
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Stroustrup_book.indb 874Stroustrup_book.indb 874 4/22/14 9:43 AM4/22/14 9:43 AM

23.8 REGULAR EXPRESSION SYNTAX 875

If you want at least one occurrence, use + rather than *. For example,

Ax+

matches an A followed by one or more xs, such as

Ax
Axx
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

but not

A

The common case of zero or one occurrence (“optional”) is represented by a
question mark. For example,

\d–?\d

matches the two digits with an optional dash between them, such as

1–2
12

but not

1––2

To specify a specific number of occurrences or a specific range of occurrences, use
curly braces. For example,

\w{2}–\d{4,5}

matches exactly two letters and a dash (–) followed by four or five digits, such as

Ab–1234
XX–54321
22–54321

but not

Ab–123
?b–1234

Stroustrup_book.indb 875Stroustrup_book.indb 875 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION876

Yes, digits are \w characters.

23.8.4 Grouping
To specify a regular expression as a sub-pattern, you group it using parentheses.
For example:

(\d*:)

This defines a sub-pattern of zero or more digits followed by a colon. A group can
be used as part of a more elaborate pattern. For example:

(\d*:)?(\d+)

This specifies an optional and possibly empty sequence of digits followed by a
colon followed by a sequence of one or more digits. No wonder people invented
a terse and precise way of saying such things!

23.8.5 Alternation
The “or” character (|) specifies an alternative. For example:

Subject: (FW:|Re:)?(.*)

This recognizes an email subject line with an optional FW: or Re: followed by zero
or more characters. For example:

Subject: FW: Hello, world!
Subject: Re:
Subject: Norwegian Blue

but not

SUBJECT: Re: Parrots
Subject FW: No subject!

An empty alternative is not allowed:

(|def) // error

However, we can specify several alternatives at once:

(bs|Bs|bS|BS)

Stroustrup_book.indb 876Stroustrup_book.indb 876 4/22/14 9:43 AM4/22/14 9:43 AM

23.8 REGULAR EXPRESSION SYNTAX 877

23.8.6 Character sets and ranges
The special characters provide a shorthand for the most common classes of char-
acters: digits (\d); letters, digits, and underscore (\w); etc. (§23.7.2). However, it is
easy and often useful to define our own. For example:

[\w @] a word character, a space, or an @
[a–z] the lowercase characters from a to z
[a–zA–Z] upper- or lowercase characters from a to z
[Pp] an upper- or lowercase P
[\w\–] a word character or a dash (plain – means “range”)
[asdfghjkl;'] the characters on the middle line of a U.S. QWERTY keyboard
[.] a dot
[.[{(*+?^$] a character with special meaning in a regular expression

In a character class specification, a – (dash) is used to specify a range, such as
[1–3] (1, 2, or 3) and [w–z] (w, x, y, or z). Please use such ranges carefully: not
every language has the same letters and not every letter encoding has the same
ordering. If you feel the need for any range that isn’t a sub-range of the most
common letters and digits of the English alphabet, consult the documentation.

Note that we can use the special characters, such as \w (meaning “any word
character”), within a character class specification. So, how do we get a backslash
(\) into a character class? As usual, we “escape it” with a backslash: \\.

When the first character of a character class specification is ^, that ^ means
“negation.” For example:

[^aeiouy] not an English vowel
[^\d] not a digit
[^aeiouy] a space, a ^, or an English vowel

In the last regular expression, the ^ wasn’t the first character after the [, so it was
just a character, not a negation operator. Regular expressions can be subtle.

An implementation of regex also supplies a set of named character classes
for use in matching. For example, if you want to match any alphanumeric char-
acter (that is, a letter or a digit: a–z or A–Z or 0–9), you can do it by the regular
expression [[:alnum:]]. Here, alnum is the name of a set a characters (the set of
alphanumeric characters). A pattern for a nonempty quoted string of alphanu-
meric characters would be "[[:alnum:]]+". To put that regular expression into an
ordinary string literal, we have to escape the quotes:

string s {"\" [[:alnum:]]+\""};

Stroustrup_book.indb 877Stroustrup_book.indb 877 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION878

Furthermore, to put that string literal into a regex, we must escape the backslashes:

regex s {"\\\" [[:alnum:]]+\\\""};

Using a raw string literal is simpler:

regex s2 {R"(" [[:alnum:]]+")"};

Prefer raw string literals for patterns containing backslashes or double quotes.
That turns out to be most patterns in many applications.

Using regular expressions leads to a lot of notational conventions. Anyway, here
is a list of the standard character classes:

Character classes

alnum any alphanumeric character

alpha any alphabetic character

blank any whitespace character that is not a line separator

cntrl any control character

d any decimal digit

digit any decimal digit

graph any graphical character

lower any lowercase character

print any printable character

punct any punctuation character

s any whitespace character

space any whitespace character

upper any uppercase character

w any word character (alphanumeric characters plus the underscore)

xdigit any hexadecimal digit character

An implementation of regex may provide more character classes, but if you decide
to use a named class not listed here, be sure to check if it is portable enough for
your intended use.

23.8.7 Regular expression errors
What happens if we specify an illegal regular expression? Consider:

Stroustrup_book.indb 878Stroustrup_book.indb 878 4/22/14 9:43 AM4/22/14 9:43 AM

23.8 REGULAR EXPRESSION SYNTAX 879

regex pat1 {"(|ghi)"}; // missing alternative
regex pat2 {"[c–a]"}; // not a range

When we assign a pattern to a regex, the pattern is checked, and if the regular ex-
pression matcher can’t use it for matching because it’s illegal or too complicated,
a bad_expression exception is thrown.

Here is a little program that’s useful for getting a feel for regular expression
matching:

#include <regex>
#include <iostream>
#include <string>
#include <fstream>
#include<sstream>
using namespace std;

// accept a pattern and a set of lines from input
// check the pattern and search for lines with that pattern

int main()
{
 regex pattern;

 string pat;
 cout << "enter pattern: ";
 getline(cin,pat); // read pattern

 try {
 pattern = pat; // this checks pat
 cout << "pattern: " << pat << '\n';
 }
 catch (bad_expression) {
 cout << pat << " is not a valid regular expression\n";
 exit(1);
 }

 cout << "now enter lines:\n";
 int lineno = 0;

 for (string line; getline(cin,line);) {
 ++lineno;
 smatch matches;

Stroustrup_book.indb 879Stroustrup_book.indb 879 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION880

 if (regex_search(line, matches, pattern)) {
 cout << "line " << lineno << ": " << line << '\n';
 for (int i = 0; i<matches.size(); ++i)
 cout << "\tmatches[" << i << "]: "
 << matches[i] << '\n';
 }
 else
 cout << "didn't match\n";
 }
}

TRY THIS

Get the program to run and use it to try out some patterns, such as abc, x.*x,
(.*), \([^)]*\), and \w+ \w+(Jr\.)?.

23.9 Matching with regular expressions
There are two basic uses of regular expressions:

• Searching for a string that matches a regular expression in an (arbitrarily
long) stream of data — regex_search() looks for its pattern as a substring
in the stream.

• Matching a regular expression against a string (of known size) —
regex_match() looks for a complete match of its pattern and the string.

The search for ZIP codes in §23.6 was an example of searching. Here, we will
examine an example of matching. Consider extracting data from a table like this:

KLASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT

0A 12 11 23

1A 7 8 15

1B 4 11 15

2A 10 13 23

3A 10 12 22

4A 7 7 14

4B 10 5 15

5A 19 8 27

T

Stroustrup_book.indb 880Stroustrup_book.indb 880 4/22/14 9:43 AM4/22/14 9:43 AM

23.9 MATCHING WITH REGULAR EXPRESSIONS 881

KLASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT

6A 10 9 19

6B 9 10 19

7A 7 19 26

7G 3 5 8

7I 7 3 10

8A 10 16 26

9A 12 15 27

0MO 3 2 5

0P1 1 1 2

0P2 0 5 5

10B 4 4 8

10CE 0 1 1

1MO 8 5 13

2CE 8 5 13

3DCE 3 3 6

4MO 4 1 5

6CE 3 4 7

8CE 4 4 8

9CE 4 9 13

REST 5 6 11

Alle klasser 184 202 386

This table (of the number of students in Bjarne Stroustrup’s old primary school in
2007) was extracted from a context (a web page) where it looks nice and is fairly
typical of the kind of data we need to analyze:

• It has numeric data fi elds.
• It has character fi elds with strings meaningful only to people who under-

stand the context of the table. (Here, that point is emphasized by the use
of Danish.)

• The character strings include spaces.
• The “fi elds” of this data are separated by a “separation indicator,” which

in this case is a tab character.

Stroustrup_book.indb 881Stroustrup_book.indb 881 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION882

We chose this table to be “fairly typical” and “not too difficult,” but note one
subtlety we must face: we can’t actually see the difference between spaces and tab
characters; we have to leave that problem to our code.

We will illustrate the use of regular expressions to

• Verify that this table is properly laid out (i.e., every row has the right
number of fi elds)

• Verify that the numbers add up (the last line claims to be the sum of the
columns above)

If we can do that, we can do just about anything! For example, we could make
a new table where the rows with the same initial digit (indicating the year: first
grades start with 1) are merged or see if the number of students is increasing or
decreasing over the years in question (see exercises 10–11).

To analyze the table, we need two patterns: one for the header line and one
for the rest of the lines:

regex header {R"(^[\w]+([\w]+)*$)"};
regex row {R"(^[\w]+(\d+)(\d+)(\d+)$)"};

Please remember that we praised the regular expression syntax for terseness and
utility; we did not praise it for ease of comprehension by novices. In fact, regular
expressions have a well-earned reputation for being a “write-only language.” Let
us start with the header. Since it does not contain any numeric data, we could just
have thrown away that first line, but — to get some practice — let us parse it. It con-
sists of four “word fields” (“alphanumeric fields”) separated by tabs. These fields
can contain spaces, so we cannot simply use plain \w to specify its characters. In-
stead, we use [\w], that is, a word character (letter, digit, or underscore) or a space.
One or more of those is written [\w]+. We want the first of those at the start of a
line, so we get ^[\w]+. The “hat” (^) means “start of line.” Each of the rest of the
fields can be expressed as a tab followed by some words: ([\w]+). Now we take
an arbitrary number of those followed by an end of line: ([\w]+)*$. The dollar
sign ($) means “end of line.”

Note how we can’t see that the tab characters are really tabs, but in this case
they expand in the typesetting to reveal themselves.

Now for the more interesting part of the exercise: the pattern for the lines
from which we want to extract the numeric data. The first field is as before:
^[\w]+. It is followed by exactly three numeric fields, each preceded by a tab,
(\d+), so that we get

^[\w]+(\d+)(\d+)(\d+)$

Stroustrup_book.indb 882Stroustrup_book.indb 882 4/22/14 9:43 AM4/22/14 9:43 AM

23.9 MATCHING WITH REGULAR EXPRESSIONS 883

which, after putting it into a raw string literal, is

R"(^[\w]+(\d+)(\d+)(\d+)$)"

Now all we have to do is to use those patterns. First we will just validate the table
layout:

int main()
{
 ifstream in {"table.txt"}; // input file
 if (!in) error("no input file\n");

 string line; // input buffer
 int lineno = 0;

 regex header {R"(^[\w]+([\w]+)*$)"}; // header line
 regex row {R"(^[\w]+(\d+)(\d+)(\d+)$)"}; // data line

 if (getline(in,line)) { // check header line
 smatch matches;
 if (!regex_match(line, matches, header))
 error("no header");
 }
 while (getline(in,line)) { // check data line
 ++lineno;
 smatch matches;
 if (!regex_match(line, matches, row))
 error("bad line",to_string(lineno));
 }
}

For brevity, we left out the #includes. We are checking all the characters on each
line, so we use regex_match() rather than regex_search(). The difference between
those two is exactly that regex_match() must match every character of its input to
succeed, whereas regex_search() looks at the input trying to find a substring that
matches. Mistakenly typing regex_match() when you meant regex_search() (or
vice versa) can be a most frustrating bug to find. However, both of those functions
use their “matches” argument identically.

We can now proceed to verify the data in that table. We keep a sum of the
number of pupils in the boys (“drenge”) and girls (“piger”) columns. For each
row, we check that last field (“ELEVER IALT”) really is the sum of the first two

Stroustrup_book.indb 883Stroustrup_book.indb 883 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION884

fields. The last row (“Alle klasser”) purports to be the sum of the columns above.
To check that, we modify row to make the text field a sub-match so that we can
recognize “Alle klasser”:

int main()
{
 ifstream in {"table.txt"}; // input file
 if (!in) error("no input file");

 string line; // input buffer
 int lineno = 0;

 regex header {R"(^[\w]+([\w]+)*$)"}; // header line
 regex row {R"(^[\w]+(\d+)(\d+)(\d+)$)"}; // data line

 if (getline(in,line)) { // check header line
 smatch matches;
 if (regex_match(line, matches, header)) {
 error("no header");
 }
 }

 // column totals:
 int boys = 0;
 int girls = 0;

 while (getline(in,line)) {
 ++lineno;
 smatch matches;
 if (!regex_match(line, matches, row))
 cerr << "bad line: " << lineno << '\n';

 if (in.eof()) cout << "at eof\n";

 // check row:
 int curr_boy = from_string<int>(matches[2]);
 int curr_girl = from_string<int>(matches[3]);
 int curr_total = from_string<int>(matches[4]);
 if (curr_boy+curr_girl != curr_total) error("bad row sum \n");

 if (matches[1]=="Alle klasser") { // last line
 if (curr_boy != boys) error("boys don't add up\n");
 if (curr_girl != girls) error("girls don't add up\n");

Stroustrup_book.indb 884Stroustrup_book.indb 884 4/22/14 9:43 AM4/22/14 9:43 AM

23.10 REFERENCES 885

 if (!(in>>ws).eof()) error("characters after total line");
 return 0;
 }

 // update totals:
 boys += curr_boy;
 girls += curr_girl;
 }

 error("didn't find total line");
}

The last row is semantically different from the other rows — it is their sum.
We recognize it by its label (“Alle klasser”). We decided to accept no more
non-whitespace characters after that last one (using the technique from to<>();
§23.2) and to give an error if we did not find it.

We used from_string() from §23.2 to extract an integer value from the data
fields. We had already checked that those fields consisted exclusively of digits so
we did not have to check that the string-to-int conversion succeeded.

23.10 References
Regular expressions are a popular and useful tool. They are available in many
programming languages and in many formats. They are supported by an elegant
theory based on formal languages and by an efficient implementation technique
based on state machines. The full generality of regular expressions, their theory,
their implementation, and the use of state machines in general are beyond the
scope of this book. However, because these topics are rather standard in computer
science curricula and because regular expressions are so popular, it is not hard to
find more information (should you need it or just be interested).

For more information, see:

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools, Second Edition (usually called “The Dragon Book”).
Addison-Wesley, 2007. ISBN 0321547985.

Cox, Russ. “Regular Expression Matching Can Be Simple and Fast (but Is Slow
in Java, Perl, PHP, Python, Ruby, . . .).” http://swtch.com/~rsc/regexp/regexp1
.html.

Maddock, J. boost::regex documentation. www.boost.org/.
Schwartz, Randal L., Tom Phoenix, and Brian D. Foy. Learning Perl, Fourth Edition.

O’Reilly, 2005. ISBN 0596101058.

Stroustrup_book.indb 885Stroustrup_book.indb 885 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION886

Drill
 1. Find out if regex is shipped as part of your standard library. Hint: Try

std::regex and tr1::regex.
 2. Get the little program from §23.7 to work; that may involve figuring out

how to set the project and/or command-line options to link to the regex
library and use the regex headers.

 3. Use the program from drill 2 to test the patterns from §23.7.

Review
 1. Where do we find “text”?
 2. What are the standard library facilities most frequently useful for text

analysis?
 3. Does insert() add before or after its position (or iterator)?
 4. What is Unicode?
 5. How do you convert to and from a string representation (to and from

some other type)?
 6. What is the difference between cin>>s and getline(cin,s) assuming s is a

string?
 7. List the standard streams.
 8. What is the key of a map? Give examples of useful key types.
 9. How do you iterate over the elements of a map?
 10. What is the difference between a map and a multimap? Which useful

map operation is missing for multimap, and why?
 11. What operations are required for a forward iterator?
 12. What is the difference between an empty field and a nonexistent field?

Give two examples.
 13. Why do we need an escape character to express regular expressions?
 14. How do you get a regular expression into a regex variable?
 15. What does \w+\s\d{4} match? Give three examples. What string literal

would you use to initialize a regex variable with that pattern?
 16. How (in a program) do you find out if a string is a valid regular expression?
 17. What does regex_search() do?
 18. What does regex_match() do?
 19. How do you represent the character dot (.) in a regular expression?
 20. How do you represent the notion of “at least three” in a regular expression?
 21. Is 7 a \w character? Is _ (underscore)?
 22. What is the notation for an uppercase character?
 23. How do you specify your own character set?
 24. How do you extract the value of an integer field?

Stroustrup_book.indb 886Stroustrup_book.indb 886 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 EXERCISES 887

 25. How do you represent a floating-point number as a regular expression?
 26. How do you extract a floating-point value from a match?
 27. What is a sub-match? How do you access one?

Terms
match
multimap
pattern

regex_match()
regex_search()
regular expression

search
smatch
sub-pattern

Exercises
 1. Get the email file example to run; test it using a larger file of your own

creation. Be sure to include messages that are likely to trigger errors, such
as messages with two address lines, several messages with the same ad-
dress and/or same subject, and empty messages. Also test the program
with something that simply isn’t a message according to that program’s
specification, such as a large file containing no –––– lines.

 2. Add a multimap and have it hold subjects. Let the program take an input
string from the keyboard and print out every message with that string as
its subject.

 3. Modify the email example from §23.4 to use regular expressions to find
the subject and sender.

 4. Find a real email message file (containing real email messages) and mod-
ify the email example to extract subject lines from sender names taken as
input from the user.

 5. Find a large email message file (thousands of messages) and then time it
as written with a multimap and with that multimap replaced by an unor-
dered_multimap. Note that our application does not take advantage of
the ordering of the multimap.

 6. Write a program that finds dates in a text file. Write out each line contain-
ing at least one date in the format line–number: line. Start with a regular
expression for a simple format, e.g., 12/24/2000, and test the program
with that. Then, add more formats.

 7. Write a program (similar to the one in the previous exercise) that finds
credit card numbers in a file. Do a bit of research to find out what credit
card formats are really used.

 8. Modify the program from §23.8.7 so that it takes as inputs a pattern and
a file name. Its output should be the numbered lines (line–number: line)
that contain a match of the pattern. If no matches are found, no output
should be produced.

Stroustrup_book.indb 887Stroustrup_book.indb 887 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 23 • TEXT MANIPULATION888

 9. Using eof() (§B.7.2), it is possible to determine which line of a table is the
last. Use that to (try to) simplify the table-checking program from §23.9.
Be sure to test your program with files that end with empty lines after the
table and with files that don’t end with a newline at all.

 10. Modify the table-checking program from §23.9 to write a new table where
the rows with the same initial digit (indicating the year: first grades start
with 1) are merged.

 11. Modify the table-checking program from §23.9 to see if the number of
students is increasing or decreasing over the years in question.

 12. Write a program, based on the program that finds lines containing
dates (exercise 6), that finds all dates and reformats them to the ISO
yyyy-mm-dd format. The program should take an input file and produce
an output file that is identical to the input file except for the changed date
formatting.

 13. Does dot (.) match '\n'? Write a program to find out.
 14. Write a program that, like the one in §23.8.7, can be used to experiment

with pattern matching by typing in a pattern. However, have it read a file
into memory (representing a line break with the newline character, '\n'),
so that you can experiment with patterns spanning line breaks. Test it and
document a dozen test patterns.

 15. Describe a pattern that cannot be expressed as a regular expression.
 16. For experts only: Prove that the pattern found in the previous exercise

really isn’t a regular expression.

Postscript
It is easy to get trapped into the view that computers and computation are all
about numbers, that computing is a form of math. Obviously, it is not. Just look
at your computer screen; it is full of text and pictures. Maybe it’s busy playing
music. For every application, it is important to use proper tools. In the context of
C++, that means using appropriate libraries. For text manipulation, the regular
expression library is often a key tool — and don’t forget the maps and the standard
algorithms.

Stroustrup_book.indb 888Stroustrup_book.indb 888 4/22/14 9:43 AM4/22/14 9:43 AM

889

24

Numerics

“For every complex problem
there is an answer that is
clear, simple, and wrong.”

—H. L. Mencken

This chapter is an overview of some fundamental language

and library facilities supporting numeric computation. We

present the basic problems of size, precision, and truncation. The

central part of the chapter is a discussion of multidimensional

arrays — both C-style and an N-dimensional matrix library. We

introduce random numbers as frequently needed for testing, sim-

ulation, and games. Finally, we list the standard mathematical

functions and briefly introduce the basic functionality of the

standard library complex numbers.

Stroustrup_book.indb 889Stroustrup_book.indb 889 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS890

24.1 Introduction
For some people, numerics — that is, serious numerical computations — are every-
thing. Many scientists, engineers, and statisticians are in this category. For many
people, numerics are sometimes essential. A computer scientist occasionally col-
laborating with a physicist would be in this category. For most people, a need for
numerics — beyond simple arithmetic of integers and floating-point numbers — is
rare. The purpose of this chapter is to address language-technical details needed
to deal with simple numerical problems. We do not attempt to teach numerical
analysis or the finer points of floating-point operations; such topics are far beyond
the scope of this book and blend with domain-specific topics in the application
areas. Here, we present

• Issues related to the built-in types having fi xed size, such as precision and
overfl ow

• Arrays, both the built-in notion of multidimensional arrays and a Matrix
library that is better suited to numerical computation

• A most basic description of random numbers
• The standard library mathematical functions
• Complex numbers

The emphasis is on the Matrix library that makes handling of matrices (multidi-
mensional arrays) trivial.

24.2 Size, precision, and overfl ow
When we use the built-in types and usual computational techniques, numbers
are stored in fixed amounts of memory; that is, the integer types (int, long, etc.)

 24.1 Introduction

 24.2 Size, precision, and overflow
 24.2.1 Numeric limits

 24.3 Arrays

 24.4 C-style multidimensional arrays

 24.5 The Matrix library
 24.5.1 Dimensions and access

 24.5.2 1D Matrix
 24.5.3 2D Matrix
 24.5.4 Matrix I/O
 24.5.5 3D Matrix

 24.6 An example: solving linear
equations

 24.6.1 Classical Gaussian elimination
 24.6.2 Pivoting
 24.6.3 Testing

 24.7 Random numbers

 24.8 The standard mathematical
functions

 24.9 Complex numbers

 24.10 References

Stroustrup_book.indb 890Stroustrup_book.indb 890 4/22/14 9:43 AM4/22/14 9:43 AM

24.2 SIZE, PRECISION, AND OVERFLOW 891

are only approximations of the mathematical notion of integers (whole numbers)
and the floating-point types (float, double, etc.) are (only) approximations of the
mathematical notion of real numbers. This implies that from a mathematical point
of view, some computations are imprecise or wrong. Consider:

float x = 1.0/333;
float sum = 0;
for (int i=0; i<333; ++i) sum+=x;
cout << setprecision(15) << sum << "\n";

Running this, we do not get 1 as someone might naively expect, but rather

0.999999463558197

We expected something like that. What we see here is an effect of a rounding
error. A floating-point number has only a fixed number of bits, so we can always
“fool it” by specifying a computation that requires more bits to represent a result
than the hardware provides. For example, the rational number 1/3 cannot be rep-
resented exactly as a decimal number (however many decimals we use). Neither
can 1/333, so when we add 333 copies of x (the machine’s best approximation of
1/333 as a float), we get something that is slightly different from 1. Whenever we
make significant use of floating-point numbers, rounding errors will occur; the
only question is whether the error significantly affects the result.

Always check that your results are plausible. When you compute, you must
have some notion of what a reasonable result would look like or you could easily
get fooled by some “silly bug” or computation error. Be aware of the possibility
of rounding errors and if in doubt, consult an expert or read up on numerical
techniques.

TRY THIS

Replace 333 in the example with 10 and run the example again. What result
would you expect? What result did you get? You have been warned!

The effects of integers being of fixed size can surface more dramatically. The rea-
son is that floating-point numbers are by definition approximations of (real) num-
bers, so they tend to lose precision (i.e., lose the least significant bits). Integers, on
the other hand, tend to overflow (i.e., lose the most significant bits). That tends
to make floating-point errors sneaky (and often unnoticed by novices) and integer
errors spectacular (and typically hard not to notice). Remember that we prefer
errors to manifest themselves early and spectacularly so that we can fix them.

T

Stroustrup_book.indb 891Stroustrup_book.indb 891 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS892

Consider an integer problem:

short int y = 40000;
int i = 1000000;
cout << y << " " << i*i << "\n";

Running this, we got the output

–25536 –727379968

That was expected. What we see here is the effect of overflow. Integer types
represent (relatively) small integers only. There just aren’t enough bits to exactly
represent every number we need in a way that’s amenable to efficient compu-
tation. Here, a 2-byte short integer could not represent 40,000 and a 4-byte int
can’t represent 1,000,000,000,000. The exact sizes of C++ built-in types (§A.8)
depend on the hardware and the compiler; sizeof(x) gives you the size of x in
bytes for a variable x or a type x. By definition, sizeof(char)==1. We can illus-
trate sizes like this:

double

int, long, float

short

char

These sizes are for Windows using a Microsoft compiler. C++ supplies integers
and floating-point numbers of a variety of sizes, but unless you have a very good
reason for something else, stick to char, int, and double. In most (but of course
not all) programs, the remaining integer and floating-point types are more trouble
than they are worth.

You can assign an integer to a floating-point variable. If the integer is larger
than the floating-point type can represent, you lose precision. For example:

cout << "sizes: " << sizeof(int) << ' ' << sizeof(float) << '\n';
int x = 2100000009; // large int
float f = x;
cout << x << ' ' << f << '\n';
cout << setprecision(15) << x << ' ' << f << '\n';

On our machine, this produced

Stroustrup_book.indb 892Stroustrup_book.indb 892 4/22/14 9:43 AM4/22/14 9:43 AM

24.2 SIZE, PRECISION, AND OVERFLOW 893

Sizes: 4 4
2100000009 2.1e+009
2100000009 2100000000

A float and an int take up the same amount of space (4 bytes). A float is repre-
sented as a “mantissa” (typically a value between 0 and 1) and an exponent (man-
tissa*10exponent), so it cannot represent exactly the largest int. (If we tried to, where
would we find space for the mantissa after we had taken the space needed for the
exponent?) As it should, f represented 2100000009 as approximately correct as it
could. However, that last 9 was too much for it to represent exactly — and that was
of course why we chose that number.

On the other hand, when you assign a floating-point number to an integer,
you get truncation; that is, the fractional part — the digits after the decimal point —
is simply thrown away. For example:

float f = 2.8;
int x = f;
cout << x << ' ' << f << '\n';

The value of x will be 2. It will not be 3 as you might imagine if you are used to
“4/5 rounding rules.” C++ float-to-int conversions truncate rather than round.

When you calculate, you must be aware of possible overflow and truncation.
C++ will not catch such problems for you. Consider:

void f(int i, double fpd)
{
 char c = i; // yes: chars really are very small integers
 short s = i; // beware: an int may not fit in a short int
 i = i+1; // what if i was the largest int?
 long lg = i*i; // beware: a long may not be any larger than an int
 float fps = fpd; // beware: a large double may not fit in a float
 i = fpd; // truncates: e.g., 5.7 –> 5
 fps = i; // you can lose precision (for very large int values)
}

void g()
{
 char ch = 0;
 for (int i = 0; i<500; ++i)
 cout << int(ch++) << '\t';
}

Stroustrup_book.indb 893Stroustrup_book.indb 893 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS894

If in doubt, check, experiment! Don’t just despair and don’t just read the docu-
mentation. Unless you are experienced, it is easy to misunderstand the highly
technical documentation related to numerics.

TRY THIS

Run g(). Modify f() to print out c, s, i, etc. Test it with a variety of values.

The representation of integers and their conversions will be examined further in
§25.5.3. When we can, we prefer to limit ourselves to a few data types. That can
help minimize confusion. For example, by not using float in a program, but only
double, we eliminate the possibility of double-to-float conversion problems. In
fact, we prefer to limit our use to int, double, and complex (see §24.9) for compu-
tation, char for characters, and bool for logical entities. We deal with the rest of
the arithmetic types only when we have to.

24.2.1 Numeric limits
In <limits>, <climits>, <limits.h>, and <float.h>, each C++ implementation spec-
ifies properties of the built-in types, so that programmers can use those properties
to check against limits, set sentinels, etc. These values are listed in §B.9.1 and can
be critically important to low-level tool builders. If you think you need them, you
are probably too close to the hardware, but there are other uses. For example, it
is not uncommon to be curious about aspects of the language implementation,
such as “How big is an int?” or “Are chars signed?” Trying to find the definite and
correct answers in the system documentation can be difficult, and the standard
only specifies minimum requirements. However, a program giving the answer is
trivial to write:

cout << "number of bytes in an int: " << sizeof(int) << '\n';
cout << "largest int: " << INT_MAX << '\n';
cout << "smallest int value: " << numeric_limits<int>::min() << '\n';

if (numeric_limits<char>::is_signed)
 cout << "char is signed\n";
else
 cout << "char is unsigned\n";

char ch = numeric_limits<char>::min() ; // smallest positive value
cout << "the char with the smallest positive value: " << ch << '\n';
cout << "the int value of the char with the smallest positive value: "
 << int(ch) << '\n';

T

Stroustrup_book.indb 894Stroustrup_book.indb 894 4/22/14 9:43 AM4/22/14 9:43 AM

24.3 ARRAYS 895

When you write code intended to run on several kinds of hardware, it occasion-
ally becomes immensely valuable to have this kind of information available to the
program. The alternative would typically be to hand-code the answers into the
program, thereby creating a maintenance hazard.

These limits can also be useful when you want to detect overflow.

24.3 Arrays
An array is a sequence of elements where we can access an element by its index
(position). Another word for that general notion is vector. Here we are particularly
concerned with arrays where the elements are themselves arrays: multidimen-
sional arrays. A common word for a multidimensional array is matrix. The vari-
ety of names is a sign of the popularity and utility of the general concept. The
standard vector (§B.4), array (§20.9), and the built-in array (§A.8.2) are one-di-
mensional. So, what if we need two dimensions (e.g., a matrix)? If we need seven
dimensions?

We can visualize one- and two-dimensional arrays like this:

A vector (e.g., Matrix<int> v(4)),
also called a one-dimensional array,
or even a 1-by-N matrix

A 3-by-4 matrix (e.g., Matrix<int,2> m(3,4)),
also called a two-dimensional array

Arrays are fundamental to most computing (“number crunching”). Most inter-
esting scientific, engineering, statistics, and financial computations rely heavily
on arrays.

We often refer to an array as consisting of rows and columns:

A 3-by-4 matrix,
also called a two-dimensional array
3 rows
4 columns

A column

A row

Stroustrup_book.indb 895Stroustrup_book.indb 895 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS896

A column is a sequence of elements with the same first (x) coordinate. A row is a
set of elements with the same second (y) coordinate.

24.4 C-style multidimensional arrays
The C++ built-in array can be used as a multidimensional array. We simply treat
a multidimensional array as an array of arrays, that is, an array with arrays as
elements. For example:

int ai[4]; // 1-dimensional array
double ad[3][4]; // 2-dimensional array
char ac[3][4][5]; // 3-dimensional array
ai[1] = 7;
ad[2][3] = 7.2;
ac[2][3][4] = 'c';

This approach inherits the virtues and the disadvantages of the one-dimensional
array:

• Advantages

• Direct mapping to hardware
• Effi cient for low-level operations
• Direct language support

• Problems

• C-style multidimensional arrays are arrays of arrays (see below).
• Fixed sizes (i.e., fi xed at compile time). If you want to determine a size

at run time, you’ll have to use the free store.
• Can’t be passed cleanly. An array turns into a pointer to its fi rst ele-

ment at the slightest provocation.
• No range checking. As usual, an array doesn’t know its own size.
• No array operations, not even assignment (copy).

Built-in arrays are widely used for numeric computation. They are also a major
source of bugs and complexity. For most people, they are a serious pain to write
and debug. Look them up if you are forced to use them (e.g., The C++ Program-
ming Language). Unfortunately, C++ shares its multidimensional arrays with C, so
there is a lot of code “out there” that uses them.

Stroustrup_book.indb 896Stroustrup_book.indb 896 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 897

The most fundamental problem is that you can’t pass multidimensional ar-
rays cleanly, so you have to fall back on pointers and explicit calculation of loca-
tions in a multidimensional array. For example:

void f1(int a[3][5]); // useful for [3][5] matrices only

void f2(int [][5], int dim1); // 1st dimension can be a variable

void f3(int [5][], int dim2); // error: 2nd dimension cannot be a variable

void f4(int[][], int dim1, int dim2); // error (and wouldn’t work anyway)

void f5(int* m, int dim1, int dim2) // odd, but works
{
 for (int i=0; i<dim1; ++i)
 for (int j = 0; j<dim2; ++j) m[i*dim2+j] = 0;
}

Here, we pass m as an int* even though it is a two-dimensional array. As long as
the second dimension needs to be a variable (a parameter), there really isn’t any
way of telling the compiler that m is a (dim1,dim2) array, so we just pass a pointer
to the start of the memory that holds it. The expression m[i*dim2+j] really means
m[i,j], but because the compiler doesn’t know that m is a two-dimensional array,
we have to calculate the position of m[i,j] in memory.

This is too complicated, primitive, and error-prone for our taste. It can also
be slow because calculating the location of an element explicitly complicates opti-
mization. Instead of trying to teach you all about it, we will concentrate on a C++
library that eliminates the problems with the built-in arrays.

24.5 The Matrix library
What are the basic “things” we want from an array/matrix aimed at numerical
computation?

• “My code should look very much like what I fi nd in my math/engineering
textbook text about arrays.”

• Or about vectors, matrices, tensors.

• Compile-time and run-time checked.

• Arrays of any dimension.
• Arrays with any number of elements in a dimension.

Stroustrup_book.indb 897Stroustrup_book.indb 897 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS898

• Arrays are proper variables/objects.

• You can pass them around.

• Usual array operations:

• Subscripting: ()
• Slicing: []
• Assignment: =
• Scaling operations (+=, –=, *=, %=, etc.)
• Fused vector operations (e.g., res[i] = a[i]*c+b[2])
• Dot product (res = sum of a[i]*b[i]; also known as the inner_product)

• Basically, transforms conventional array/vector notation into the code you
would laboriously have had to write yourself (and runs at least as effi -
ciently as that).

• You can extend it yourself as needed (no “magic” was used in its
implementation).

The Matrix library does that and only that. If you want more, such as advanced
array functions, sparse arrays, control over memory layout, etc., you must write it
yourself or (preferably) use a library that better approximates your needs. How-
ever, many such needs can be served by building algorithm and data structures on
top of Matrix. The Matrix library is not part of the ISO C++ standard library. You
find it on the book support site as Matrix.h. It defines its facilities in namespace
Numeric_lib. We chose the name “matrix” because “vector” and “array” are even
more overused in C++ libraries. The plural of matrix is matrices (with matrixes as a
rarer form). Where Matrix refers to a C++ language entity, we will use Matrixes
as the plural to avoid confusion. The implementation of the Matrix library uses
advanced techniques and will not be described here.

24.5.1 Dimensions and access
Consider a simple example:

#include "Matrix.h"
using namespace Numeric_lib;

void f(int n1, int n2, int n3)
{
 Matrix<double,1> ad1(n1); // elements are doubles; one dimension
 Matrix<int,1> ai1(n1); // elements are ints; one dimension
 ad1(7) = 0; // subscript using () — Fortran style
 ad1[7] = 8; // [] also works — C style

Stroustrup_book.indb 898Stroustrup_book.indb 898 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 899

 Matrix<double,2> ad2(n1,n2); // 2-dimensional
Matrix<double,3> ad3(n1,n2,n3); // 3-dimensional

 ad2(3,4) = 7.5; // true multidimensional subscripting
 ad3(3,4,5) = 9.2;
}

So, when you define a Matrix (an object of a Matrix class), you specify the ele-
ment type and the number of dimensions. Obviously, Matrix is a template, and
the element type and the number of dimensions are template parameters. The
result of giving a pair of arguments to Matrix (e.g., Matrix<double,2>) is a type
(a class) of which you can define objects by supplying arguments (e.g., Matrix-
<double,2> ad2(n1,n2)); those arguments specify the dimensions. So, ad2 is a
two-dimensional array with dimensions n1 and n2, also known as an n1-by-n2 ma-
trix. To get an element of the declared element type from a one-dimensional Ma-
trix, you subscript with one index; to get an element of the declared element type
from a two-dimensional Matrix, you subscript with two indices; and so on.

Like built-in arrays, and vectors, our Matrix indices are zero-based (rather
than 1-based like Fortran arrays); that is, the elements of a Matrix are numbered
[0,max), where max is the number of elements.

This is simple and “straight out of the textbook.” If you have problems with
this, you need to look at an appropriate math textbook, not a programmer’s man-
ual. The only “cleverness” here is that you can leave out the number of dimen-
sions for a Matrix: “one-dimensional” is the default. Note also that we can use []
for subscripting (C and C++ style) or () for subscripting (Fortran style). Having
both allows us to better deal with multiple dimensions. The [x] subscript notation
always takes a single subscript, yielding the appropriate row of the Matrix; if a is
an N-dimensional Matrix, a[x] is an N–1-dimensional Matrix. The (x,y,z) subscript
notation takes one or more subscripts, yielding the appropriate element of the
Matrix; the number of subscripts must equal the number of dimensions.

Let’s see what happens when we make mistakes:

void f(int n1, int n2, int n3)
{
 Matrix<int,0> ai0; // error: no 0D matrices

 Matrix<double,1> ad1(5);
 Matrix<int,1> ai(5);
 Matrix<double,1> ad11(7);

 ad1(7) = 0; // Matrix_error exception (7 is out of range)
 ad1 = ai; // error: different element types
 ad1 = ad11; // Matrix_error exception (different dimensions)

Stroustrup_book.indb 899Stroustrup_book.indb 899 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS900

 Matrix<double,2> ad2(n1); // error: length of 2nd dimension missing
 ad2(3) = 7.5; // error: wrong number of subscripts
 ad2(1,2,3) = 7.5; // error: wrong number of subscripts

 Matrix<double,3> ad3(n1,n2,n3);
 Matrix<double,3> ad33(n1,n2,n3);
 ad3 = ad33; // OK: same element type, same dimensions
}

We catch mismatches between the declared number of dimensions and their use
at compile time. Range errors we catch at run time and throw a Matrix_error
exception.

The first dimension is the row and the second the column, so we index a
2D matrix (two-dimensional array) with (row,column). We can also use the [row]
[column] notation because subscripting a 2D matrix with a single index gives the
1D matrix that is the row. We can visualize that like this:

00 01 02 03a[0]:
10 11 12 13a[1]:
20 21 22 23a[2]:

a[1][2]

a(1,2)

This Matrix will be laid out in memory in “row-first” order:

00 01 02 03 10 11 12 13 20 21 22 23

A Matrix “knows” its dimensions, so we can address the elements of a Matrix
passed as an argument very simply:

void init(Matrix<int,2>& a) // initialize each element to a characteristic value
{
 for (int i=0; i<a.dim1(); ++i)
 for (int j = 0; j<a.dim2(); ++j)
 a(i,j) = 10*i+j;
}

void print(const Matrix<int,2>& a) // print the elements row by row
{
 for (int i=0; i<a.dim1(); ++i) {
 for (int j = 0; j<a.dim2(); ++j)
 cout << a(i,j) <<'\t';

Stroustrup_book.indb 900Stroustrup_book.indb 900 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 901

 cout << '\n';
 }
}

So, dim1() is the number of elements in the first dimension, dim2() the number of
elements in the second dimension, and so on. The type of the elements and the
number of dimensions are part of the Matrix type, so we cannot write a function
that takes any Matrix as an argument (but we could write a template to do that):

void init(Matrix& a); // error: element type and number of dimensions missing

Note that the Matrix library doesn’t supply matrix operations, such as adding two
4D Matrixes or multiplying a 2D Matrix with a 1D Matrix. Doing so elegantly
and efficiently is currently beyond the scope of this library. Matrix libraries of
a variety of designs could be built on top of the Matrix library (see exercise 12).

24.5.2 1D Matrix
What can we do to the simplest Matrix, the 1D (one-dimensional) Matrix?

We can leave the number of dimensions out of a declaration because 1D is
the default:

Matrix<int,1> a1(8); // a1 is a 1D Matrix of ints
Matrix<int> a(8); // means Matrix<int,1> a(8);

So, a and a1 are of the same type (Matrix<int,1>). We can ask for the size (the
number of elements) and the dimension (the number of elements in a dimension).
For a 1D Matrix, those are the same.

a.size(); // number of elements in Matrix
a.dim1(); // number of elements in 1st dimension

We can ask for the elements as laid out in memory, that is, a pointer to the first
element:

int* p = a.data(); // extract data as a pointer to an array

This is useful for passing Matrix data to C-style functions taking pointer argu-
ments. We can subscript:

a(i); // ith element (Fortran style), but range checked
a[i]; // ith element (C style), range checked
a(1,2); // error: a is a 1D Matrix

Stroustrup_book.indb 901Stroustrup_book.indb 901 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS902

It is common for algorithms to refer to part of a Matrix. Such a “part” is called a
slice() (a sub-Matrix or a range of elements) and we provide two versions:

a.slice(i); // the elements from a[i] to the last
a.slice(i,n); // the n elements from a[i] to a[i+n–1]

Subscripts and slices can be used on the left-hand side of an assignment as well as
on the right. They refer to the elements of their Matrix without making copies of
them. For example:

a.slice(4,4) = a.slice(0,4); // assign first half of a to second half

For example, if a starts out as

{ 1 2 3 4 5 6 7 8 }

we get

{ 1 2 3 4 1 2 3 4 }

Note that the most common slices are the “initial elements” of a Matrix and the
“last elements”; that is, a.slice(0,j) is the range [0:j) and a.slice(j) is the range [j:a.
size()). In particular, the example above is most easily written

a.slice(4) = a.slice(0,4); // assign first half of a to second half

That is, the notation favors the common cases. You can specify i and n so that
a.slice(i,n) is outside the range of a. However, the resulting slice will refer only
to the elements actually in a. For example, a.slice(i,a.size()) refers to the range
[i:a.size()), and a.slice(a.size()) and a.slice(a.size(),2) are empty Matrixes. This
happens to be a useful convention for many algorithms. We borrowed that con-
vention from math. Obviously, a.slice(i,0) is an empty Matrix. We wouldn’t write
that deliberately, but there are algorithms that are simpler if a.slice(i,n) where n
happens to be 0 is an empty Matrix (rather than an error we have to avoid).

We have the usual (for C++ objects) copy operations that copy all elements:

Matrix<int> a2 = a; // copy initialization
a = a2; // copy assignment

We can apply a built-in operation to each element of a Matrix:

a *= 7; // scaling: a[i]*=7 for each i (also +=, –=, /=, etc.)
a = 7; // a[i]=7 for each i

Stroustrup_book.indb 902Stroustrup_book.indb 902 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 903

This works for every assignment and every composite assignment operator (=,
+=, –=, /=, *=, %=, ^=, &=, |=, >>=, <<=) provided the element type supports that
operator. We can also apply a function to each element of a Matrix:

a.apply(f); // a[i]=f(a[i]) for each element a[i]
a.apply(f,7); // a[i]=f(a[i],7) for each element a[i]

The composite assignment operators and apply() modify the elements of their
 Matrix argument. If we instead want to create a new Matrix as the result, we can use

b = apply(abs,a); // make a new Matrix with b(i)==abs(a(i))

This abs is the standard library’s absolute value function (§24.8). Basically,
 apply(f,x) relates to x.apply(f) as + relates to +=. For example:

b = a*7; // b[i] = a[i]*7 for each i
a *= 7; // a[i] = a[i]*7 for each i
y = apply(f,x); // y[i] = f(x[i]) for each i
x.apply(f); // x[i] = f(x[i]) for each i

Here we get a==b and x==y.
In Fortran, this second apply is called a “broadcast” function and is typically

written f(x) rather than apply(f,x). To make this facility available for every func-
tion f (rather than just a selected few functions as in Fortran), we need a name for
the “broadcast” operation, so we (re)use apply.

In addition, to match the two-argument version of the member apply,
 a.apply(f,x), we provide

b = apply(f,a,x); // b[i]=f(a[i],x) for each i

For example:

double scale(double d, double s) { return d*s; }
b = apply(scale,a,7); // b[i] = a[i]*7 for each i

Note that the “freestanding” apply() takes a function that produces a result from
its argument; apply() then uses that result to initialize the resulting Matrix. Typ-
ically it does not modify the Matrix to which it is applied. The member apply()
differs in that it takes a function that modifies its argument; that is, it modifies
elements of the Matrix to which it is applied. For example:

void scale_in_place(double& d, double s) { d *= s; }
b.apply(scale_in_place,7); // b[i] *= 7 for each i

Stroustrup_book.indb 903Stroustrup_book.indb 903 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS904

We also supply a couple of the most useful functions from traditional numerics
libraries:

Matrix<int> a3 = scale_and_add(a,8,a2); // fused multiply and add
int r = dot_product(a3,a); // dot product

The scale_and_add() operation is often referred to as fused multiply-add or simply
fma; its definition is result(i)=arg1(i)*arg2+arg3(i) for each i in the Matrix. The dot
product is also known as the inner_product and is described in §21.5.3; its defini-
tion is result+=arg1(i)*arg2(i) for each i in the Matrix where result starts out as 0.

One-dimensional arrays are very common; you can represent one as a built-in ar-
ray, a vector, or a Matrix. You use Matrix if you need the matrix operations pro-
vided, such as *=, or if the Matrix has to interact with higher-dimensional Matrixes.

You can explain the utility of a library like this as “It matches the math better”
or “It saves you from writing all those loops to do things for each element.” Either
way, the resulting code is significantly shorter and there are fewer opportunities to
make mistakes writing it. The Matrix operations — such as copy, assignment to all
elements, and operations on all elements — save us from reading or writing a loop
(and from wondering if we got the loop exactly right).

Matrix supports two constructors for copying data from a built-in array into
a Matrix. For example:

void some_function(double* p, int n)
{
 double val[] = { 1.2, 2.3, 3.4, 4.5 };
 Matrix<double> data(p,n);
 Matrix<double> constants(val);
 // . . .
}

These are often useful when we have our data delivered in terms of arrays or
vectors from parts of a program not using Matrixes.

Note that the compiler is able to deduce the number of elements of an ini-
tialized array, so we don’t have to give the number of elements when we define
constants — it is 4. On the other hand, the compiler doesn’t know the number of
elements given only a pointer, so for data we have to specify both the pointer (p)
and the number of elements (n).

24.5.3 2D Matrix
The general idea of the Matrix library is that Matrixes of different dimensions
really are quite similar, except where you need to be specific about dimensions, so
most of what we said about a 1D Matrix applies to a 2D Matrix:

Stroustrup_book.indb 904Stroustrup_book.indb 904 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 905

Matrix<int,2> a(3,4);

int s = a.size(); // number of elements
int d1 = a.dim1(); // number of elements in a row
int d2 = a.dim2(); // number of elements in a column
int* p = a.data(); // extract data as a pointer to a C-style array

We can ask for the total number of elements and the number of elements of each
dimension. We can get a pointer to the elements as they are laid out in memory
as a matrix.

We can subscript:

a(i,j); // (i,j)th element (Fortran style), but range checked
a[i]; // ith row (C style), range checked
a[i][j]; // (i,j)th element (C style)

For a 2D Matrix, subscripting with [i] yields the 1D Matrix that is the ith row. This
means that we can extract rows and pass them to operations and functions that
require a 1D Matrix or even a built-in array (a[i].data()). Note that a(i,j) may be
faster than a[i][j], though that will depend a lot on the compiler and optimizer.

Matrix<int,2> a(3,4)

a[2]

We can take slices:

a.slice(i); // the rows from the a[i] to the last
a.slice(i,n); // the rows from the a[i] to the a[i+n–1]

Matrix<int,2> a(3,4)

a[2].slice(2)

a.slice(0,2)

Note that a slice of a 2D Matrix is itself a 2D Matrix (possibly with fewer rows).

Stroustrup_book.indb 905Stroustrup_book.indb 905 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS906

The distributed operations are the same as for 1D Matrixes. These operations
don’t care how we organize the elements; they just apply to all elements in the
order those elements are laid down in memory:

Matrix<int,2> a2 = a; // copy initialization
a = a2; // copy assignment
a *= 7; // scaling (and +=, –=, /=, etc.)
a.apply(f); // a(i,j)=f(a(i,j)) for each element a(i,j)
a.apply(f,7); // a(i,j)=f(a(i,j),7) for each element a(i,j)
b=apply(f,a); // make a new Matrix with b(i,j)==f(a(i,j))
b=apply(f,a,7); // make a new Matrix with b(i,j)==f(a(i,j),7)

It turns out that swapping rows is often useful, so we supply that:

a.swap_rows(1,2); // swap rows a[1] <–> a[2]

There is no swap_columns(). If you need it, write it yourself (exercise 11). Be-
cause of the row-first layout, rows and columns are not completely symmetrical
concepts. This asymmetry also shows up in that [i] yields a row (and we have not
provided a column selection operator). In that (i,j), the first index, i, selects the
row. The asymmetry also reflects deep mathematical properties.

There seems to be an infinite number of “things” that are two-dimensional and
thus obvious candidates for applications of 2D Matrixes:

enum Piece { none, pawn, knight, queen, king, bishop, rook };
Matrix<Piece,2> board(8,8); // a chessboard

const int white_start_row = 0;
const int black_start_row = 7;

Matrix<Piece> start_row
 = {rook, knight, bishop, queen, king, bishop, knight, rook};

Matrix<Piece> clear_row(8) ; // 8 elements of the default value

The initialization of clear_row takes advantage of none==0 and that elements
are by default initialized to 0.

We can use start_row and clear_row like this:

board[white_start_row] = start_row; // reset white pieces
for (int i = 1; i<7; ++i) board[i] = clear_row; // clear middle of the board
board[black_start_row] = start_row; // reset black pieces

Note when we extract a row, using [i], we get an lvalue (§4.3); that is, we can assign
to the result of board[i].

Stroustrup_book.indb 906Stroustrup_book.indb 906 4/22/14 9:43 AM4/22/14 9:43 AM

24.5 THE MATRIX LIBRARY 907

24.5.4 Matrix I/O
The Matrix library provides very simple I/O for 1D and 2D Matrixes:

Matrix<double> a(4);
cin >> a;
cout << a;

This will read four whitespace-separated doubles delimited by curly braces; for
example:

{ 1.2 3.4 5.6 7.8 }

The output is very similar, so that you can read in what you wrote out.
The I/O for 2D Matrixes simply reads and writes a curly-brace-delimited se-

quence of 1D Matrixes. For example:

Matrix<int,2> m(2,2);
cin >> m;
cout << m;

This will read

{
{ 1 2 }
{ 3 4 }
}

The output will be very similar.
The Matrix << and >> operators are provided primarily to make the writing

of simple programs simple. For more advanced uses, it is likely that you will need
to replace them with your own. Consequently, the Matrix << and >> are placed in
the MatrixIO.h header (rather than in Matrix.h) so that you don’t have to include
it to use Matrixes.

24.5.5 3D Matrix
Basically, a 3D (and higher-dimension) Matrix is just like a 2D Matrix, except with
more dimensions. Consider:

Matrix<int,3> a(10,20,30);

a.size(); // number of elements
a.dim1(); // number of elements in dimension 1
a.dim2(); // number of elements in dimension 2

Stroustrup_book.indb 907Stroustrup_book.indb 907 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS908

a.dim3(); // number of elements in dimension 3
int* p = a.data(); // extract data as a pointer to a C-style array
a(i,j,k); // (i,j,k)th element (Fortran style), but range checked
a[i]; // ith row (C style), range checked
a[i][j][k]; // (i,j,k)th element (C style)
a.slice(i); // the rows from the ith to the last
a.slice(i,j); // the rows from the ith to the jth
Matrix<int,3> a2 = a; // copy initialization
a = a2; // copy assignment
a *= 7; // scaling (and +=, –=, /=, etc.)
a.apply(f); // a(i,j,k)=f(a(i,j,k)) for each element a(i,j,k)
a.apply(f,7); // a(i,j,k)=f(a(i,j,k),7) for each element a(i,j,k)
b=apply(f,a); // make a new Matrix with b(i,j,k)==f(a(i,j,k))
b=apply(f,a,7); // make a new Matrix with b(i,j,k)==f(a(i,j,k),7)
a.swap_rows(7,9); // swap rows a[7] <–> a[9]

If you understand 2D Matrixes, you understand 3D Matrixes. For example, here
a is 3D, so a[i] is 2D (provided i is in range), a[i][j] is 1D (provided j is in range),
and a[i][j][k] is the int element (provided k is in range).

We tend to see the world as three-dimensional. That leads to obvious uses of
3D Matrixes in modeling (e.g., a physics simulation using a Cartesian grid):

int grid_nx; // grid resolution; set at startup
int grid_ny;
int grid_nz;
Matrix<double,3> cube(grid_nx, grid_ny, grid_nz);

And then if we add time as a fourth dimension, we get a 4D space needing a 4D
Matrix. And so on.

For a more advanced version of Matrix, supporting general N-dimensional ma-
trices, see Chapter 29 of The C++ Programming Language.

24.6 An example: solving linear equations
The code for a numerical computation makes sense if you understand the math
that it expresses and tends to appear to be utter nonsense if you don’t. The ex-
ample used here should be rather trivial if you have learned basic linear algebra;
if not, just see it as an example of transcribing a textbook solution into code with
minimal rewording.

The example here is chosen to demonstrate a reasonably realistic and impor-
tant use of Matrixes. We will solve a set (any set) of linear equations of this form:

Stroustrup_book.indb 908Stroustrup_book.indb 908 4/22/14 9:43 AM4/22/14 9:43 AM

24.6 AN EXAMPLE: SOLVING LINEAR EQUATIONS 909

a1,1x1 + . . . + a1,nxn = b1

an,1x1 + . . . + an,nxn = bn

. .
 .

Here, the xs designate the n unknowns; as and bs are given constants. For sim-
plicity, we assume that the unknowns and the constants are floating-point values.
The goal is to find values for the unknowns that simultaneously satisfy the n
equations. These equations can compactly be expressed in terms of a matrix and
two vectors:

Ax = b

Here, A is the square n-by-n matrix defined by the coefficients:

a1,1 . . . a1,n

an,1 . . . an,n

. .
 .

. .
 .

. .
 . A =

The vectors x and b are the vectors of unknowns and constants, respectively:

x1

xn

. .
 . x = , and

b1

bn

. .
 . b =

This system may have zero, one, or an infinite number of solutions, depending on
the coefficients of the matrix A and the vector b. There are various methods for
solving linear systems. We use a classic scheme, called Gaussian elimination (see
Freeman and Phillips, Parallel Numerical Algorithms; Stewart, Matrix Algorithms, Volume
I; and Wood, Introduction to Numerical Analysis). First, we transform A and b so that
A is an upper-triangular matrix. By upper-triangular, we mean all the coefficients
below the diagonal of A are zero. In other words, the system looks like this:

x1

xn

. .
 .

b1

bn

. .
 . =

a1,1 . . . a1,n

 0 0 an,n

. .
.

. .
 . 0

This is easily done. A zero for position a(i , j) is obtained by multiplying the equa-
tion for row i by a constant so that a(i , j) equals another element in column j, say

Stroustrup_book.indb 909Stroustrup_book.indb 909 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS910

a(k , j) . That done, we just subtract the two equations and a(i , j) == 0 and the
other values in row i change appropriately.

If we can get all the diagonal coefficients to be nonzero, then the system has
a unique solution, which can be found by “back substitution.” The last equation
is easily solved:

a
n,n

x
n
 = b

n

Obviously, x[n] is b[n]/a(n,n). That done, eliminate row n from the system and pro-
ceed to find the value of x[n–1], and so on, until the value for x[1] is computed. For
each n, we divide by a(n,n) so the diagonal values must be nonzero. If that does
not hold, the back substitution method fails, meaning that the system has zero or
an infinite number of solutions.

24.6.1 Classical Gaussian elimination
Now let us look at the C++ code to express this. First, we’ll simplify our notation
by conventionally naming the two Matrix types that we are going to use:

typedef Numeric_lib::Matrix<double, 2> Matrix;
typedef Numeric_lib::Matrix<double, 1> Vector;

Next we will express our desired computation:

Vector classical_gaussian_elimination(Matrix A, Vector b)
{
 classical_elimination(A, b);
 return back_substitution(A, b);
}

That is, we make copies of our inputs A and b (using call by value), call a func-
tion to solve the system, and then calculate the result to return by back substi-
tution. The point is that our breakdown of the problem and our notation for
the solution are right out of the textbook. To complete our solution, we have to
implement classical_elimination() and back_substitution(). Again, the solution
is in the textbook:

void classical_elimination(Matrix& A, Vector& b)
{
 const Index n = A.dim1();

 // traverse from 1st column to the next-to-last
 // filling zeros into all elements under the diagonal:

Stroustrup_book.indb 910Stroustrup_book.indb 910 4/22/14 9:43 AM4/22/14 9:43 AM

24.6 AN EXAMPLE: SOLVING LINEAR EQUATIONS 911

 for (Index j = 0; j<n-1; ++j) {
 const double pivot = A(j,j);
 if (pivot == 0) throw Elim_failure(j);

 // fill zeros into each element under the diagonal of the ith row:
 for (Index i = j+1; i<n; ++i) {
 const double mult = A(i,j) / pivot;
 A[i].slice(j) = scale_and_add(A[j].slice(j), –mult, A[i].slice(j));
 b(i) –= mult*b(j); // make the corresponding change to b
 }
 }
}

The “pivot” is the element that lies on the diagonal of the row we are currently
dealing with. It must be nonzero because we need to divide by it; if it is zero we
give up by throwing an exception:

Vector back_substitution(const Matrix& A, const Vector& b)
{
 const Index n = A.dim1();
 Vector x(n);

 for (Index i = n–1; i>= 0; ––i) {
 double s = b(i)–dot_product(A[i].slice(i+1),x.slice(i+1));

 if (double m = A(i,i))
 x(i) = s/m;
 else
 throw Back_subst_failure(i);
 }

 return x;
}

24.6.2 Pivoting
We can avoid the divide-by-zero problem and also achieve a more robust solu-
tion by sorting the rows to get zeros and small values away from the diagonal.
By “more robust” we mean less sensitive to rounding errors. However, the val-
ues change as we go along placing zeros under the diagonal, so we have to also

Stroustrup_book.indb 911Stroustrup_book.indb 911 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS912

reorder to get small values away from the diagonal (that is, we can’t just reorder
the matrix and then use the classical algorithm):

void elim_with_partial_pivot(Matrix& A, Vector& b)
{
 const Index n = A.dim1();

 for (Index j = 0; j<n; ++j) {
 Index pivot_row = j;

 // look for a suitable pivot:
 for (Index k = j+1; k<n; ++k)
 if (abs(A(k,j)) > abs(A(pivot_row,j))) pivot_row = k;

 // swap the rows if we found a better pivot:
 if (pivot_row!=j) {
 A.swap_rows(j,pivot_row);
 std::swap(b(j), b(pivot_row));
 }

 // elimination:
 for (Index i = j+1; i<n; ++i) {
 const double pivot = A(j,j);
 if (pivot==0) error("can't solve: pivot==0");
 const double mult = A(i,j)/pivot;
 A[i].slice(j) = scale_and_add(A[j].slice(j), –mult, A[i].slice(j));
 b(i) –= mult*b(j);
 }
 }
}

We use swap_rows() and scale_and_multiply() to make the code more conven-
tional and to save us from writing an explicit loop.

24.6.3 Testing
Obviously, we have to test our code. Fortunately, there is a simple way to do that:

void solve_random_system(Index n)
{
 Matrix A = random_matrix(n); // see §24.7
 Vector b = random_vector(n);

Stroustrup_book.indb 912Stroustrup_book.indb 912 4/22/14 9:43 AM4/22/14 9:43 AM

24.6 AN EXAMPLE: SOLVING LINEAR EQUATIONS 913

 cout << "A = " << A << '\n';
 cout << "b = " << b << '\n';

 try {
 Vector x = classical_gaussian_elimination(A, b);
 cout << "classical elim solution is x = " << x << '\n';
 Vector v = A*x;
 cout << " A*x = " << v << '\n';
 }
 catch(const exception& e) {
 cerr << e.what() << '\n';
 }
}

We can get to the catch clause in three ways:

• A bug in the code (but, being optimists, we don’t think there are any)
• An input that trips up classical_elimination (elim_with_partial_pivot could

do better in many cases)
• Rounding errors

However, our test is not as realistic as we’d like because genuinely random matri-
ces are unlikely to cause problems for classical_elimination.

To verify our solution, we print out A*x, which had better equal b (or close
enough for our purpose, given rounding errors). The likelihood of rounding er-
rors is the reason we didn’t just do

if (A*x!=b) error("substitution failed");

Because floating-point numbers are just approximations to real numbers, we have
to accept approximately correct answers. In general, using == and != on the result
of a floating-point computation is best avoided: floating point is inherently an
approximation.

The Matrix library doesn’t define multiplication of a matrix with a vector, so
we did that for this program:

Vector operator*(const Matrix& m, const Vector& u)
{
 const Index n = m.dim1();
 Vector v(n);
 for (Index i = 0; i<n; ++i) v(i) = dot_product(m[i],u);
 return v;
}

Stroustrup_book.indb 913Stroustrup_book.indb 913 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS914

Again, a simple Matrix operation did most of the work for us. The Matrix output
operations came from MatrixIO.h as described in §24.5.4. The random_matrix()
and random_vector() functions are simple uses of random numbers (§24.7) and
are left as an exercise. Index is a type alias (§A.16) for the index type used by the
Matrix library. We brought it into scope with a using declaration:

using Numeric_lib::Index;

24.7 Random numbers
If you ask people for a random number, most say 7 or 17, so it has been suggested
that those are the “most random” numbers. People essentially never give the
answer 0. Zero is seen to be such a nice round number that it is not perceived as
“random” and could therefore be deemed the “least random” number. From a
mathematical point of view this is utter nonsense: it is not an individual number
that is random. What we often need, and what we often refer to as random num-
bers, is a sequence of numbers that conform to some distribution and where you
cannot easily predict the next number in the sequence given the previous ones.
Such numbers are most useful in testing (that’s one way of generating a lot of test
cases), in games (that is one way of making sure that the next run of the game
differs from the previous run), and in simulations (we can make a simulated entity
behave in a “random” fashion within the limits of its parameters).

As a practical tool and a mathematical problem, random numbers reach a
high degree of sophistication to match their real-world importance. Here, we will
just touch the basics as needed for simple testing and simulation. In <random>,
the standard library provides a sophisticated set of facilities for generating random
numbers to match a variety of mathematical distributions. The standard library
random number facilities are based on two fundamental notions:

• Engines (random number engines): An engine is a function object that
generates a uniformly distributed sequence of integer values.

• Distributions: A distribution is a function object that generates a sequence
of values according to a mathematical formula given a sequence of values
from an engine as inputs.

For example, consider the function random_vector() that was used in §24.6.3.
A call random_vector(n) produces a Matrix<double,1> with n elements of type
double with random values in the range [0:n):

Vector random_vector(Index n)
{
 Vector v(n);
 default_random_engine ran{}; // generates integers
 uniform_real_distribution<> ureal{0,max}; // maps ints into doubles

// in [0:max)

Stroustrup_book.indb 914Stroustrup_book.indb 914 4/22/14 9:43 AM4/22/14 9:43 AM

24.7 RANDOM NUMBERS 915

 for (Index i = 0; i < n; ++i)
 v(i) = ureal(ran);

 return v;
}

The default engine (default_random_engine) is simple, cheap to run, and good
enough for casual use. For more professional uses, the standard library offers a
variety of engines with better randomness properties and different running costs.
Examples are linear_congurential_engine, mersenne_twister_engine, and ran-
dom_device. If you want to use those, and in general if you need to do better than
the default_random_engine, you have a bit of reading to do. To get an idea of the
quality of your system’s random number generator, do exercise 10.

The two random number generators from std_lib_facilities.h were defined as

int randint(int min, int max)
{
 static default_random_engine ran;
 return uniform_int_distribution<>{min,max}(ran);
}

int randint(int max)
{
 return randint(0,max);
}

These simple functions can be most useful, but just to try something else, let us
generate a normal distribution:

auto gen = bind(normal_distribution<double>{15,4.0},
 default_random_engine{});

The standard library function bind() from <functional> constructs a function
object that when invoked calls its first argument with its second as the argu-
ment. So here, gen() returns values according to the normal distribution with its
mean at 15 and a variance of 4.0 using the default_random_engine. We could
use it like this:

vector<int> hist(2*15);

for (int i = 0; i < 500; ++i) // generate histogram of 500 values
 ++hist[int(round(gen()))];

Stroustrup_book.indb 915Stroustrup_book.indb 915 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS916

for (int i = 0; i != hist.size(); ++i) { // write out histogram
 cout << i << '\t';
 for (int j = 0; j != hist[i]; ++j)
 cout << '*';
 cout << '\n';
}

We got

0
1
2
3 **
4 *
5 *****
6 ****
7 ****
8 ******
9 ************
10 ***************************
11 ***************************
12 **************************************
13 **
14 ***
15 ***
16 ********************************
17 **
18 *************************************
19 **********************************
20 **************
21 ************
22 ************
23 *******
24 ******
25 *
26 *
27
28
29

Stroustrup_book.indb 916Stroustrup_book.indb 916 4/22/14 9:43 AM4/22/14 9:43 AM

24.8 THE STANDARD MATHEMATICAL FUNCTIONS 917

The normal distribution is very common and also known as the Gaussian distribu-
tion or (for obvious reasons) simply “the bell curve.” Other distributions include
bernoulli_distribution, exponential_distribution, and chi_squared_ distribution.
You can find them described in The C++ Programming Language. Integer distribu-
tions return values in a closed interval [a:b], whereas real (floating-point) distribu-
tions return values in open intervals [a:b).

By default, an engine (except possibly random_device) gives the same se-
quence each time a program is run. That is most convenient for initial debugging.
If we want different sequences from an engine, we need to initialize it with differ-
ent values. Such initializers are conventionally called “seeds.” For example:

auto gen1 = bind(uniform_int_distribution<>{0,9},
 default_random_engine{});
auto gen2 = bind(uniform_int_distribution<>{0,9},
 default_random_engine{10});
auto gen3 = bind(uniform_int_distribution<>{0,9},
 default_random_engine{5});

To get an unpredictable sequence, people often use the time of day (down to the
last nanosecond; §26.6.1) or something like that as the seed.

24.8 The standard mathematical functions
The standard mathematical functions (cos, sin, log, etc.) are provided by the stan-
dard library. Their declarations are found in <cmath>.

Standard mathematical functions

abs(x) absolute value

ceil(x) smallest integer >= x

floor(x) largest integer <= x

sqrt(x) square root; x must be nonnegative

cos(x) cosine

sin(x) sine

tan(x) tangent

acos(x) arccosine; result is nonnegative

Stroustrup_book.indb 917Stroustrup_book.indb 917 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS918

Standard mathematical functions (continued)

asin(x) arcsine; result nearest to 0 returned

atan(x) arctangent

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh(x) hyperbolic tangent

exp(x) base-e exponential

log(x) natural logarithm, base-e; x must be positive

log10(x) base-10 logarithm

The standard mathematical functions are provided for types float, double, long
double, and complex (§24.9) arguments. If you do floating-point computations,
you’ll find these functions useful. If you need more details, documentation is
widely available; your online documentation would be a good place to start.

If a standard mathematical function cannot produce a mathematically valid
result, it sets the variable errno. For example:

errno = 0;
double s2 = sqrt(–1);
if (errno) cerr << "something went wrong with something somewhere";
if (errno == EDOM) // domain error
 cerr << "sqrt() not defined for negative argument";
pow(very_large,2); // not a good idea
if (errno==ERANGE) // range error
 cerr << "pow(" << very_large << ",2) too large for a double";

If you do serious mathematical computations, you must check errno to ensure
that it is still 0 after you get your result. If not, something went wrong. Look at
your manual or online documentation to see which mathematical functions can
set errno and which values they use for errno.

As indicated in the example, a nonzero errno simply means “Something went
wrong.” It is not uncommon for functions not in the standard library to set errno
in case of error, so you have to look more carefully at the value of errno to get an
idea of exactly what went wrong. If you test errno immediately after a standard
library function and if you made sure that errno==0 before calling it, you can rely
on the values as we did with EDOM and ERANGE in the example. EDOM is set for
a domain error (i.e., a problem with the result). ERANGE is set for a range error
(i.e., a problem with the arguments).

Stroustrup_book.indb 918Stroustrup_book.indb 918 4/22/14 9:43 AM4/22/14 9:43 AM

24.9 COMPLEX NUMBERS 919

Error handling based on errno is somewhat primitive. It dates from the first
(1975 vintage) C mathematical functions.

24.9 Complex numbers
Complex numbers are widely used in scientific and engineering computations.
We assume that if you need them, you will know about their mathematical prop-
erties, so we’ll just show you how complex numbers are expressed in the ISO
C++ standard library. You find the declaration of complex numbers and their
associated standard mathematical functions in <complex>:

template<class Scalar> class complex {
 // a complex is a pair of scalar values, basically a coordinate pair
 Scalar re, im;
public:
 constexpr complex(const Scalar & r, const Scalar & i) :re(r), im(i) { }
 constexpr complex(const Scalar & r) :re(r),im(Scalar ()) { }
 complex() :re(Scalar ()), im(Scalar ()) { }

 constexpr Scalar real() { return re; } // real part
 constexpr Scalar imag() { return im; } // imaginary part

 // operators: = += –= *= /=
};

The standard library complex is guaranteed to be supported for scalar types float,
double, and long double. In addition to the members of complex and the standard
mathematical functions (§24.8), <complex> offers a host of useful operations:

Complex operators

z1+z2 addition

z1–z2 subtraction

z1*z2 multiplication

z1/z2 division

z1==z2 equality

z1!=z2 inequality

norm(z) the square of abs(z)

Stroustrup_book.indb 919Stroustrup_book.indb 919 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS920

Complex operators (continued)

conj(z) conjugate: if z is {re,im}, then conj(z) is (re,– im)

polar(rho,theta) make a complex given polar coordinates (rho,theta)

real(z) real part

imag(z) imaginary part

abs(z) also known as rho

arg(z) also known as theta

out << z complex output

in >> z complex input

Note: complex does not provide < or %.
Use complex<T> exactly like a built-in type, such as double. For example:

Using cmplx = complex<double>; // sometimes complex<double> gets verbose

void f(cmplx z, vector<cmplx>& vc)
{
 cmplx z2 = pow(z,2);
 cmplx z3 = z2*9.3+vc[3];
 cmplx sum = accumulate(vc.begin(), vc.end(), cmplx{});
 // . . .
}

Remember that not all operations that we are used to from int and double are
defined for a complex. For example:

if (z2<z3) // error: there is no < for complex numbers

Note that the representation (layout) of the C++ standard library complex num-
bers is compatible with their corresponding types in C and Fortran.

24.10 References
Basically, the issues discussed in this chapter, such as rounding errors, Matrix
operations, and complex arithmetic, are of no interest and make no sense in iso-
lation. We simply describe (some of) the support provided by C++ to people
with the need for and knowledge of mathematical concepts and techniques to do
numerical computations.

Stroustrup_book.indb 920Stroustrup_book.indb 920 4/22/14 9:43 AM4/22/14 9:43 AM

24.10 REFERENCES 921

In case you are a bit rusty in those areas or simply curious, we can recom-
mend some information sources:

The MacTutor History of Mathematics archive, http://www-gap.dcs.st-and.ac.uk
/~history

• A great link for anyone who likes math or simply needs to use math
• A great link for someone who would like to see the human side of math-

ematics; for example, who is the only major mathematician to win an
Olympic medal?

• Famous mathematicians: biographies, accomplishments
• Curio

• Famous curves
• Famous problems
• Mathematical topics

• Algebra
• Analysis
• Numbers and number theory
• Geometry and topology
• Mathematical physics
• Mathematical astronomy

• The history of mathematics
• . . .

Freeman, T. L., and Chris Phillips. Parallel Numerical Algorithms. Prentice Hall, 1992.
Gullberg, Jan. Mathematics — From the Birth of Numbers. W. W. Norton, 1996. ISBN

039304002X. One of the most enjoyable books on basic and useful mathemat-
ics. A (rare) math book that you can read for pleasure and also use to look up
specific topics, such as matrices.

Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, Third Edition. Addison-Wesley, 1998. ISBN 0201896842.

Stewart, G. W. Matrix Algorithms, Volume I: Basic Decompositions. SIAM, 1998.
ISBN 0898714141.

Wood, Alistair. Introduction to Numerical Analysis. Addison-Wesley, 1999. ISBN
020194291X.

Stroustrup_book.indb 921Stroustrup_book.indb 921 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS922

Drill
 1. Print the size of a char, a short, an int, a long, a float, a double, an int*,

and a double* (use sizeof, not <limits>).
 2. Print out the size as reported by sizeof of Matrix<int> a(10), Matrix<int>

b(100), Matrix<double> c(10), Matrix<int,2> d(10,10), Matrix<int,3>
e(10,10,10).

 3. Print out the number of elements of each of the Matrixes from 2.
 4. Write a program that takes ints from cin and outputs the sqrt() of each

int, or “no square root” if sqrt(x) is illegal for some x (i.e., check your
sqrt() return values).

 5. Read ten floating-point values from input and put them into a Matrix-
<double>. Matrix has no push_back() so be careful to handle an attempt
to enter a wrong number of doubles. Print out the Matrix.

 6. Compute a multiplication table for [0,n)*[0,m) and represent it as a 2D
Matrix. Take n and m from cin and print out the table nicely (assume that
m is small enough that the results fit on a line).

 7. Read ten complex<double>s from cin (yes, cin supports >> for complex)
and put them into a Matrix. Calculate and output the sum of the ten com-
plex numbers.

 8. Read six ints into a Matrix<int,2> m(2,3) and print them out.

Review
 1. Who uses numerics?
 2. What is precision?
 3. What is overflow?
 4. What is a common size of a double? Of an int?
 5. How can you detect overflow?
 6. Where do you find numeric limits, such as the largest int?
 7. What is an array? A row? A column?
 8. What is a C-style multidimensional array?
 9. What are the desirable properties of language support (e.g., a library) for

matrix computation?
 10. What is a dimension of a matrix?
 11. How many dimensions can a matrix have (in theory/math)?
 12. What is a slice?
 13. What is a broadcast operation? List a few.
 14. What is the difference between Fortran-style and C-style subscripting?
 15. How do you apply an operation to each element of a matrix? Give

examples.

Stroustrup_book.indb 922Stroustrup_book.indb 922 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 EXERCISES 923

 16. What is a fused operation?
 17. Define dot product.
 18. What is linear algebra?
 19. What is Gaussian elimination?
 20. What is a pivot? (In linear algebra? In “real life”?)
 21. What makes a number random?
 22. What is a uniform distribution?
 23. Where do you find the standard mathematical functions? For which argu-

ment types are they defined?
 24. What is the imaginary part of a complex number?
 25. What is the square root of –1?

Terms
array
C
column
complex number
dimension
dot product
element-wise operation
errno

Fortran
fused operation
imaginary
Matrix
multidimensional
random number
real
row

scaling
size
sizeof
slicing
subscripting
uniform distribution

Exercises
 1. The function arguments f for a.apply(f) and apply(f,a) are different. Write

a triple() function for each and use each to triple the elements of an array
{ 1 2 3 4 5 }. Define a single triple() function that can be used for both
a.apply(triple) and apply(triple,a). Explain why it could be a bad idea to
write every function to be used by apply() that way.

 2. Do exercise 1 again, but with function objects, rather than functions.
Hint: Matrix.h contains examples.

 3. Expert level only (this cannot be done with the facilities described in this
book): Write an apply(f,a) that can take a void (T&), a T (const T&), and
their function object equivalents. Hint: Boost::bind.

 4. Get the Gaussian elimination program to work; that is, complete it, get it
to compile, and test it with a simple example.

 5. Try the Gaussian elimination program with A=={ {0 1} {1 0} } and b=={ 5
6 } and watch it fail. Then, try elim_with_partial_pivot().

 6. In the Gaussian elimination example, replace the vector operations dot_
product() and scale_and_add() with loops. Test, and comment on the
clarity of the code.

Stroustrup_book.indb 923Stroustrup_book.indb 923 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 24 • NUMERICS924

 7. Rewrite the Gaussian elimination program without using the Matrix li-
brary; that is, use built-in arrays or vectors instead of Matrixes.

 8. Animate the Gaussian elimination.
 9. Rewrite the nonmember apply() functions to return a Matrix of the return

type of the function applied; that is, apply(f,a) should return a Matrix<R>
where R is the return type of f. Warning: The solution requires informa-
tion about templates not available in this book.

 10. How random is your default_random_engine? Write a program that
takes two integers n and d as inputs and calls randint(n) d times, record-
ing the result. Output the number of draws for each of [0:n) and “eyeball”
how similar the counts are. Try with low values for n and with low values
for d to see if drawing only a few random numbers causes obvious biases.

 11. Write a swap_columns() to match swap_rows() from §24.5.3. Obviously,
to do that you have to read and understand some of the existing Matrix
library code. Don’t worry too much about efficiency: it is not possible to
get swap_columns() to run as fast as swap_rows().

 12. Implement

Matrix<double> operator*(Matrix<double,2>&,Matrix<double>&);

 and

Matrix<double,N> operator+(Matrix<double,N>&,Matrix<double,N>&)

 If you need to, look up the mathematical definitions in a textbook.

Postscript
If you don’t feel comfortable with mathematics, you probably didn’t like this
chapter and you’ll probably choose a fi eld of work where you are unlikely to need
the information presented here. On the other hand, if you do like mathematics,
we hope that you appreciate how closely the fundamental concepts of mathemat-
ics can be represented in code.

Stroustrup_book.indb 924Stroustrup_book.indb 924 4/22/14 9:43 AM4/22/14 9:43 AM

925

25

Embedded Systems
Programming

“‘Unsafe’ means ‘Somebody may die.’”

—Safety offi cer

We present a view of embedded systems programming;

that is, we discuss topics primarily related to writing pro-

grams for “gadgets” that do not look like conventional computers

with screens and keyboards. We focus on the principles, pro-

gramming techniques, language facilities, and coding standards

needed to work “close to the hardware.” The main language is-

sues addressed are resource management, memory management,

pointer and array use, and bit manipulation. The emphasis is on

safe use and on alternatives to the use of the lowest-level features.

We do not attempt to present specialized machine architectures

or direct access to hardware devices; that is what specialized lit-

erature and manuals are for. As an example, we present the im-

plementation of an encryption/decryption algorithm.

Stroustrup_book.indb 925Stroustrup_book.indb 925 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING926

25.1 Embedded systems
Most computers in the world are not immediately recognizable as computers.
They are simply a part of a larger system or “gadget.” For example:

• Cars: A modern car may have many dozens of computers, controlling
the fuel injection, monitoring engine performance, adjusting the radio,
controlling the brakes, watching for underinfl ated tires, controlling the
windshield wipers, etc.

• Telephones: A mobile telephone contains at least two computers; often one
of those is specialized for signal processing.

• Airplanes: A modern airplane contains computers for everything from run-
ning the passenger entertainment system to wiggling the wing tips for
optimal fl ight properties.

• Cameras: There are cameras with fi ve processors and for which each lens
even has its own separate processor.

• Credit cards (of the “smart card” variety)
• Medical equipment monitors and controllers (e.g., CAT scanners)
• Elevators (lifts)
• PDAs (Personal Digital Assistants)
• Printer controllers

• Sound systems

• MP3 players

25.1 Embedded systems

25.2 Basic concepts
 25.2.1 Predictability

 25.2.2 Ideals
 25.2.3 Living with failure

25.3 Memory management
 25.3.1 Free-store problems
 25.3.2 Alternatives to the general

free store
 25.3.3 Pool example
 25.3.4 Stack example

25.4 Addresses, pointers, and arrays
 25.4.1 Unchecked conversions
 25.4.2 A problem: dysfunctional

interfaces
 25.4.3 A solution: an interface class
 25.4.4 Inheritance and containers

25.5 Bits, bytes, and words
 25.5.1 Bits and bit operations
 25.5.2 bitset
 25.5.3 Signed and unsigned
 25.5.4 Bit manipulation
 25.5.5 Bitfi elds
 25.5.6 An example: simple encryption

25.6 Coding standards
 25.6.1 What should a coding

standard be?
 25.6.2 Sample rules
 25.6.3 Real coding standards

Stroustrup_book.indb 926Stroustrup_book.indb 926 4/22/14 9:43 AM4/22/14 9:43 AM

25.1 EMBEDDED SYSTEMS 927

• Kitchen appliances (such as rice cookers and bread machines)
• Telephone switches (typically consisting of thousands of specialized computers)
• Pump controllers (for water pumps and oil pumps, etc.)
• Welding robots: some for use in tight or dangerous places where a human

welder cannot go
• Wind turbines: some capable of generating megawatts of power and 200m

(650ft) tall
• Sea-wall gate controllers

• Assembly-line quality monitors

• Bar code readers

• Car assembly robots

• Centrifuge controllers (as used in many medical analysis processes)
• Disk-drive controllers

These computers are parts of larger systems. Such “large systems” usually don’t
look like computers and we don’t usually think of them as computers. When
we see a car coming down the street, we don’t say, “Look, there’s a distributed
computer system!” Well, the car is also a distributed computer system, but its op-
eration is so integrated with the mechanical, electronic, and electrical parts that we
can’t really consider the computers in isolation. The constraints on their compu-
tations (in time and space) and the very definition of program correctness cannot
be separated from the larger system. Often, an embedded computer controls a
physical device, and the correct behavior of the computer is defined as the correct
operation of the physical device. Consider a large marine diesel engine:

Stroustrup_book.indb 927Stroustrup_book.indb 927 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING928

Note the engineer at the head of cylinder number 5. This is a big engine, the
kind of engine that powers the largest ships. If an engine like this fails, you’ll read
about it on the front page of your morning newspaper. On this engine, a cylinder
control system, consisting of three computers, sits on each cylinder head. Each
cylinder control system is connected to the engine control system (another three
computers) through two independent networks. The engine control system is
then connected to the control room where the engineers can communicate with
it through a specialized GUI system. The complete system can also be remotely
monitored via radio (through satellites) from a shipping-line control center. For
more examples, see Chapter 1.

So, from a programmer’s point of view, what’s special about the programs
running in the computers that are parts of that engine? More generally, what are
examples of concerns that become prominent for various kinds of embedded
systems that we don’t typically have to worry too much about for “ordinary
programs”?

• Often, reliability is critical: Failure can be spectacular, expensive (as in “bil-
lions of dollars”), and potentially lethal (for the people on board a wreck
or the animals in its environment).

• Often, resources (memory, processor cycles, power) are limited: That’s not likely to
be a problem on the engine computer, but think of smartphones, sensors,
computers on board space probes, etc. In a world where dual-processor
2GHz laptops with 8GB of memory are common, a critical computer in
an airplane or a space probe may have just 60MHz and 256KB, and a
small gadget just sub-1MHz and a few hundred words of RAM. Comput-
ers made resilient to environmental hazards (vibration, bumps, unstable
electricity supplies, heat, cold, humidity, workers stepping on them, etc.)
are typically far slower than what powers a student’s laptop.

• Often, real-time response is essential: If the fuel injector misses an injec-
tion cycle, bad things can happen to a very complex system generating
100,000Hp; miss a few cycles — that is, fail to function correctly for a
second or so — and strange things can start happening to propellers that
can be up to 33ft (10m) in diameter and weigh up to 130 tons. You really
don’t want that to happen.

• Often, a system must function uninterrupted for years: Maybe the system is run-
ning in a communications satellite orbiting the earth, or maybe the system
is just so cheap and exists in so many copies that any signifi cant repair
rate would ruin its maker (think of MP3 players, credit cards with embed-
ded chips, and automobile fuel injectors). In the United States, the man-
dated reliability criterion for backbone telephone switches is 20 minutes
of downtime in 20 years (don’t even think of taking such a switch down
each time you want to change its program).

Stroustrup_book.indb 928Stroustrup_book.indb 928 4/22/14 9:43 AM4/22/14 9:43 AM

25.2 BASIC CONCEPTS 929

• Often, hands-on maintenance is infeasible or very rare: You can take a large ship
into a harbor to service the computers every second year or so when
other parts of the ship require service and the necessary computer spe-
cialists are available in the right place at the right time. Unscheduled,
hands-on maintenance is infeasible (no bugs are allowed while the ship
is in a major storm in the middle of the Pacifi c). You simply can’t send
someone to repair a space probe in orbit around Mars.

Few systems suffer all of these constraints, and any system that suffers even one is
the domain of experts. Our aim is not to make you an “instant expert”; attempt-
ing to do that would be quite silly and very irresponsible. Our aim is to acquaint
you with the basic problems and the basic concepts involved in their solution so
that you can appreciate some of the skills needed to build such systems. Maybe
you could become interested in acquiring such valuable skills. People who design
and implement embedded systems are critical to many aspects of our technologi-
cal civilization. This is an area where a professional can do a lot of good.

Is this relevant to novices? To C++ programmers? Yes and yes. There are
many more embedded systems processors than there are conventional PCs. A
huge fraction of programming jobs relate to embedded systems programming, so
your first real job may involve embedded systems programming. Furthermore,
the list of examples of embedded systems that started this section is drawn from
what I have personally seen done using C++.

25.2 Basic concepts
Much programming of computers that are part of an embedded system can be
just like other programming, so most of the ideas presented in this book apply.
However, the emphasis is often different: we must adjust our use of programming
language facilities to the constraints of the task, and often we must manipulate our
hardware at the lowest level:

• Correctness: This is even more important than usual. “Correctness” is not
just an abstract concept. In the context of an embedded system, what it
means for a program to be correct becomes not just a question of produc-
ing the correct results, but also producing them at the right time, in the
right order, and using only an acceptable set of resources. Ideally, the de-
tails of what constitutes correctness are carefully specifi ed, but often such
a specifi cation can be completed only after some experimentation. Often,
critical experiments can be performed only after the complete system (of
which the computer running the program is a part) has been built. Com-
pletely specifying correctness for an embedded system can at the same
time be extremely diffi cult and extremely important. Here, “extremely
diffi cult” can mean “impossible given the time and resources available”;

Stroustrup_book.indb 929Stroustrup_book.indb 929 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING930

we must try our best using all available tools and techniques. Fortunately,
the range of specifi cation, simulation, testing, and other techniques in
a given area can be quite impressive. Here, “extremely important” can
mean “failure leads to injury or ruin.”

• Fault tolerance: We must be careful to specify the set of conditions that a
program is supposed to handle. For example, for an ordinary student
program, you might fi nd it unfair if we kicked the cord out of the power
supply during a demonstration. Losing power is not among the condi-
tions an ordinary PC application is supposed to deal with. However,
losing power is not uncommon for embedded systems, and some are
expected to deal with that. For example, a critical part of a system may
have dual power sources, backup batteries, etc. Worse, “But I assumed
that the hardware worked correctly” is no excuse for some applications.
Over a long time and over a large range of conditions, hardware simply
doesn’t work correctly. For example, some telephone switches and some
aerospace applications are written based on the assumption that sooner
or later some bit in the computer’s memory will just “decide” to change
its value (e.g., from 0 to 1). Alternatively, it may “decide” that it likes
the value 1 and ignore attempts to change that 1 to a 0. Such erroneous
behavior happens eventually if you have enough memory and use it
for a long enough time. It happens sooner if you expose the memory to
hard radiation, such as you fi nd beyond the earth’s atmosphere. When
we work on a system (embedded or not), we have to decide what kind
of tolerance to hardware failure we must provide. The usual default is to
assume that hardware works as specifi ed. As we deal with more critical
systems, that assumption must be modifi ed.

• No downtime: Embedded systems typically have to run for a long time
without changes to the software or intervention by a skilled operator with
knowledge of the implementation. “A long time” can be days, months,
years, or the lifetime of the hardware. This is not unique for embedded
systems, but it is a difference from the vast majority of “ordinary appli-
cations” and from all examples and exercises in this book (so far). This
“must run forever” requirement implies an emphasis on error handling
and resource management. What is a “resource”? A resource is some-
thing of which a machine has only a limited supply; from a program you
acquire a resource through some explicit action (“acquire the resource,”
“allocate”) and return it (“release,” “free,” “deallocate”) to the system
explicitly or implicitly. Examples of resources are memory, fi le handles,
network connections (sockets), and locks. A program that is part of a
long-running system must release every resource it requires except a few
that it permanently owns. For example, a program that forgets to close a

Stroustrup_book.indb 930Stroustrup_book.indb 930 4/22/14 9:43 AM4/22/14 9:43 AM

25.2 BASIC CONCEPTS 931

fi le every day will on most operating systems not survive for more than
about a month. A program that fails to deallocate 100 bytes every day
will waste more than 32K a year — that’s enough to crash a small gadget
after a few months. The nasty thing about such resource “leaks” is that
the program will work perfectly for months before it suddenly ceases to
function. If a program will crash, we prefer it to crash as soon as possible
so that we can remedy the problem. In particular, we prefer it to crash
long before it is given to users.

• Real-time constraints: We can classify an embedded system as hard real time if
a certain response must occur before a deadline. If a response must occur
before a deadline most of the time, but we can afford an occasional time
overrun, we classify the system as soft real time. Examples of soft real time
are a controller for a car window and a stereo amplifi er. A human will
not notice a fraction of a second’s delay in the movement of the window,
and only a trained listener would be able to hear a millisecond’s delay in
a change of pitch. An example of hard real time is a fuel injector that has
to “squirt” at exactly the right time relative to the movement of the piston.
If the timing is off by even a fraction of a millisecond, performance suffers
and the engine starts to deteriorate; a major timing problem could com-
pletely stop the engine, possibly leading to accident or disaster.

• Predictability: This is a key notion in embedded systems code. Obviously,
the term has many intuitive meanings, but here — in the context of
programming embedded systems — we will use a specialized technical
meaning: an operation is predictable if it takes the same amount of time
to execute every time it is executed on a given computer, and if all such
operations take the same amount of time to execute. For example, when
x and y are integers, x+y takes the same amount of time to execute every
time and xx+yy takes the same amount of time when xx and yy are two
other integers. Usually, we can ignore minor variations in execution speed
related to machine architecture (e.g., differences caused by caching and
pipelining) and simply rely on there being a fi xed, constant upper limit
on the time needed. Operations that are not predictable (in this sense of
the word) can’t be used in hard real-time systems and must be used with
great care in all real-time systems. A classic example of an unpredictable
operation is a linear search of a list (e.g., fi nd()) where the number of
elements is unknown and not easily bounded. Only if we can reliably
predict the number of elements or at least the maximum number of ele-
ments does such a search become acceptable in a hard real-time system;
that is, to guarantee a response within a given fi xed time we must be able
to — possibly aided by code analysis tools — calculate the time needed for
every possible code sequence leading up to the deadline.

Stroustrup_book.indb 931Stroustrup_book.indb 931 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING932

• Concurrency: An embedded system typically has to respond to events from
the external world. This leads to programs where many things happen
“at once” because they correspond to real events that really happen at
once. A program that simultaneously deals with several actions is called
concurrent or parallel. Unfortunately the fascinating, diffi cult, and important
issue of concurrency is beyond the scope of this book.

25.2.1 Predictability
From the point of view of predictability, C++ is pretty good, but it isn’t perfect.
All facilities in the C++ language (including virtual function calls) are predict-
able, except

• Free-store allocation using new and delete (see §25.3)
• Exceptions (§19.5)
• dynamic_cast (§A.5.7)

These facilities must be avoided for hard real-time applications. The problems
with new and delete are described in detail in §25.3; those are fundamental. Note
that the standard library string and the standard containers (vector, map, etc.)
indirectly use the free store, so they are not predictable either. The problem with
dynamic_cast is a problem with current implementations but is not fundamental.

The problem with exceptions is that when looking at a particular throw, the
programmer cannot — without looking at large sections of code — know how
long it will take to find a matching catch or even if there is such a catch. In an
embedded systems program, there had better be a catch because we can’t rely on
a C++ programmer sitting ready to use the debugger. The problems with excep-
tions can in principle be dealt with by a tool that for each throw tells you exactly
which catch will be invoked and how long it will take the throw to get there, but
currently, that’s a research problem, so if you need predictability, you’ll have to
make do with error handling based on return codes and other old-fashioned and
tedious, but predictable, techniques.

25.2.2 Ideals
When writing an embedded systems program there is a danger that the quest for
performance and reliability will lead the programmer to regress to exclusively
using low-level language facilities. That strategy is workable for individual small
pieces of code. However, it can easily leave the overall design a mess, make it dif-
ficult to be confident about correctness, and increase the time and money needed
to build a system.

As ever, our ideal is to work at the highest level of abstraction that is feasi-
ble given the constraints on our problem. Don’t get reduced to writing glorified

Stroustrup_book.indb 932Stroustrup_book.indb 932 4/22/14 9:43 AM4/22/14 9:43 AM

25.2 BASIC CONCEPTS 933

assembler code! As ever, represent your ideas as directly in code as you can (given
all constraints). As ever, try hard to write the clearest, cleanest, most maintainable
code. Don’t optimize until you have to. Performance (in time or space) is often
essential for an embedded system, but trying to squeeze performance out of ev-
ery little piece of code is misguided. Also, for many embedded systems the key
is to be correct and fast enough; beyond “fast enough” the system simply idles
until another action is needed. Trying to write every few lines of code to be as
efficient as possible takes a lot of time, causes a lot of bugs, and often leads to
missed opportunities for optimization as algorithms and data structures get hard
to understand and hard to change. For example, that “low-level optimization”
approach often leads to missed opportunities for memory optimization because
almost similar code appears in many places and can’t be shared because of inci-
dental differences.

John Bentley — famous for his highly efficient code — offers two “laws of
optimization”:

• First law: Don’t do it.
• Second law (for experts only): Don’t do it yet.

Before optimizing, make sure that you understand the system. Only then can
you be confident that it is — or can become — correct and reliable. Focus on
algorithms and data structures. Once an early version of the system runs, care-
fully measure and tune it as needed. Fortunately, pleasant surprises are not un-
common: clean code sometimes runs fast enough and doesn’t take up excessive
memory space. Don’t count on that, though; measure. Unpleasant surprises are
not uncommon either.

25.2.3 Living with failure
Imagine that we are to design and implement a system that may not fail. By “not
fail” let’s say that we mean “will run without human intervention for a month.”
What kind of failures must we protect against? We can exclude dealing with the
sun going nova and probably also with the system being trampled by an elephant.
However, in general we cannot know what might go wrong. For a specific system,
we can and must make assumptions about what kinds of errors are more common
than others. Examples:

• Power surges/failure
• Connector vibrating out of its socket
• System hit by falling debris crushing a processor
• Falling system (disk might be destroyed by impact)
• X-rays causing some memory bits to change value in ways impossible

according to the language defi nition

Stroustrup_book.indb 933Stroustrup_book.indb 933 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING934

Transient errors are usually the hardest to find. A transient error is one that happens
“sometimes” but not every time a program is run. For example, we have heard of
a processor that misbehaved only when the temperature exceeded 130°F (54°C).
It was never supposed to get that hot; however, it did when the system was (un-
intentionally and occasionally) covered up on the factory floor, never in the lab
while being tested.

Errors that occur away from the lab are the hardest to fix. You will have a
hard time imagining the design and implementation effort involved in letting the
JPL engineers diagnose software and hardware failures on the Mars Rovers (20
minutes away from the lab for a signal traveling at the speed of light) and update
the software to fix a problem once understood.

Domain knowledge — that is, knowledge about a system, its environment,
and its use — is essential for designing and implementing a system with a good
resilience against errors. Here, we will touch only upon generalities. Note that
every “generality” we mention here has been the subject of thousands of papers
and decades of research and development.

• Prevent resource leaks: Don’t leak. Be specifi c about what resources your pro-
gram uses and be sure you conserve them (perfectly). Any leak will kill
your system or subsystem eventually. The most fundamental resources
are time and memory. Typically, a program will also use other resources,
such as locks, communication channels, and fi les.

• Replicate: If a system critically needs a hardware resource (e.g., a computer,
an output device, a wheel) to function, then the designer is faced with
a basic choice: should the system contain several copies of the critical
resource? We can either accept failure if the hardware breaks or provide
a spare and let the software switch to using the spare. For example, the
fuel injector controllers for the marine diesel engine are triplicate comput-
ers connected by duplicate networks. Note that “the spare” need not be
identical to the original (e.g., a space probe may have a primary strong
antenna and a weaker backup). Note also that “the spare” can typically
be used to boost performance when the system works without a problem.

• Self-check: Know when the program (or hardware) is misbehaving. Hard-
ware components (e.g., storage devices) can be very helpful in this respect,
monitoring themselves for errors, correcting minor errors, and reporting
major failures. Software can check for consistency of its data structures,
check invariants (§9.4.3), and rely on internal “sanity checks” (assertions).
Unfortunately, self-checking can itself be unreliable, and care must be
taken that reporting an error doesn’t itself cause an error — it is really hard
to completely check error checking.

• Have a quick way out of misbehaving code: Make systems modular. Base error
handling on modules: each module has a specifi c task to do. If a module

Stroustrup_book.indb 934Stroustrup_book.indb 934 4/22/14 9:43 AM4/22/14 9:43 AM

25.3 MEMORY MANAGEMENT 935

decides it can’t do its task, it can report that to some other module. Keep
the error handling within a module simple (so that it is more likely to be
correct and effi cient), and have some other module responsible for serious
errors. A good reliable system is modular and multi-level. At each level,
serious errors are reported to a module at the next level — in the end,
maybe to a person. A module that has been notifi ed of a serious error
(one that another module couldn’t handle itself) can then take appropriate
action — maybe involving a restart of the module that detected the error
or running with a less sophisticated (but more robust) “backup” module.
Defi ning exactly what “a module” is for a given system is part of the over-
all system design, but you can think of it as a class, a library, a program,
or all the programs on a computer.

• Monitor subsystems in case they can’t or don’t notice a problem themselves.
In a multi-level system higher levels can monitor lower levels. Many sys-
tems that really aren’t allowed to fail (e.g., the marine engines or space sta-
tion controllers) have three copies of critical subsystems. This triplication
is not done just to have two spares, but also so that disagreements about
which subsystem is misbehaving can be settled by 2-to-1 votes. Triplica-
tion is especially useful where a multi-level organization is diffi cult (i.e., at
the highest level of a system or subsystem that may not fail).

We can design as much as we like and be as careful with the implementation as
we know how to, but the system will still misbehave. Before delivering a system
to users, it must be systematically and thoroughly tested; see Chapter 26.

25.3 Memory management
The two most fundamental resources in a computer are time (to execute instruc-
tions) and space (memory to hold data and code). In C++, there are three ways
to allocate memory to hold data (§17.4, §A.4.2):

• Static memory: allocated by the linker and persisting as long as the pro-
gram runs

• Stack (automatic) memory: allocated when we call a function and freed when
we return from the function

• Dynamic (heap) memory: allocated by new and freed for possible reuse by
delete

Let’s consider these from the perspective of embedded systems programming. In
particular, we will consider memory management from the perspective of tasks
where predictability (§25.2.1) is considered essential, such as hard real-time pro-
gramming and safety-critical programming.

Stroustrup_book.indb 935Stroustrup_book.indb 935 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING936

Static memory poses no special problem in embedded systems programming:
all is taken care of before the program starts to run and long before a system is
deployed.

Stack memory can be a problem because it is possible to use too much of it,
but this is not hard to take care of. The designers of a system must determine that
for no execution of the program will the stack grow over an acceptable limit. This
usually means that the maximum nesting of function calls must be limited; that is,
we must be able to demonstrate that a chain of calls (e.g., f1 calls f2 calls . . . calls fn)
will never be too long. In some systems, that has caused a ban on recursive calls.
Such a ban can be reasonable for some systems and for some recursive functions,
but it is not fundamental. For example, I know that factorial(10) will call factorial at
most ten times. However, an embedded systems programmer might very well pre-
fer an iterative implementation of factorial (§15.5) to avoid any doubt or accident.

Dynamic memory allocation is usually banned or severely restricted; that is,
new is either banned or its use restricted to a startup period, and delete is banned.
The basic reasons are

• Predictability: Free-store allocation is not predictable; that is, it is not guar-
anteed to be a constant time operation. Usually, it is not: in many imple-
mentations of new, the time needed to allocate a new object can increase
dramatically after many objects have been allocated and deallocated.

• Fragmentation: The free store may fragment; that is, after allocating and
deallocating objects the remaining unused memory may be “fragmented”
into a lot of little “holes” of unused space that are useless because each
hole is too small to hold an object of the kind used by the application.
Thus, the size of the useful free store can be far less than the size of the
initial free store minus the size of the allocated objects.

The next section explains how this unacceptable state of affairs can arise. The
bottom line is that we must avoid programming techniques that use both new
and delete for hard real-time or safety-critical systems. The following sections
explain how we can systematically avoid problems with the free store using stacks
and pools.

25.3.1 Free-store problems
What’s the problem with new? Well, really it’s a problem with new and delete
used together. Consider the result of this sequence of allocations and deallocations:

Message* get_input(Device&); // make a Message on the free store

while(/* . . . */) {
 Message* p = get_input(dev);
 // . . .

Stroustrup_book.indb 936Stroustrup_book.indb 936 4/22/14 9:43 AM4/22/14 9:43 AM

25.3 MEMORY MANAGEMENT 937

 Node* n1 = new Node(arg1,arg2);
 // . . .
 delete p;
 Node* n2 = new Node (arg3,arg4);
 // . . .
}

Each time around the loop we create two Nodes, and in the process of doing
so we create a Message and delete it again. Such code would not be unusual as
part of building a data structure based on input from some “device.” Looking at
this code, we might expect to “consume” 2*sizeof(Node) bytes of memory (plus
free-store overhead) each time around the loop. Unfortunately, it is not guaran-
teed that the “consumption” of memory is restricted to the expected and desired
2*sizeof(Node) bytes. In fact, it is unlikely to be the case.

Assume a simple (though not unrealistic) memory manager. Assume also that
a Message is a bit larger than a Node. We can visualize the use of free space like
this, using orange for the Message, green for the Nodes, and plain white for “a
hole” (that is, “unused space”):

After creating n1 (one Message and one Node)

After deleting p (one “hole” and one Node)

After creating n2 (two Nodes and a small “hole”)

After creating n1 the 2nd time through the loop

After creating n2 the 2nd time through the loop

After creating n2 the 3rd time through the loop

So, we are leaving behind some unused space (“a hole”) on the free store each
time we execute the loop. That may be just a few bytes, but if we can’t use those
holes it will be as bad as a memory leak — and even a small leak will eventually
kill a long-running program. Having the free space in our memory scattered in
many “holes” too small for allocating new objects is called memory fragmentation.
Basically, the free-store manager will eventually use up all “holes” that are big
enough to hold the kind of objects that the program uses, leaving only holes
that are too small to be useful. This is a serious problem for essentially all

Stroustrup_book.indb 937Stroustrup_book.indb 937 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING938

long-running programs that use new and delete extensively; it is not uncommon
to find unusable fragments taking up most of the memory. That usually dramati-
cally increases the time needed to execute new as it has to search through lots of
objects and fragments for a suitably sized chunk of memory. Clearly this is not
the kind of behavior we can accept for an embedded system. This can also be a
serious problem in naively designed non-embedded systems.

Why can’t “the language” or “the system” deal with this? Alternatively, can’t
we just write our program to not create such “holes”? Let’s first examine the most
obvious solution to having all those little useless “holes” in our memory: let’s
move the Nodes so that all the free space gets compacted into one contiguous area
that we can use to allocate more objects.

Unfortunately, “the system” can’t do that. The reason is that C++ code refers
directly to objects in memory. For example, the pointers n1 and n2 contain real
memory addresses. If we moved the objects pointed to, those addresses would no
longer point to the right objects. Assume that we (somewhere) keep pointers to
the nodes we created. We could represent the relevant part of our data structure
like this:

Nodes with pointers to nodes

Now we compact memory by moving an object so that all the unused memory is
in one place:

After compacting

Unfortunately, we now have made a mess of those pointers by moving the ob-
jects they pointed to without updating the pointers. Why don’t we just update
the pointers when we move the objects? We could write a program to do that,
but only if we knew the details of the data structure. In general, “the system”
(the C++ run-time support system) has no idea where the pointers are; that is,
given an object, the question “Which pointers in the program point to this object
right now?” has no good answer. Even if that problem could be easily solved,
this approach (known as compacting garbage collection) is not always the right one.
For example, to work well, it typically requires more than twice the memory that
the program ever needs to be able to keep track of pointers and to move objects

Stroustrup_book.indb 938Stroustrup_book.indb 938 4/22/14 9:43 AM4/22/14 9:43 AM

25.3 MEMORY MANAGEMENT 939

around in. That extra memory may not be available on an embedded system. In
addition, an efficient compacting garbage collector is hard to make predictable.

We could of course answer that “Where are the pointers?” question for our
own data structures and compact those. That would work, but a simpler approach
is to avoid fragmentation in the first place. In the example here, we could simply
have allocated both Nodes before allocating the message:

while(. . .) {
 Node* n1 = new Node;
 Node* n2 = new Node;
 Message* p = get_input(dev);
 // . . . store information in nodes . . .
 delete p;
 // . . .
}

However, rearranging code to avoid fragmentation isn’t easy in general. Doing so
reliably is at best very difficult and often incompatible with other rules for good
code. Consequently, we prefer to restrict the use of the free store to ways that
don’t cause fragmentation in the first place. Often, preventing a problem is better
than solving it.

TRY THIS

Complete the program above and print out the addresses and sizes of the
objects created to see if and how “holes” appear on your machine. If you have
time, you might draw memory layouts like the ones above to better visualize
what’s going on.

25.3.2 Alternatives to the general free store
So, we mustn’t cause fragmentation. What do we do then? The first simple obser-
vation is that new cannot by itself cause fragmentation; it needs delete to create
the holes. So we start by banning delete. That implies that once an object is allo-
cated, it will stay part of the program forever.

In the absence of delete, is new predictable; that is, do all new operations
take the same amount of time? Yes, in all common implementations, but it is
not actually guaranteed by the standard. Usually, an embedded system has a
startup sequence of code that establishes the system as “ready to run” after initial
power-up or restart. During that period, we can allocate memory any way we like

T

Stroustrup_book.indb 939Stroustrup_book.indb 939 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING940

up to an allowed maximum. We could decide to use new during startup. Alterna-
tively (or additionally) we could set aside global (static) memory for future use.
For reasons of program structure, global data is often best avoided, but it can be
sensible to use that language mechanism to pre-allocate memory. The exact rules
for this should be laid down in a coding standard for a system (see §25.6).

There are two data structures that are particularly useful for predictable mem-
ory allocation:

• Stacks: A stack is a data structure where you can allocate an arbitrary
amount of memory (up to a given maximum size) and deallocate the last
allocation (only); that is, a stack can grow and shrink only at the top.
There can be no fragmentation, because there can be no “hole” between
two allocations.

• Pools: A pool is a collection of objects of the same size. We can allocate
and deallocate objects as long as we don’t allocate more objects than the
pool can hold. There can be no fragmentation because all objects are of
the same size.

For both stacks and pools, both allocation and deallocation are predictable
and fast.

So, for a hard real-time or critical system we can define stacks and pools as
needed. Better yet, we ought to be able to use stacks and pools as specified, imple-
mented, and tested by someone else (as long as the specification meets our needs).

Note that the C++ standard containers (vector, map, etc.) and the standard
string are not to be used because they indirectly use new. You can build (buy or
borrow) “standard-like” containers to be predictable, but the default ones that
come with your implementation are not constrained for embedded systems use.

Note that embedded systems typically have very stringent reliability require-
ments, so whatever solution we choose, we must make sure not to compromise
our programming style by regressing into using lots of low-level facilities directly.
Code that is full of pointers, explicit conversions, etc. is unreasonably hard to
guarantee as correct.

25.3.3 Pool example
A pool is a data structure from which we can allocate objects of a given type and
later deallocate (free) such objects. A pool contains a maximum number of ob-
jects; that number is specified when the pool is created. Using green for “allocated
object” and blue for “space ready for allocation as an object,” we can visualize a
pool like this:

Pool:

Stroustrup_book.indb 940Stroustrup_book.indb 940 4/22/14 9:43 AM4/22/14 9:43 AM

25.3 MEMORY MANAGEMENT 941

A Pool can be defined like this:

template<typename T, int N>
class Pool { // Pool of N objects of type T
public:
 Pool(); // make pool of N Ts
 T* get(); // get a T from the pool; return 0 if no free Ts
 void free(T*); // return a T given out by get() to the pool
 int available() const; // number of free Ts
private:
 // space for T[N] and data to keep track of which Ts are allocated
 // and which are not (e.g., a list of free objects)
};

Each Pool object has a type of elements and a maximum number of objects. We
can use a Pool like this:

Pool<Small_buffer,10> sb_pool;
Pool<Status_indicator,200> indicator_pool;

Small_buffer* p = sb_pool.get();
// . . .
sb_pool.free(p);

It is the job of the programmer to make sure that a pool is never exhausted. The
exact meaning of “make sure” depends on the application. For some systems, the
programmer must write the code such that get() is never called unless there is
an object to allocate. On other systems, a programmer can test the result of get()
and take some remedial action if that result is 0. A characteristic example of the
latter is a telephone system engineered to handle at most 100,000 calls at a time.
For each call, some resource, such as a dial buffer, is allocated. If the system runs
out of dial buffers (e.g., dial_buffer_pool.get() returns 0), the system refuses to set
up new connections (and may “kill” a few existing calls to create capacity). The
would-be caller can try again later.

Naturally, our Pool template is only one variation of the general idea of a
pool. For example, where the restraints on memory allocation are less Draconian,
we can define pools where the number of elements is specified in the constructor
or even pools where the number of elements can be changed later if we need more
objects than initially specified.

Stroustrup_book.indb 941Stroustrup_book.indb 941 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING942

25.3.4 Stack example
A stack is a data structure from which we can allocate chunks of memory and
deallocate the last allocated chunk. Using green for “allocated memory” and blue
for “space ready for allocation,” we can visualize a stack like this:

Stack:

Top of stack

As indicated, this stack “grows” toward the right.
We could define a stack of objects, just as we defined a pool of objects:

template<typename T, int N>
class Stack { // stack of N objects of type T
 // . . .
};

However, most systems have a need for allocation of objects of varying sizes. A
stack can do that whereas a pool cannot, so we’ll show how to define a stack from
which we allocate “raw” memory of varying sizes rather than fixed-size objects:

template<int N>
class Stack { // stack of N bytes
public:
 Stack(); // make an N-byte stack
 void* get(int n); // allocate n bytes from the stack;
 // return 0 if no free space
 void free(); // return the last value returned by get() to the stack
 int available() const; // number of available bytes
private:
 // space for char[N] and data to keep track of what is allocated
 // and what is not (e.g., a top-of-stack pointer)
};

Since get() returns a void* pointing to the required number of bytes, it is our job
to convert that memory to the kinds of objects we want. We can use such a stack
like this:

Stack<50*1024> my_free_store; // 50K worth of storage to be used as a stack

void* pv1 = my_free_store.get(1024);
int* buffer = static_cast<int*>(pv1);

Stroustrup_book.indb 942Stroustrup_book.indb 942 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 943

void* pv2 = my_free_store.get(sizeof(Connection));
Connection* pconn = new(pv2) Connection(incoming,outgoing,buffer);

The use of static_cast is described in §17.8. The new(pv2) construct is a “place-
ment new.” It means “Construct an object in the space pointed to by pv2.” It
doesn’t allocate anything. The assumption here is that the type Connection has a
constructor that will accept the argument list (incoming,outgoing,buffer). If that’s
not the case, the program won’t compile.

Naturally, our Stack template is only one variation of the general idea of a
stack. For example, where the restraints on memory allocation are less Draconian,
we can define stacks where the number of bytes available for allocation is specified
in the constructor.

25.4 Addresses, pointers, and arrays
Predictability is a need of some embedded systems; reliability is a concern of all.
This leads to attempts to avoid language features and programming techniques
that have proved error-prone (in the context of embedded systems programming,
if not necessarily everywhere). Careless use of pointers is the main suspect here.
Two problem areas stand out:

• Explicit (unchecked and unsafe) conversions
• Passing pointers to array elements

The former problem can typically be handled simply by severely restricting the
use of explicit type conversions (casts). The pointer/array problems are more sub-
tle, require understanding, and are best dealt with using (simple) classes or library
facilities (such as array, §20.9). Consequently, this section focuses on how to ad-
dress the latter problems.

25.4.1 Unchecked conversions
Physical resources (e.g., control registers for external devices) and their most
basic software controls typically exist at specific addresses in a low-level system.
We have to enter such addresses into our programs and give a type to such data.
For example:

Device_driver* p = reinterpret_cast<Device_driver*>(0xffb8);

See also §17.8. This is the kind of programming you do with a manual or online
documentation open. The correspondence between a hardware resource — the
address of the resource’s register(s) (expressed as an integer, often a hexadecimal
integer) — and pointers to the software that manipulates the hardware resource

Stroustrup_book.indb 943Stroustrup_book.indb 943 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING944

is brittle. You have to get it right without much help from the compiler (because
it is not a programming language issue). Usually, a simple (nasty, completely
unchecked) reinterpret_cast from an int to a pointer type is the essential link in
the chain of connections from an application to its nontrivial hardware resources.

Where explicit conversions (reinterpret_cast, static_cast, etc.; see §A.5.7)
are not essential, avoid them. Such conversions (casts) are necessary far less fre-
quently than is typically assumed by programmers whose primary experience is
with C and C-style C++.

25.4.2 A problem: dysfunctional interfaces
As mentioned (§18.6.1), an array is often passed to a function as a pointer to an
element (often, a pointer to the first element). Thereby, they “lose” their size, so
that the receiving function cannot directly tell how many elements are pointed to,
if any. This is a cause of many subtle and hard-to-fix bugs. Here, we examine ex-
amples of those array/pointer problems and present an alternative. We start with
an example of a very poor (but unfortunately not rare) interface and proceed to
improve it. Consider:

void poor(Shape* p, int sz) // poor interface design
{
 for (int i = 0; i<sz; ++i) p[i].draw();
}

void f(Shape* q, vector<Circle>& s0) // very bad code
{
 Polygon s1[10];
 Shape s2[10];
 // initialize
 Shape* p1 = new Rectangle{Point{0,0},Point{10,20}};
 poor(&s0[0],s0.size()); // #1 (pass the array from the vector)
 poor(s1,10); // #2
 poor(s2,20); // #3
 poor(p1,1); // #4
 delete p1;
 p1 = 0;
 poor(p1,1); // #5
 poor(q,max); // #6
}

The function poor() is an example of poor interface design: it provides an inter-
face that provides the caller ample opportunity for mistakes but offers the imple-
menter essentially no opportunity to defend against such mistakes.

Stroustrup_book.indb 944Stroustrup_book.indb 944 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 945

TRY THIS

Before reading further, try to see how many errors you can find in f(). Specifi-
cally, which of the calls of poor() could cause the program to crash?

At first glance, the calls look fine, but this is the kind of code that costs a program-
mer long nights of debugging and gives a quality engineer nightmares.

 1. Passing the wrong element type, e.g., poor(&s0[0],s0.size()). Also, s0
might be empty, in which case &s0[0] is wrong.

 2. Use of a “magic constant” (here, correct): poor(s1,10). Also, wrong ele-
ment type.

 3. Use of a “magic constant” (here, incorrect): poor(s2,20).

 4. Correct (easily verified): first call poor(p1,1).

 5. Passing a null pointer: second call poor(p1,1).

 6. May be correct: poor(q,max). We can’t be sure from looking at this code
fragment. To see if q points to an array with at least max elements, we
have to find the definitions of q and max and determine their values at
our point of use.

In each case, the errors are simple. We are not dealing with some subtle algorith-
mic or data structure problem. The problem is that poor()’s interface, involving
an array passed as a pointer, opens the possibility of a collection of problems.
You may appreciate how the problems were obscured by our use of “technical”
unhelpful names, such as p1 and s0. However, mnemonic, but misleading, names
can make such problems even harder to spot.

In theory, a compiler could catch a few of these errors (such as the second
call of poor(p1,1) where p1==0), but realistically we are saved from disaster for
this particular example only because the compiler catches the attempt to define
objects of the abstract class Shape. However, that is unrelated to poor()’s interface
problems, so we should not take too much comfort from that. In the following,
we use a variant of Shape that is not abstract so as not to get distracted from the
interface problems.

How come the poor(&s0[0],s0.size()) call is an error? The &s0[0] refers to the
first element of an array of Circles; it is a Circle*. We expect a Shape* and we pass
a pointer to an object of a class derived from Shape (here, a Circle*). That’s obvi-
ously acceptable: we need that conversion so that we can do object-oriented pro-
gramming, accessing objects of a variety of types through their common interface

T

Stroustrup_book.indb 945Stroustrup_book.indb 945 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING946

(here, Shape) (§14.2). However, poor() doesn’t just use that Shape* as a pointer;
it uses it as an array, subscripting its way through that array:

for (int i = 0; i<sz; ++i) p[i].draw();

That is, it looks at the objects starting at memory locations &p[0], &p[1], &p[2], etc.:

&p[0] &p[1] &p[2]

In terms of memory addresses, these pointers are sizeof(Shape) apart (§17.3.1).
Unfortunately for poor()’s caller, sizeof(Circle) is larger than sizeof(Shape), so
that the memory layout can be visualized like this:

&p[0]

1st Circle 2nd Circle 3rd Circle

&p[1] &p[2]

That is, poor() is calling draw() with a pointer into the middle of the Circles! This
is likely to lead to immediate disaster (crash).

The call poor(s1,10) is sneakier. It relies on a “magic constant” so it is imme-
diately suspect as a maintenance hazard, but there is a deeper problem. The only
reason the use of an array of Polygons doesn’t immediately suffer the problem we
saw for Circles is that a Polygon didn’t add data members to its base class Shape
(whereas Circle did; see §13.8 and §13.12); that is, sizeof(Shape)==sizeof(Poly-
gon) and — more generally — a Polygon has the same memory layout as a Shape.
In other words, we were “just lucky”; a slight change in the definition of Polygon
will cause a crash. So poor(s1,10) works, but it is a bug waiting to happen. This is
emphatically not quality code.

What we see here is the implementation reason for the general language rule
that “a D is a B” does not imply “a Container<D> is a Container” (§19.3.3).
For example:

class Circle : public Shape { /* . . . */ };

void fv(vector<Shape>&);
void f(Shape &);

Stroustrup_book.indb 946Stroustrup_book.indb 946 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 947

void g(vector<Circle>& vd, Circle & d)
{
 f(d); // OK: implicit conversion from Circle to Shape
 fv(vd); // error: no conversion from vector<Circle> to vector<Shape>
}

OK, so the use of poor() is very bad code, but can such code be considered
embedded systems code; that is, should this kind of problem concern us in
areas where safety or performance matters? Can we dismiss it as a hazard for
programmers of non-critical systems and just tell them, “Don’t do that”? Well,
many modern embedded systems rely critically on a GUI, which is almost
always organized in the object-oriented manner of our example. Examples in-
clude the iPod user interface, the interfaces of some cell phones, and operator’s
displays on “gadgets” up to and including airplanes. Another example is that
controllers of similar gadgets (such as a variety of electric motors) can constitute
a classic class hierarchy. In other words, this kind of code — and in particular,
this kind of function declaration — is exactly the kind of code we should worry
about. We need a safer way of passing information about collections of data
without causing other significant problems.

So, we don’t want to pass a built-in array to a function as a pointer plus a size.
What do we do instead? The simplest solution is to pass a reference to a container,
such as a vector. The problems we saw for

void poor(Shape* p, int sz);

simply cannot occur for

void general(vector<Shape>&);

If you are programming where std::vector (or the equivalent) is acceptable, simply
use vector (or the equivalent) consistently in interfaces; never pass a built-in array
as a pointer plus a size.

If you can’t restrict yourself to vector or equivalents, you enter a territory that
is more difficult and the solutions there involve techniques and language features
that are not simple — even though the use of the class (Array_ref) we provide is
straightforward.

25.4.3 A solution: an interface class
Unfortunately, we cannot use std::vector in many embedded systems because
it relies on the free store. We can solve that problem either by having a special
implementation of vector or (more easily) by using a container that behaves like

Stroustrup_book.indb 947Stroustrup_book.indb 947 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING948

a vector but doesn’t do memory management. Before outlining such an interface
class, let’s consider what we want from it:

• It is a reference to objects in memory (it does not own objects, allocate
objects, delete objects, etc.).

• It “knows” its size (so that it is potentially range checked).
• It “knows” the exact type of its elements (so that it cannot be the source

of type errors).
• It is as cheap to pass (copy) as a (pointer,count) pair.
• It does not implicitly convert to a pointer.
• It is easy to express a subrange of the range of elements described by an

interface object.
• It is as easy to use as built-in arrays.

We will only be able to approximate “as easy to use as built-in arrays.” We don’t
want it to be so easy to use that errors start to become likely.

Here is one such class:

template<typename T>
class Array_ref {
public:
 Array_ref(T* pp, int s) :p{pp}, sz{s} { }

 T& operator[](int n) { return p[n]; }
 const T& operator[](int n) const { return p[n]; }

 bool assign(Array_ref a)
 {
 if (a.sz!=sz) return false;
 for (int i=0; i<sz; ++i) { p[i]=a.p[i]; }
 return true;
 }

 void reset(Array_ref a) { reset(a.p,a.sz); }
 void reset(T* pp, int s) { p=pp; sz=s; }

 int size() const { return sz; }

 // default copy operations:
 // Array_ref doesn’t own any resources
 // Array_ref has reference semantics

Stroustrup_book.indb 948Stroustrup_book.indb 948 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 949

private:
 T* p;
 int sz;
};

Array_ref is close to minimal:

• No push_back() (that would require the free store) and no at() (that would
require exceptions).

• Array_ref is a form of reference, so copying simply copies (p,sz).
• By initializing with different arrays, we can have Array_refs that are of the

same type but have different sizes.
• By updating (p,size) using reset(), we can change the size of an existing

Array_ref (many algorithms require specifi cation of subranges).
• No iterator interface (but that could be easily added if we needed it). In

fact, an Array_ref is in concept very close to a range described by two
iterators.

An Array_ref does not own its elements; it does no memory management; it is
simply a mechanism for accessing and passing a sequence of elements. In that, it
differs from the standard library array (§20.9).

To ease the creation of Array_refs, we supply a few useful helper functions:

template<typename T> Array_ref<T> make_ref(T* pp, int s)
{
 return (pp) ? Array_ref<T>{pp,s} : Array_ref<T>{nullptr,0};
}

If we initialize an Array_ref with a pointer, we have to explicitly supply a size.
That’s an obvious weakness because it provides us with an opportunity to give
the wrong size. It also gives us an opportunity to use a pointer that is a result of
an implicit conversion of an array of a derived class to a pointer to a base class,
such as Polygon[10] to Shape* (the original horrible problem from §25.4.2), but
sometimes we simply have to trust the programmer.

We decided to be careful about null pointers (because they are a common
source of problems), and we took a similar precaution for empty vectors:

template<typename T> Array_ref<T> make_ref(vector<T>& v)
{
 return (v.size()) ? Array_ref<T>{&v[0],v.size()} : Array_ref<T>{nullptr,0};
}

Stroustrup_book.indb 949Stroustrup_book.indb 949 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING950

The idea is to pass the vector’s array of elements. We concern ourselves with vec-
tor here even though it is often not suitable in the kind of system where Array_ref
can be useful. The reason is that it shares key properties with containers that can
be used there (e.g., pool-based containers; see §25.3.3).

Finally, we deal with built-in arrays where the compiler knows the size:

template <typename T, int s> Array_ref<T> make_ref(T (&pp)[s])
{
 return Array_ref<T>{pp,s};
}

The curious T(&pp)[s] notation declares the argument pp to be a reference to an
array of s elements of type T. That allows us to initialize an Array_ref with an
array, remembering its size. We can’t declare an empty array, so we don’t have to
test for zero elements:

Polygon ar[0]; // error: no elements

Given Array_ref, we can try to rewrite our example:

void better(Array_ref<Shape> a)
{
 for (int i = 0; i<a.size(); ++i) a[i].draw();
}

void f(Shape* q, vector<Circle>& s0)
{
 Polygon s1[10];
 Shape s2[20];
 // initialize
 Shape* p1 = new Rectangle{Point{0,0},Point{10,20}};
 better(make_ref(s0)); // error: Array_ref<Shape> required
 better(make_ref(s1)); // error: Array_ref<Shape> required
 better(make_ref(s2)); // OK (no conversion required)
 better(make_ref(p1,1)); // OK: one element
 delete p1;
 p1 = 0;
 better(make_ref(p1,1)); // OK: no elements
 better(make_ref(q,max)); // OK (if max is OK)
}

Stroustrup_book.indb 950Stroustrup_book.indb 950 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 951

We see improvements:

• The code is simpler. The programmer rarely has to think about sizes, but
when necessary they are in a specifi c place (the creation of an Array_ref),
rather than scattered throughout the code.

• The type problem with the Circle[] -to-Shape[] and Polygon[] -to-Shape[]
conversions is caught.

• The problems with the wrong number of elements for s1 and s2 are im-
plicitly dealt with.

• The potential problem with max (and other element counts for pointers)
becomes more visible — it’s the only place we have to be explicit about size.

• We deal implicitly and systematically with null pointers and empty vectors.

25.4.4 Inheritance and containers
But what if we wanted to treat a collection of Circles as a collection of Shapes, that
is, if we really wanted better() (which is a variant of our old friend draw_all(); see
§19.3.2, §22.1.3) to handle polymorphism? Well, basically, we can’t. In §19.3.3
and §25.4.2, we saw that the type system has very good reasons for refusing to
accept a vector<Circle> as a vector<Shape>. For the same reason, it refuses to
accept an Array_ref<Circle> as an Array_ref<Shape>. If you have a problem re-
membering why, it might be a good idea to reread §19.3.3, because the point is
pretty fundamental even though it can be inconvenient.

Furthermore, to preserve run-time polymorphic behavior, we have to ma-
nipulate our polymorphic objects through pointers (or references): the dot in
a[i].draw() in better() was a giveaway. We should have expected problems with
polymorphism the second we saw that dot rather than an arrow (–>).

So what can we do? First we must use pointers (or references) rather than
objects directly, so we’ll try to use Array_ref<Circle*>, Array_ref<Shape*>, etc.
rather than Array_ref<Circle>, Array_ref<Shape>, etc.

However, we still cannot convert an Array_ref<Circle*> to an Array_
ref<Shape*> because we might then proceed to put elements into the Array_
ref<Shape*> that are not Circle*s. But there is a loophole:

• Here, we don’t want to modify our Array_ref<Shape*>; we just want to
draw the Shapes! This is an interesting and useful special case: our ar-
gument against the Array_ref<Circle*>-to-Array_ref<Shape*> conversion
doesn’t apply to a case where we don’t modify the Array_ref<Shape*>.

• All arrays of pointers have the same layout (independently of what kinds of
objects they point to), so we don’t get into the layout problem from §25.4.2.

Stroustrup_book.indb 951Stroustrup_book.indb 951 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING952

That is, there would be nothing wrong with treating an Array_ref<Circle*> as
an immutable Array_ref<Shape*>. So, we “just” have to find a way to treat an Ar-
ray_ref<Circle*> as an immutable Array_ref<Shape*>. Consider:

vector<Circle*>

Circle

Smiley_face
(derived from
Circle)

Silly_face
(derived from
Smiley_face)

array of Circle*

There is no logical problem treating that array of Circle* as an immutable array
of Shape* (from an Array_ref).

We seem to have strayed into expert territory. In fact, this problem is genu-
inely tricky and is unsolvable with the tools supplied so far. However, let’s see
what it takes to produce a close-to-perfect alternative to our dysfunctional — but
all too popular — interface style (pointer plus element count; see §25.4.2). Please
remember: Don’t go into “expert territory” just to prove how clever you are. Most
often, it is a better strategy to find a library where some experts have done the
design, implementation, and testing for you.

First, we rework better() to something that uses pointers and guarantees that
we don’t “mess with” the argument container:

void better2(const Array_ref<Shape*const> a)
{
 for (int i = 0; i<a.size(); ++i)
 if (a[i])
 a[i]–>draw();
}

We are now dealing with pointers, so we should check for null pointers. To make
sure that better2() doesn’t modify our arrays and vectors in unsafe ways through
Array_ref, we added a couple of consts. The first const ensures that we do not
apply modifying (mutating) operations, such as assign() and reset(), on our

Stroustrup_book.indb 952Stroustrup_book.indb 952 4/22/14 9:43 AM4/22/14 9:43 AM

25.4 ADDRESSES, POINTERS, AND ARRAYS 953

 Array_ref. The second const is placed after the * to indicate that we want a con-
stant pointer (rather than a pointer to constants); that is, we don’t want to modify
the element pointers even if we have operations available for that.

Next, we have to solve the central problem: how do we express the idea that
Array_ref<Circle*> can be converted

• To something like Array_ref<Shape*> (that we can use in better2())
• But only to an immutable version of Array_ref<Shape*>

We can do that by adding a conversion operator to Array_ref:

template<typename T>
class Array_ref {
public:
 // as before

 template<typename Q>
 operator const Array_ref<const Q>()
 {
 // check implicit conversion of elements:
 static_cast<Q>(*static_cast<T*>(nullptr)); // check element
 // conversion
 return Array_ref<const Q>{reinterpret_cast<Q*>(p),sz}; // convert
 // Array_ref
 }

 // as before
};

This is headache-inducing, but basically:

• The operator casts to Array_ref<const Q> for every type Q provided
we can cast an element of Array_ref<T> to an element of Array_ref<Q>
(we don’t use the result of that cast; we just check that we can cast the
element types).

• We construct a new Array_ref<const Q> by using brute force (reinter-
pret_cast) to get a pointer to the desired element type. Brute-force solu-
tions often come at a cost; in this case, never use an Array_ref conversion
from a class using multiple inheritance (§A.12.4).

• Note that const in Array_ref<const Q>: that’s what ensures that we can-
not copy an Array_ref<const Q> into a plain old mutable Array_ref<Q>.

Stroustrup_book.indb 953Stroustrup_book.indb 953 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING954

We did warn you that this was “expert territory” and “headache-inducing.” How-
ever, this version of Array_ref is easy to use (it’s only the definition/implementa-
tion that is tricky):

void f(Shape* q, vector<Circle*>& s0)
{
 Polygon* s1[10];
 Shape* s2[20];
 // initialize
 Shape* p1 = new Rectangle{Point{0,0},10};
 better2(make_ref(s0)); // OK: converts to Array_ref<Shape*const>
 better2(make_ref(s1)); // OK: converts to Array_ref<Shape*const>
 better2(make_ref(s2)); // OK (no conversion needed)
 better2(make_ref(p1,1)); // error
 better2(make_ref(q,max)); // error
}

The attempts to use pointers result in errors because they are Shape*s whereas
better2() expects an Array_ref<Shape*>; that is, better2() expects something that
holds pointers rather than a pointer. If we want to pass pointers to better2(), we
have to put them into a container (e.g., a built-in array or a vector) and pass that.
For an individual pointer, we could use the awkward make_ref(&p1,1). However,
there is no solution for arrays (with more than one element) that doesn’t involve
creating a container of pointers to objects.

In conclusion, we can create simple, safe, easy-to-use, and efficient interfaces
to compensate for the weaknesses of arrays. That was the major aim of this sec-
tion. “Every problem is solved by another indirection” (quote by David Wheeler)
has been proposed as “the first law of computer science.” That was the way we
solved this interface problem.

25.5 Bits, bytes, and words
We have talked about hardware memory concepts, such as bits, bytes, and words,
before, but in general programming those are not the ones we think much about.
Instead we think in terms of objects of specific types, such as double, string, Ma-
trix, and Simple_window. Here, we will look at a level of programming where we
have to be more aware of the realities of the underlying memory.

If you are uncertain about your knowledge of binary and hexadecimal repre-
sentations of integers, this may be a good time to review §A.2.1.1.

Stroustrup_book.indb 954Stroustrup_book.indb 954 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 955

25.5.1 Bits and bit operations
Think of a byte as a sequence of 8 bits:

1

7:
1

2:
1

1:
1

0:
1

5:
0

6:
0

4:
0

3:

Note the convention of numbering bits in a byte from the right (the least signifi-
cant bit) to the left (the most significant bit). Now think of a word as a sequence
of 4 bytes:

0xff
3:

0x10
2:

0xde
1:

0xad
0:

Again, we number right to left, that is, least significant byte to most significant
byte. These pictures oversimplify what is found in the real world: there have been
computers where a byte was 9 bits (but we haven’t seen one for a decade), and
machines where a word is 2 bytes are not rare. However, as long as you remember
to check your system’s manual before taking advantage of “8 bits” and “4 bytes,”
you should be fine.

In code meant to be portable, use <limits> (§24.2.1) to make sure your as-
sumptions about sizes are correct. It is possible to place assertions in the code for
the compiler to check:

static_assert(4<=sizeof(int),"ints are too small");
static_assert(!numeric_limits<char>::is_signed,"char is signed");

The first argument of a static_assert is a constant expression assumed to be true.
If it is not true, that is, the assertion failed, the compiler writes the second argu-
ment, a string, as part of an error message.

How do we represent a set of bits in C++? The answer depends on how
many bits we need and what kinds of operations we want to be convenient and
efficient. We can use the integer types as sets of bits:

• bool — 1 bit, but takes up a whole byte of space
• char — 8 bits
• short — 16 bits
• int — typically 32 bits, but many embedded systems have 16-bit ints
• long int — 32 bits or 64 bits (but at least as many bits as int)
• long long int — 32 bits or 64 bits (but at least as many bits as long)

Stroustrup_book.indb 955Stroustrup_book.indb 955 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING956

The sizes quoted are typical, but different implementations may have different
sizes, so if you need to know, test. In addition, the standard library provides ways
of dealing with bits:

• std::vector<bool> — when we need more than 8*sizeof(long) bits
• std::bitset — when we need more than 8*sizeof(long) bits
• std::set — an unordered collection of named bits (see §21.6.5)
• A fi le: lots of bits (see §25.5.6)

Furthermore, we can use two language features to represent bits:

• Enumerations (enums); see §9.5
• Bitfi elds; see §25.5.5

This variety of ways to represent “bits” reflects the fact that ultimately everything
in computer memory is a set of bits, so people have felt the urge to provide a va-
riety of ways of looking at bits, naming bits, and doing operations on bits. Note
that the built-in facilities deal with a set of a fixed number of bits (e.g., 8, 16, 32,
and 64) so that the computer can do logical operations on them at optimal speed
using operations provided directly by hardware. In contrast, the standard library
facilities provide an arbitrary number of bits. This may limit performance, but
don’t prejudge efficiency issues: the library facilities can be — and often are — op-
timized to run well if you pick a number of bits that maps well to the underlying
hardware.

Let’s first look at the integers. For these, C++ basically provides the bitwise
logical operations that the hardware directly implements. These operations apply
to each bit of their operands:

Bitwise operations

| or Bit n of x|y is 1 if bit n of x or bit n of y is 1.

& and Bit n of x&y is 1 if bit n of x and bit n of y is 1.

^ exclusive or Bit n of x^y is 1 if bit n of x or bit n of y is 1 but not if both are 1.

<< left shift Bit n of x<<s is bit n+s of x.

>> right shift Bit n of x>>s is bit n–s of x.

~ complement Bit n of ~x is the opposite of bit n of x.

You might find the inclusion of “exclusive or” (^, sometimes called “xor”) as
a fundamental operation odd. However, that’s the essential operation in much
graphics and encryption code.

Stroustrup_book.indb 956Stroustrup_book.indb 956 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 957

The compiler won’t confuse a bitwise logical << for an output operator,
but you might. To avoid confusion, remember that an output operator takes an
 ostream as its left-hand operand, whereas a bitwise logical operator takes an inte-
ger as its left-hand operand.

Note that & differs from && and | differs from || by operating individually
on every bit of its operands (§A.5.5), producing a result with as many bits as its
operands. In contrast, && and || just return true or false.

Let’s try a couple of examples. We usually express bit patterns using hexadec-
imal notation. For a half byte (4 bits) we have

Hex Bits Hex Bits

0x0 0000 0x8 1000

0x1 0001 0x9 1001

0x2 0010 0xa 1010

0x3 0011 0xb 1011

0x4 0100 0xc 1100

0x5 0101 0xd 1101

0x6 0110 0xe 1110

0x7 0111 0xf 1111

For numbers up to 9 we could have used decimal, but using hexadecimal helps
us to remember that we are thinking about bit patterns. For bytes and words,
hexadecimal becomes really useful. The bits in a byte can be expressed as two
hexadecimal digits. For example:

Hex byte Bits

0x00 0000 0000

0x0f 0000 1111

0xf0 1111 0000

0xff 1111 1111

0xaa 1010 1010

0x55 0101 0101

Stroustrup_book.indb 957Stroustrup_book.indb 957 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING958

So, using unsigned (§25.5.3) to keep things as simple as possible, we can write

unsigned char a = 0xaa;
unsigned char x0 = ~a; // complement of a

1 0 1 0 1 0 1 0a: 0xaa

0 1 0 1 0 1 0 1~a: 0x55

unsigned char b = 0x0f;
unsigned char x1 = a&b; // a and b

1 0 1 0 1 0 1 0a: 0xaa

0 0 0 0 1 1 1 1b: 0xf

0 0 0 0 1 0 1 0a&b: 0xa

unsigned char x2 = a^b; // exclusive or: a xor b

1 0 1 0 1 0 1 0a: 0xaa

0 0 0 0 1 1 1 1b: 0xf

1 0 1 0 0 1 0 1a^b: 0xa5

unsigned char x3 = a<<1; // left shift 1

1 0 1 0 1 0 1 0a: 0xaa

0 1 0 1 0 1 0 0a<<1: 0x54

Note that a 0 is “shifted in” from beyond bit 0 (the least significant bit) to fill up
the byte. The leftmost bit (bit 7) simply disappears.

unsigned char x4 == a>>2; // right shift 2

1 0 1 0 1 0 1 0a: 0xaa

0 0 1 0 1 0 1 0a>>2: 0x2a

Note that two 0s are “shifted in” from beyond bit 7 (the most significant bit) to fill
up the byte. The rightmost 2 bits (bit 1 and bit 0) simply disappear.

Stroustrup_book.indb 958Stroustrup_book.indb 958 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 959

We can draw bit patterns like this and it is good to get a feel for bit patterns,
but it soon becomes tedious. Here is a little program that converts integers to their
bit representation:

int main()
{
 for (int i; cin>>I;)
 cout << dec << i << "=="
 << hex << "0x" << i << "=="
 << bitset<8*sizeof(int)>{i} << '\n';
}

To print the individual bits of the integer, we use a standard library bitset:

bitset<8*sizeof(int)>{i}

A bitset is a fixed number of bits. In this case, we use the number of bits in an
int — 8*sizeof(int) — and initialize that bitset with our integer i.

TRY THIS

Get the bits example to work and try out a few values to develop a feel for
binary and hexadecimal representations. If you get confused about the repre-
sentation of negative values, just try again after reading §25.5.3.

25.5.2 bitset
The standard library template class bitset from <bitset> is used to represent and
manipulate sets of bits. Each bitset is of a fixed size, specified at construction:

bitset<4> flags;
bitset<128> dword_bits;
bitset<12345> lots;

A bitset is by default initialized to “all zeros” but is typically given an initial-
izer; bitset initializers can be unsigned integers or strings of zeros and ones. For
example:

bitset<4> flags = 0xb;
bitset<128> dword_bits {string{"1010101010101010"}};
bitset<12345> lots;

T

Stroustrup_book.indb 959Stroustrup_book.indb 959 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING960

Here lots will be all zeros, and dword_bits will have 112 zeros followed by the 16
bits we explicitly specified. If you try to initialize with a string that has characters
different from '0' and '1', a std::invalid_argument exception is thrown:

string s;
cin>>s;
bitset<12345> my_bits{s}; // may throw std::invalid_argument

We can use the usual bit manipulation operators for bitsets. Assume that b1, b2,
and b3 are bitsets:

b1 = b2&b3; // and
b1 = b2|b3; // or
b1 = b2^b3; // xor
b1 = ~b2; // complement
b1 = b2<<2; // shift left
b1 = b2>>3; // shift right

Basically, for bit operations (bitwise logical operations), a bitset acts like an un-
signed int (§25.5.3) of an arbitrary, user-specified size. What you can do to an
unsigned int (with the exception of arithmetic operations), you can do to a bitset.
In particular, bitsets are useful for I/O:

cin>>b; // read a bitset from input
cout<<bitset<8>{'c'}; // output the bit pattern for the character 'c'

When reading into a bitset, an input stream looks for zeros and ones. Consider:

10121

This is read as 101, leaving 21 unread in the stream.
As for a byte and a word, the bits of a bitset are numbered right to left (from

the least significant bit toward the most significant), so that, for example, the nu-
merical value of bit 7 is 27:

1

7:
1

2:
1

1:
1

0:
1

5:
0

6:
0

4:
0

3:

For bitsets, the numbering is not just a convention because a bitset supports sub-
scripting of bits. For example:

Stroustrup_book.indb 960Stroustrup_book.indb 960 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 961

int main()
{
 constexpr int max = 10;
 for (bitset<max> b; cin>>b;) {
 cout << b << '\n';
 for (int i =0; i<max; ++i) cout << b[i]; // reverse order
 cout << '\n';
 }
}

If you need a more complete picture of bitsets, look them up in your online doc-
umentation, a manual, or an expert-level textbook.

25.5.3 Signed and unsigned
Like most languages, C++ supports both signed and unsigned integers. Unsigned
integers are trivial to represent in memory: bit0 means 1, bit1 means 2, bit2 means
4, and so on. However, signed integers pose a problem: how do we distinguish
between positive and negative numbers? C++ gives the hardware designers some
freedom of choice, but almost all implementations use the two’s complement rep-
resentation. The leftmost (most significant bit) is taken as the “sign bit”:

Sign bit
8 bits == 1 byte

16-bit (signed) int

If the sign bit is 1, the number is negative. Almost universally, the two’s comple-
ment representation is used. To save paper, we consider how we would represent
signed numbers in a 4-bit integer:

Positive: 0 1 2 4 7
0000 0001 0010 0100 0111

Negative: 1111 1110 1101 1011 1000

–1 –2 –3 –5 –8

The bit pattern for –(x+1) can be described as the complement of the bits in x (also
known as ~x; see §25.5.1).

Stroustrup_book.indb 961Stroustrup_book.indb 961 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING962

So far, we have just used signed integers (e.g., int). A slightly better set of rules
would be:

• Use signed integers (e.g., int) for numbers.
• Use unsigned integers (e.g., unsigned int) for sets of bits.

That’s not a bad rule of thumb, but it’s hard to stick to because some people pre-
fer unsigned integers for some forms of arithmetic and we sometimes need to use
their code. In particular, for historical reasons going back to the early days of C
when ints were 16 bits and every bit mattered, v.size() for a vector is an unsigned
integer. For example:

vector<int> v;
// . . .
for (int i = 0; i<v.size(); ++i) cout << v[i] << '\n';

A “helpful” compiler may warn us that we are mixing signed (i.e., i) and unsigned
(i.e., v.size()) values. Mixing signed and unsigned variables could lead to disaster.
For example, the loop variable i might overflow; that is, v.size() might be larger
than the largest signed int. Then, i would reach the highest value that could
represent a positive integer in a signed int (the number of bits in an int minus 1
to the power of two, minus 1, e.g., 215–1). Then, the next ++ couldn’t yield the
next-highest integer and would instead result in a negative value. The loop would
never terminate! Each time we reached the largest integer, we would start again
from the smallest negative int value. So for 16-bit ints that loop is a (probably very
serious) bug if v.size() is 32*1024 or larger; for 32-bit ints the problem occurs if i
reaches 2*1024*1024*1024.

So, technically, most of the loops in this book have been sloppy and could
have caused problems. In other words, for an embedded system, we should either
have verified that the loop could never reach the critical point or replaced it with
a different form of loop. To avoid this problem we can use the size_type provided
by vector, iterators, or a range-for-statement:

for (vector<int>::size_type i = 0; i<v.size(); ++i) cout << v[i] << '\n';

for (vector<int>::iterator p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';

for (int x : v) cout << x << '\n';

The size_type is guaranteed to be unsigned, so the first (unsigned integer) form
has one more bit to play with than the int version above. That can be significant,
but it still gives only a single bit of range (doubling the number of iterations that
can be done). The loop using iterators has no such limitation.

Stroustrup_book.indb 962Stroustrup_book.indb 962 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 963

TRY THIS

The following example may look innocent, but it is an infinite loop:

void infinite()
{
 unsigned char max = 160; // very large
 for (signed char i=0; i<max; ++i) cout << int(i) << '\n';
}

Run it and explain why.

Basically, there are two reasons for using unsigned integers as integers, as opposed
to using them simply as sets of bits (i.e., not using +, – , *, and /):

• To gain that extra bit of precision
• To express the logical property that the integer can’t be negative

The former is what programmers get out of using an unsigned loop variable.
The problem with using both signed and unsigned types is that in C++ (as in

C) they convert to each other in surprising and hard-to-remember ways. Consider:

unsigned int ui = –1;

int si = ui;
int si2 = ui+2;
unsigned ui2 = ui+2;

Surprisingly, the first initialization succeeds and ui gets the value 4294967295,
which is the unsigned 32-bit integer with the same representation (bit pattern) as
the signed integer –1 (“all ones”). Some people consider that neat and use –1 as
shorthand for “all ones”; others consider that a problem. The same conversion
rule applies from unsigned to signed, so si gets the value –1. As we would expect,
si2 becomes 1 (–1+2 == 1), and so does ui2. The result for ui2 ought to sur-
prise you for a second: why should 4294967295+2 be 1? Look at 4294967295
as a hexadecimal number (0xffffffff) and things become clearer: 4294967295 is
the largest unsigned 32-bit integer, so 4294967297 cannot be represented as a
32-bit integer — unsigned or not. So we say either that 4294967295+2 overflowed
or (more precisely) that unsigned integers support modular arithmetic; that is,
arithmetic on 32-bit integers is modulo-32 arithmetic.

T

Stroustrup_book.indb 963Stroustrup_book.indb 963 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING964

Is everything clear so far? Even if it is, we hope we have convinced you that
playing with that extra bit of precision in an unsigned integer is playing with fire.
It can be confusing and is therefore a potential source of errors.

What happens if an integer overflows? Consider:

Int i = 0;
while (++i) print(i); // print i as an integer followed by a space

What sequence of values will be printed? Obviously, this depends on the defini-
tion of Int (no, for once, the use of the capital I isn’t a typo). For an integer type
with a limited number of bits, we will eventually overflow. If Int is unsigned (e.g.,
unsigned char, unsigned int, or unsigned long long), the ++ is modulo arithmetic,
so after the largest number that can be represented we get 0 (and the loop termi-
nates). If Int is a signed integer (e.g., signed char), the numbers will suddenly turn
negative and start working their way back up to 0 (where the loop will terminate).
For example, for a signed char, we will see 1 2 . . . 126 127 –128 –127 . . . –2 –1.

What happens if an integer overflows? The answer is that we proceed as if
we had enough bits, but throw away whichever part of the result doesn’t fit in the
integer into which we store our result. That strategy will lose us the leftmost (most
significant) bits. That’s the same effect we see when we assign:

int si = 257; // doesn’t fit into a char
char c = si; // implicit conversion to char
unsigned char uc = si;
signed char sc = si;
print(si); print(c); print(uc); print(sc); cout << '\n';

si = 129; // doesn’t fit into a signed char
c = si;
uc = si;
sc = si;
print(si); print(c); print(uc); print(sc);

We get

257 1 1 1
129 –127 129 –127

The explanation of this result is that 257 is two more than will fit into 8 bits (255
is “8 ones”) and 129 is two more than can fit into 7 bits (127 is “7 ones”) so the
sign bit gets set. Aside: This program shows that chars on our machine are signed
(c behaves as sc and differs from uc).

Stroustrup_book.indb 964Stroustrup_book.indb 964 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 965

TRY THIS

Draw out the bit patterns on a piece of paper. Using paper, then figure out
what the answer would be for si=128. Then run the program to see if your
machine agrees.

An aside: Why did we introduce that print() function? We could try

cout << i << ' ';

However, if i was a char, we would then output it as a character rather than an
integer value. So, to treat all integer types uniformly, we defined

template<typename T> void print(T i) { cout << i << '\t'; }

void print(char i) { cout << int(i) << '\t'; }

void print(signed char i) { cout << int(i) << '\t'; }

void print(unsigned char i) { cout << int(i) << '\t'; }

To conclude: You can use unsigned integers exactly as signed integers (includ-
ing ordinary arithmetic), but avoid that when you can because it is tricky and
error-prone.

• Try never to use unsigned just to get another bit of precision.
• If you need one extra bit, you’ll soon need another.

Unfortunately, you can’t completely avoid unsigned arithmetic:

• Subscripting for standard library containers uses unsigned.
• Some people like unsigned arithmetic.

25.5.4 Bit manipulation
Why do we actually manipulate bits? Well, most of us prefer not to. “Bit fid-
dling” is low-level and error-prone, so when we have alternatives, we take them.
However, bits are both fundamental and very useful, so many of us can’t just
pretend they don’t exist. This may sound a bit negative and discouraging, but
that’s deliberate. Some people really love to play with bits and bytes, so it is worth
remembering that bit fiddling is something you do when you must (quite possibly
having some fun in the process), but bits shouldn’t be everywhere in your code.

T

Stroustrup_book.indb 965Stroustrup_book.indb 965 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING966

To quote John Bentley: “People who play with bits will be bitten” and “People
who play with bytes will be bytten.”

So, when do we manipulate bits? Sometimes the natural objects of our appli-
cation simply are bits, so that some of the natural operations in our application
domain are bit operations. Examples of such domains are hardware indicators
(“flags”), low-level communications (where we have to extract values of various
types out of byte streams), graphics (where we have to compose pictures out of
several levels of images), and encryption (see the next section).

For example, consider how to extract (low-level) information from an integer
(maybe because we wanted to transmit it as bytes, the way binary I/O does):

void f(short val) // assume 16-bit, 2-byte short integer
{
 unsigned char right = val&0xff; // rightmost (least significant) byte
 unsigned char left = val>>8; // leftmost (most significant) byte
 // . . .
 bool negative = val&0x8000; // sign bit
 // . . .
}

Such operations are common. They are known as “shift and mask.” We “shift”
(using << or >>) to place the bits we want to consider to the rightmost (least sig-
nificant) part of the word where they are easy to manipulate. We “mask” using
and (&) together with a bit pattern (here 0xff) to eliminate (set to zero) the bits we
do not want in the result.

When we want to name bits, we often use enumerations. For example:

enum Printer_flags {
 acknowledge=1,
 paper_empty=1<<1,
 busy=1<<2,
 out_of_black=1<<3,
 out_of_color=1<<4,
 // . . .
};

This defines each enumerator to have exactly the value that its name indicates:

out_of_color 16 0x10 0001 0000

out_of_black 8 0x8 0000 1000

busy 4 0x4 0000 0100

paper_empty 2 0x2 0000 0010

acknowledge 1 0x1 0000 0001

Stroustrup_book.indb 966Stroustrup_book.indb 966 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 967

Such values are useful because they can be combined independently:

unsigned char x = out_of_color | out_of_black; // x becomes 24 (16+8)
x |= paper_empty; // x becomes 26 (24+2)

Note how |= can be read as “set a bit” (or as “set some bits”). Similarly, & can be
read as “Is a bit set?” For example:

if (x& out_of_color) { // is out_of_color set? (yes, it is)
// . . .
}

We can still use & to mask:

unsigned char y = x &(out_of_color | out_of_black); // y becomes 24

Now y has a copy of the bits from x’s positions 4 and 3 (out_of_color and
out_of_black).

It is very common to use an enum as a set of bits. When doing that, we need
a conversion to get the result of a bitwise logical operation “back into” the enum.
For example:

Flags z = Printer_flags(out_of_color | out_of_black); // the cast is necessary

The reason that the cast is needed is that the compiler cannot know that the result
of out_of_color | out_of_black is a valid value for a Flags variable. The compiler’s
skepticism is warranted: after all, no enumerator has a value 24 (out_of_color |
out_of_black), but in this case, we know the assignment to be reasonable (but the
compiler does not).

25.5.5 Bitfi elds
As mentioned, the hardware interface is one area where bits occur frequently.
Typically, an interface is defined as a mixture of bits and numbers of various sizes.
These “bits and numbers” are typically named and occur in specific positions of a
word, often called a device register. C++ has a specific language facility to deal with
such fixed layouts: bitfields. Consider a page number as used in the page manager
deep in an operating system. Here is a diagram from an operating system manual:

1

1:
1

0:
1

2:
3

6:
3

9:
22

31: position:

CCA unusedPFN name:

PPN:
3:
1

nonreachable
dirty

valid
global

Stroustrup_book.indb 967Stroustrup_book.indb 967 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING968

The 32-bit word is used as two numeric fields (one of 22 bits and one of 3 bits)
and four flags (1 bit each). The sizes and positions of these pieces of data are fixed.
There is even an unused (and unnamed) “field” in the middle. We can express
this as a struct:

struct PPN { // R6000 Physical Page Number
 unsigned int PFN : 22 ; // Page Frame Number
 int : 3 ; // unused
 unsigned int CCA : 3 ; // Cache Coherency Algorithm
 bool nonreachable : 1 ;
 bool dirty : 1 ;
 bool valid : 1 ;
 bool global : 1 ;
};

We had to read the manual to see that PFN and CCA should be interpreted as
unsigned integers, but otherwise we could write out that struct directly from the
diagram. Bitfields fill a word left to right. You give the number of bits as an integer
value after a colon. You can’t specify an absolute position (e.g., bit 8). If you “con-
sume” more bits with bitfields than a word can hold, the fields that don’t fit are
put into the next word. Hopefully, that’s what you want. Once defined, a bitfield
is used exactly like other variables:

void part_of_VM_system(PPN * p)
{
 // . . .
 if (p–>dirty) { // contents changed
 // copy to disk
 p–>dirty = 0 ;
 }
 // . . .
}

Bitfields primarily save you the bother of shifting and masking to get to informa-
tion placed in the middle of a word. For example, given a PPN called pn we could
extract CCA like this:

unsigned int x = pn.CCA; // extract CCA

Had we used an int called pni to represent the same bits, we could instead have
written

unsigned int y = (pni>>4)&0x7; // extract CCA

Stroustrup_book.indb 968Stroustrup_book.indb 968 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 969

That is, shift pn right so that CCA is the leftmost bit, then mask all other bits off
with 0x7 (i.e., last three bits set). If you look at the machine code, you’ll most likely
find that the generated code is identical for those two lines.

The “acronym soup” (CCA, PPN, PFN) is typical of code at this level and
makes little sense out of context.

25.5.6 An example: simple encryption
As an example of manipulation of data at the level of the data’s representation as
bits and bytes, let us consider a simple encryption algorithm: the Tiny Encryp-
tion Algorithm (TEA). It was originally written by David Wheeler of Cambridge
University (§22.2.1). It is small but the protection against undesired decryption
is excellent.

Don’t look too hard at the code (unless you really want to and are willing
to risk a headache). We present the code simply to give you the flavor of some
real-world and useful bit manipulation code. If you want to make a study of en-
cryption, you need a separate textbook for that. For more information and variants
of the algorithm in other languages, see http://en.wikipedia.org/wiki/Tiny_Encryp-
tion_Algorithm and the TEA website of Professor Simon Shepherd, Bradford Uni-
versity, England. The code is not meant to be self-explanatory (no comments!).

The basic idea of enciphering/deciphering (also known as encryption/decryp-
tion) is simple. I want to send you some text, but I don’t want others to read it.
Therefore, I transform the text in a way that renders it unreadable to people who
don’t know exactly how I modified it — but in such a way that you can reverse my
transformation and read the text. That’s called enciphering. To encipher I use an
algorithm (which we must assume an uninvited listener knows) and a string called
the “key.” Both you and I have the key (and we hope that the uninvited listener
does not). When you get the enciphered text, you decipher it using the “key”; that
is, you reconstitute the “clear text” that I sent.

TEA takes as argument an array of two unsigned longs (v[0],v[1]) represent-
ing eight characters to be enciphered, an array of two unsigned longs (w[0],w[1])
into which the enciphered output is written, and an array of four unsigned longs
(k[0]..k[3]), which is the key:

void encipher(
 const unsigned long *const v,
 unsigned long *const w,
 const unsigned long * const k)
{
 static_assert(sizeof(long)==4,"size of long wrong for TEA");

 unsigned long y = v[0];
 unsigned long z = v[1];

Stroustrup_book.indb 969Stroustrup_book.indb 969 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING970

 unsigned long sum = 0;
 const unsigned long delta = 0x9E3779B9;

 for (unsigned long n = 32; n––>0;) {
 y += (z<<4 ^ z>>5) + z^sum + k[sum&3];
 sum += delta;
 z += (y<<4 ^ y>>5) + y^sum + k[sum>>11 & 3];
 }
 w[0]=y;
 w[1]=z;
}

Note how all data is unsigned so that we can perform bitwise operations on it
without fear of surprises caused by special treatment related to negative num-
bers. Shifts (<< and >>), exclusive or (^), and bitwise and (&) do the essential
work with an ordinary (unsigned) addition thrown in for good measure. This
code is specifically written for a machine where there are 4 bytes in a long. The
code is littered with “magic” constants (e.g., it assumes that sizeof(long) is 4).
That’s generally not a good idea, but this particular piece of software fits on a sin-
gle sheet of paper. As a mathematical formula, it fits on the back of an envelope
or — as originally intended — in the head of a programmer with a good memory.
David Wheeler wanted to be able to encipher things while he was traveling with-
out bringing notes, a laptop, etc. In addition to being small, this code is also fast.
The variable n determines the number of iterations: the higher the number of
iterations, the stronger the encryption. To the best of our knowledge, for n==32
TEA has never been broken.

Here is the corresponding deciphering function:

void decipher(
 const unsigned long *const v,
 unsigned long *const w,
 const unsigned long * const k)
{
 static_assert(sizeof(long)==4,"size of long wrong for TEA");

 unsigned long y = v[0];
 unsigned long z = v[1];
 unsigned long sum = 0xC6EF3720;
 const unsigned long delta = 0x9E3779B9;

Stroustrup_book.indb 970Stroustrup_book.indb 970 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 971

 // sum = delta<<5, in general sum = delta * n
 for (unsigned long n = 32; n–– > 0;) {
 z –= (y << 4 ^ y >> 5) + y ^ sum + k[sum>>11 & 3];
 sum –= delta;
 y –= (z << 4 ^ z >> 5) + z ^ sum + k[sum&3];
 }
 w[0]=y;
 w[1]=z;
}

We can use TEA like this to produce a file to be sent over an unsafe connection:

int main() // sender
{
 const int nchar = 2*sizeof(long); // 64 bits
 const int kchar = 2*nchar; // 128 bits

 string op;
 string key;
 string infile;
 string outfile;
 cout << "please enter input file name, output file name, and key:\n";
 cin >> infile >> outfile >> key;
 while (key.size()<kchar) key += '0'; // pad key
 ifstream inf(infile);
 ofstream outf(outfile);
 if (!inf || !outf) error("bad file name");

 const unsigned long* k =
 reinterpret_cast<const unsigned long*>(key.data());

 unsigned long outptr[2];
 char inbuf[nchar];
 unsigned long* inptr = reinterpret_cast<unsigned long*>(inbuf);
 int count = 0;

 while (inf.get(inbuf[count])) {
 outf << hex; // use hexadecimal output
 if (++count == nchar) {
 encipher(inptr,outptr,k);
 // pad with leading zeros:

Stroustrup_book.indb 971Stroustrup_book.indb 971 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING972

 outf << setw(8) << setfill('0') << outptr[0] << ' '
 << setw(8) << setfill('0') << outptr[1] << ' ';
 count = 0;
 }
 }

 if (count) { // pad
 while(count != nchar) inbuf[count++] = '0';
 encipher(inptr,outptr,k);
 outf << outptr[0] << ' ' << outptr[1] << ' ';
 }
}

The essential piece of code is the while-loop; the rest is just support. The
while-loop reads characters into the input buffer, inbuf, and every time it has
eight characters as needed by TEA it passes them to encipher(). TEA doesn’t care
about characters; in fact, it has no idea what it is enciphering. For example, you
could encipher a photo or a phone conversation. All TEA cares about is that it is
given 64 bits (two unsigned longs) so that it can produce a corresponding 64 bits.
So, we take a pointer to the inbuf and cast it to an unsigned long* and pass that to
TEA. We do the same for the key; TEA will use the first 128 bits (four unsigned
longs) of the key, so we “pad” the user’s input to be sure that there are 128 bits.
The last statement pads the text with zeros to make up the multiple of 64 bits (8
bytes) required by TEA.

How do we transmit the enciphered text? We have a free choice, but since it
is “just bits” rather than ASCII or Unicode characters, we can’t really treat it as
ordinary text. Binary I/O (see §11.3.2) would be an option, but here we decided
to output the output words as hexadecimal numbers:

5b8fb57c 806fbcce 2db72335 23989d1d 991206bc 0363a308
8f8111ac 38f3f2f3 9110a4bb c5e1389f 64d7efe8 ba133559
4cc00fa0 6f77e537 bde7925f f87045f0 472bad6e dd228bc3
a5686903 51cc9a61 fc19144e d3bcde62 4fdb7dc8 43d565e5
f1d3f026 b2887412 97580690 d2ea4f8b 2d8fb3b7 936cfa6d
6a13ef90 fd036721 b80035e1 7467d8d8 d32bb67e 29923fde
197d4cd6 76874951 418e8a43 e9644c2a eb10e848 ba67dcd8
7115211f dbe32069 e4e92f87 8bf3e33e b18f942c c965b87a
44489114 18d4f2bc 256da1bf c57b1788 9113c372 12662c23
eeb63c45 82499657 a8265f44 7c866aae 7c80a631 e91475e1
5991ab8b 6aedbb73 71b642c4 8d78f68b d602bfe4 d1eadde7
55f20835 1a6d3a4b 202c36b8 66a1e0f2 771993f3 11d1d0ab

Stroustrup_book.indb 972Stroustrup_book.indb 972 4/22/14 9:43 AM4/22/14 9:43 AM

25.5 BITS, BYTES, AND WORDS 973

74a8cfd4 4ce54f5a e5fda09d acbdf110 259a1a19 b964a3a9
456fd8a3 1e78591b 07c8f5a2 101641ec d0c9d7e1 60dbeb11
b9ad8e72 ad30b839 201fc553 a34a79c4 217ca84d 30f666c6
d018e61c d1c94ea6 6ca73314 cd60def1 6e16870e 45b94dc0
d7b44fcd 96e0425a 72839f71 d5b6427c 214340f9 8745882f
0602c1a2 b437c759 ca0e3903 bd4d8460 edd0551e 31d34dd3
c3f943ed d2cae477 4d9d0b61 f647c377 0d9d303a ce1de974
f9449784 df460350 5d42b06c d4dedb54 17811b5f 4f723692
14d67edb 11da5447 67bc059a 4600f047 63e439e3 2e9d15f7
4f21bbbe 3d7c5e9b 433564f5 c3ff2597 3a1ea1df 305e2713
9421d209 2b52384f f78fbae7 d03c1f58 6832680a 207609f3
9f2c5a59 ee31f147 2ebc3651 e017d9d6 d6d60ce2 2be1f2f9
eb9de5a8 95657e30 cad37fda 7bce06f4 457daf44 eb257206
418c24a5 de687477 5c1b3155 f744fbff 26800820 92224e9d
43c03a51 d168f2d1 624c54fe 73c99473 1bce8fbb 62452495
5de382c1 1a789445 aa00178a 3e583446 dcbd64c5 ddda1e73
fa168da2 60bc109e 7102ce40 9fed3a0b 44245e5d f612ed4c
b5c161f8 97ff2fc0 1dbf5674 45965600 b04c0afa b537a770
9ab9bee7 1624516c 0d3e556b 6de6eda7 d159b10e 71d5c1a6
b8bb87de 316a0fc9 62c01a3d 0a24a51f 86365842 52dabf4d
372ac18b 9a5df281 35c9f8d7 07c8f9b4 36b6d9a5 a08ae934
239efba5 5fe3fa6f 659df805 faf4c378 4c2048d6 e8bf4939
31167a93 43d17818 998ba244 55dba8ee 799e07e7 43d26aef
d5682864 05e641dc b5948ec8 03457e3f 80c934fe cc5ad4f9
0dc16bb2 a50aa1ef d62ef1cd f8fbbf67 30c17f12 718f4d9a
43295fed 561de2a0

TRY THIS

The key was bs; what was the text?

Any security expert will tell you that it is a dumb idea to store clear text and
enciphered files together and also express an opinion about padding, about us-
ing a two-letter key, etc., but this is a programming book, rather than a book on
computer security.

We tested the programs by reading the enciphered text and getting the origi-
nal back. When writing a program, it is always nice to be able to conduct a simple
test of correctness.

T

Stroustrup_book.indb 973Stroustrup_book.indb 973 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING974

Here is the central part of the deciphering program:

unsigned long inptr[2];
char outbuf[nchar+1];
outbuf[nchar]=0; // terminator
unsigned long* outptr = reinterpret_cast<unsigned long*>(outbuf);
inf.setf(ios_base::hex ,ios_base::basefield); // use hexadecimal input

while (inf>>inptr[0]>>inptr[1]) {
 decipher(inptr,outptr,k);
 outf<<outbuf;
}

Note the use of

inf.setf(ios_base::hex ,ios_base::basefield);

to read the hexadecimal numbers. For decryption, it’s the output buffer, outbuf,
that we treat as bits using a cast.

Is TEA an example of embedded systems programming? Not specifically, but
you can imagine it being used wherever privacy is needed or financial transac-
tions are conducted — that could include many “gadgets.” Anyway, TEA demon-
strates many of the characteristics of good embedded systems code: it is based
on a well-understood (mathematical) model that makes us confident about its
correctness, it’s small, it’s fast, and it relies directly on hardware properties. The
interface style of encipher() and decipher() is not quite to our taste. However,
encipher() and decipher() were designed to be C as well as C++ functions, so
no C++ facilities that are not also supported by C could be used. In addition, the
many “magic constants” came from direct hand translation from the math.

25.6 Coding standards
There are many sources of errors. The most serious and hardest to remedy relate
to high-level design decisions, such as overall error-handling strategies, confor-
mance to certain standards (or lack thereof), algorithms, the representation of
data, etc. These problems are not the ones we address here. Instead, we focus on
errors that arise from code that is poorly written, that is, code that uses program-
ming language facilities in unnecessarily error-prone ways or expresses ideas in
ways that obscure their meaning.

Coding standards try to address the latter kinds of problems by defining a
“house style” that guides programmers to a subset of the C++ language that is
deemed appropriate for a given application. For example, a coding standard for

Stroustrup_book.indb 974Stroustrup_book.indb 974 4/22/14 9:43 AM4/22/14 9:43 AM

25.6 CODING STANDARDS 975

an embedded system involving hard real-time constraints or for a system needing
to run “forever” may prohibit the use of new. Typically a coding standard also
tries to ensure that code written by two programmers is more similar than if they
had chosen freely from all possible styles. For example, a coding standard may
require that for-statements be used for loops (thereby banning while-statements).
This can make code more uniform, and in large projects that can be important for
maintenance. Please note that a coding standard is aimed at improving code for
a specific kind of programming given a specific kind of programmer. There is no
one coding standard suitable for all C++ applications and all C++ programmers.

So, the problems that a coding standard tries to address are problems that
arise from the way we express our solutions rather than the problems that arise
from inherent complexities of the problem we are trying to solve with our appli-
cation. We could say that coding standards are trying to address incidental com-
plexities rather that inherent complexities.

The major sources of such incidental complexities are

• Overly clever programmers, who use features they don’t understand or delight
in complicated solutions

• Undereducated programmers, who don’t use the most appropriate language
and library features

• Unnecessary variations in programming style, causing code performing similar
tasks to look different and confuse maintainers

• Inappropriate programming language, leading to use of language features that
are poorly adapted to a particular application area or to a particular group
of programmers

• Insuffi cient library use, leading to lots of ad hoc manipulation of low-level
resources

• Inappropriate coding standards, causing extra work or prohibiting the best
solution to some classes of problems, thus becoming a source of the kind
of problems that the standards were introduced to solve

25.6.1 What should a coding standard be?
A good coding standard should help a programmer write good code; that is, it
should help the programmer by giving answers to lots of little questions that each
programmer would otherwise have to spend time deciding on a case-by-case basis.
There is an old engineer’s proverb that says, “Form is liberating.” Ideally, a coding
standard should be prescriptive, stating what should be done. That seems obvi-
ous, but many coding standards are simply a list of prohibitions, with no guidance
about what to do after having obeyed a long list of don’ts. Just being told what not
to do is rarely helpful and often annoying.

Stroustrup_book.indb 975Stroustrup_book.indb 975 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING976

The rules of a good coding standard should be verifiable, preferably by a
program; that is, once we have written the code, we should be able to look at it
and easily answer the question, “Have I broken any rule of my coding standard?”

A good coding standard should present a rationale for the rules. Program-
mers should not just be told, “Because that’s the way we do it!” When they are,
they resent it. Worse, programmers invariably try to subvert parts of a coding
standard that they see as pointless and as preventing them from doing a good job.
Don’t expect to like everything about a coding standard. Even the best coding
standard is a compromise, and most prohibit certain practices assumed to cause
problems — even if they never caused you a problem. For example, inconsistent
naming rules are a source of confusion, but different people have strong attach-
ments to some naming conventions and strong dislikes of others. For example, I
consider the CamelCodingStyle of identifiers “pug ugly” and strongly prefer un-
derscore_style as cleaner and inherently more readable, and many people agree.
On the other hand, many reasonable people disagree. Obviously, no naming stan-
dard can please everyone, but in this case, as in many others, a consistent style is
definitely better than the lack of a standard.

To summarize:

• A good coding standard is designed for a specifi c application domain and
a specifi c group of programmers.

• A good coding standard is prescriptive as well as restrictive.
• Recommending some “foundation” library facilities is often the most

effective use of prescriptive rules.

• A coding standard is a set of rules for what code should look like,
• Typically specifying naming and indentation rules; e.g., “Use ‘Strous-

trup layout.’”
• Typically specifying a subset of a language; e.g., “Don’t use new or

throw.”
• Typically specifying rules for commenting; e.g., “Every function must

have a comment explaining what it does.”
• Often requiring the use of certain libraries; e.g., “Use <iostream>

rather than <stdio.h>” or “Use vector and string rather than built-in
arrays and C-style strings.”

• Common aims of most coding standards are to improve
• Reliability
• Portability
• Maintainability
• Testability

Stroustrup_book.indb 976Stroustrup_book.indb 976 4/22/14 9:43 AM4/22/14 9:43 AM

25.6 CODING STANDARDS 977

• Reusability
• Extensibility
• Readability

• A good coding standard is better than no standard. We wouldn’t start a
major (multi-person, multi-year) industrial project without one.

• A poor coding standard can be worse than no standard. For example, C++
coding standards that restrict programming to something like the C sub-
set do harm. Unfortunately, poor coding standards are not uncommon.

• All coding standards are disliked by programmers, even the good ones.
Most programmers want to write their code exactly the way they like it.

25.6.2 Sample rules
Here, we would like to give you a flavor of a coding standard by listing some
rules. Naturally, we pick rules that we hope will be useful to you. However, we
have never seen a real-world coding standard that could be described in fewer
than 35 pages, and most are much longer. So, we don’t try to give you a com-
plete set of rules here. Furthermore, every good coding standard is designed for a
particular application area and for a particular set of programmers. So, we don’t
make any pretenses of universality.

The rules are numbered and contain a (brief) rationale. Many rules con-
tain examples for easier comprehension. We distinguish between recommendations,
which a programmer may occasionally decide to ignore, and firm rules, which must
be followed. In a real set of rules, a firm rule can usually be broken (only) with
written permission from a supervisor. Each violation of a recommendation or a
firm rule requires a comment in the code. Any exceptions to a rule can be listed in
the rule. A firm rule is identified by a capital R in its number. A recommendation
is identified by a lowercase r in its number.

The rules are classified as

• General
• Preprocessor
• Naming and layout
• Class rules
• Function and expression rules
• Hard real time
• Critical systems

The “hard real-time” and “critical systems” rules apply only to projects classified
as such.

Stroustrup_book.indb 977Stroustrup_book.indb 977 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING978

Compared to a good real-world coding standard, our terminology is under-
specified (e.g., what does “critical” really mean?) and the rules overly terse. Simi-
larities between these rules and the JSF++ rules (see §25.6.3) are not accidental;
I helped formulate the JSF++ rules. However, the code examples in this book do
not conform to the rules below — after all, the book code is not critical embedded
systems code.

General rules

R100: Any one function or class shall contain no more than 200 logical source
lines of code (non-comments).
Reason: Long functions and long classes tend to be complex and therefore
diffi cult to comprehend and test.

r101: Any one function or class should fi t on a screen and serve a single log-
ical purpose.
Reason: A programmer looking at only part of a function or class is more
likely to overlook a problem. A function that tries to perform several logical
functions is likely to be longer and more complex than one that doesn’t.

R102: All code shall conform to ISO/IEC 14882:2011(E) standard C++.
Reason: Language extensions or variations from ISO/IEC 14882 are likely to
be less stable, to be less well specifi ed, and to limit portability.

Preprocessor rules

R200: No macros shall be used except for source control using #ifdef and
#ifndef.
Reason: Macros don’t obey scope and type rules. Macro use is not obvious
when visually examining source text.

R201: #include shall be used only to include header (*.h) fi les.
Reason: #include is used to access interface declarations — not implementation
details.

R202: All #include directives shall precede all non-preprocessor declarations.
Reason: An #include in the middle of a fi le is more likely to be overlooked
by a reader and to cause inconsistencies from a name resolved differently in
different places.

R203: Header fi les (*.h) shall not contain non-const variable defi nitions or
non-inline, non-template function defi nitions.

Stroustrup_book.indb 978Stroustrup_book.indb 978 4/22/14 9:43 AM4/22/14 9:43 AM

25.6 CODING STANDARDS 979

Reason: Header fi les should contain interface declarations — not implementa-
tion details. However, constants are often seen as part of the interface, some
very simple functions need to be inline (and therefore in headers) for per-
formance, and current template implementations require complete template
defi nitions in headers.

Naming and layout

R300: Indentations shall be used and be consistent within the same source fi le.
Reason: Readability and style.

R301: Each new statement starts on a new line.
Reason: Readability.
Example:

int a = 7; x = a+7; f(x,9); // violation
int a = 7; // OK
x = a+7; // OK
f(x,9); // OK

Example:
if (p<q) cout << *p; // violation

Example:
if (p<q)
 cout << *p; // OK

R302: Identifi ers should be given descriptive names.
Identifi ers may contain common abbreviations and acronyms.
When used conventionally, x, y, i, j, etc. are descriptive.
Use the number_of_elements style rather than the
numberOfElements style.
Hungarian notation shall not be used.
Type, template, and namespace names (only) start with a capital letter.
Avoid excessively long names.

Example: Device_driver and Buffer_pool.
Reason: Readability.
Note: Identifi ers starting with an underscore are reserved to the language im-
plementation by the C++ standard and thus banned.
Exception: When calling an approved library, the names from that library may
be used.

Stroustrup_book.indb 979Stroustrup_book.indb 979 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING980

R303: Identifi ers shall not differ only by

• A mixture of case
• The presence/absence of the underscore character
• The interchange of the letter O with the number 0 or the letter D
• The interchange of the letter I with the number 1 or the letter l
• The interchange of the letter S with the number 5
• The interchange of the letter Z with the number 2
• The interchange of the letter n with the letter h

Example: Head and head // violation

Reason: Readability.

R304: No identifi er shall be in all capital letters and underscores.
Example: BLUE and BLUE_CHEESE // violation

Reason: All capital letters are widely used for macros that may be used in #in-
clude fi les for approved libraries.
Exception: Macro names used for #include guards.

Function and expression rules

r400: Identifi ers in an inner scope should not be identical to identifi ers in an
outer scope.
Example:

int var = 9; { int var = 7; ++var; } // violation: var hides var

Reason: Readability.

R401: Declarations shall be declared in the smallest possible scope.
Reason: Keeping initialization and use close minimizes chances of confusion;
letting a variable go out of scope releases its resources.

R402: Variables shall be initialized.
Example:

int var; // violation: var is not initialized

Reason: Uninitialized variables are a common source of errors.
Exception: A variable that is immediately fi lled from input need not be
initialized.
Note: Many types, such as vector and string, have a default constructor to
guarantee initialization.

Stroustrup_book.indb 980Stroustrup_book.indb 980 4/22/14 9:43 AM4/22/14 9:43 AM

25.6 CODING STANDARDS 981

R403: Casts shall not be used.
Reason: Casts are a common source of errors.
Exception: dynamic_cast may be used.
Exception: Named casts may be used to convert hardware addresses into point-
ers and void* received from sources external to a program (e.g., a GUI li-
brary) into pointers of a proper type.

R404: Built-in arrays shall not be used in interfaces; that is, a pointer as func-
tion argument shall be assumed to point to a single element. Use Array_ref
to pass arrays.
Reason: An array is passed as a pointer and its number of elements is not
carried along to the called function. Also, the combination of implicit array-to-
pointer conversion and implicit derived-to-base conversion can lead to mem-
ory corruption.

Class rules

R500: Use class for classes with no public data members. Use struct for
classes with no private data members. Don’t use classes with both public and
private data members.
Reason: Clarity.

r501: If a class has a destructor or a member of pointer or reference type, it
must have a copy constructor and a copy assignment defi ned or prohibited.
Reason: A destructor usually releases a resource. The default copy semantics
rarely does “the right thing” for pointer and reference members or for a class
with a destructor.

R502: If a class has a virtual function it must have a virtual destructor.
Reason: A class has a virtual function so that it can be used through a base class
interface. A function that knows an object only through that base class may
delete it and derived classes need a chance to clean up (in their destructors).

r503: A constructor that accepts a single argument must be declared explicit.
Reason: To avoid surprising implicit conversions.

Hard real-time rules

R800: Exceptions shall not be used.
Reason: Not predictable.

Stroustrup_book.indb 981Stroustrup_book.indb 981 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING982

R801: new shall be used only during startup.
Reason: Not predictable.
Exception: Placement-new (with the standard meaning) may be used for mem-
ory allocated from stacks.

R802: delete shall not be used.
Reason: Not predictable; can cause fragmentation.

R803: dynamic_cast shall not be used.
Reason: Not predictable (assuming common implementation technique).

R804: The standard library containers, except std::array, shall not be used.
Reason: Not predictable (assuming common implementation technique).

Critical systems rules

R900: Increment and decrement operations shall not be used as sub-expressions.
Example:

int x = v[++i]; // violation

Example:
++i;
int x = v[i]; // OK

Reason: Such an increment might be overlooked.

R901: Code should not depend on precedence rules below the level of arith-
metic expressions.
Example:

x = a*b+c; // OK

Example:
if (a<b || c<=d) // violation: parenthesize(a<b) and (c<=d)

Reason: Confusion about precedence has been repeatedly found in code writ-
ten by programmers with a weak C/C++ background.

We left gaps in the numbering so that we could add new rules without changing
the numbering of existing ones and still have the general classification recognized

Stroustrup_book.indb 982Stroustrup_book.indb 982 4/22/14 9:43 AM4/22/14 9:43 AM

25.6 CODING STANDARDS 983

through the numbering. It is very common for rules to become known by their
number, so that renumbering would be resisted by the users.

25.6.3 Real coding standards
There are lots of C++ coding standards. Most are corporate and not widely
available. In many cases, that’s probably a good thing except possibly for the
programmers of those corporations. Here is a list of standards that — when used
appropriately in areas to which they apply — can do some good:

Google C++ Style Guide: http://google-styleguide.googlecode.com/svn/trunk/
cppguide.xml. A rather old-style and restrictive but evolving style guide.

Lockheed Martin Corporation. Joint Strike Fighter Air Vehicle Coding Standards for the
System Development and Demonstration Program. Document Number 2RDU00001
Rev C. December 2005. Colloquially known as “JSF++”; a set of rules written
at Lockheed-Martin Aero for air vehicle (read “airplane”) software. These rules
really were written by and for programmers who produce software upon which
human lives depend. www.stroustrup.com/JSF-AV-rules.pdf.

Programming Research. High-integrity C++ Coding Standard Manual Version
2.4. www.programmingresearch.com.

Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guide-
lines, and Best Practices. Addison-Wesley, 2004. ISBN 0321113586. This is more
of a “meta coding standard”; that is, instead of specific rules it has guidance on
which rules are good and why.

Note that there is no substitute for knowing your application area, your pro-
gramming language, and the relevant programming technique. For most applica-
tions — and certainly for most embedded systems programming — you also need
to know your operating system and/or hardware architecture. If you need to use
C++ for low-level coding, have a look at the ISO C++ committee’s report on
performance (ISO/IEC TR 18015, www.stroustrup.com/performanceTR.pdf);
by “performance” they/we primarily mean “embedded systems programming.”

Language dialects and proprietary languages abound in the embedded sys-
tems world, but whenever you can, use standardized language (such as ISO
C++), tools, and libraries. That will minimize your learning curve and increase
the likelihood that your work will last.

Stroustrup_book.indb 983Stroustrup_book.indb 983 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING984

Drill
 1. Run this:

int v = 1; for (int i = 0; i<sizeof(v)*8; ++i) { cout << v << ' '; v <<=1; }

 2. Run that again with v declared to be an unsigned int.
 3. Using hexadecimal literals, define short unsigned ints with:

 a. Every bit set
 b. The lowest (least significant bit) set
 c. The highest (most significant bit) set
 d. The lowest byte set
 e. The highest byte set
 f. Every second bit set (and the lowest bit 1)
 g. Every second bit set (and the lowest bit 0)

 4. Print each as a decimal and as a hexidecimal.
 5. Do 3 and 4 using bit manipulation operations (|, &, <<) and (only) the

literals 1 and 0.

Review
 1. What is an embedded system? Give ten examples, out of which at least

three should not be among those mentioned in this chapter.
 2. What is special about embedded systems? Give five concerns that are

common.
 3. Define predictability in the context of embedded systems.
 4. Why can it be hard to maintain and repair an embedded system?
 5. Why can it be a poor idea to optimize a system for performance?
 6. Why do we prefer higher levels of abstraction to low-level code?
 7. What are transient errors? Why do we particularly fear them?
 8. How can we design a system to survive failure?
 9. Why can’t we prevent every failure?
 10. What is domain knowledge? Give examples of application domains.
 11. Why do we need domain knowledge to program embedded systems?
 12. What is a subsystem? Give examples.
 13. From a C++ language point of view, what are the three kinds of storage?
 14. When would you like to use the free store?
 15. Why is it often infeasible to use the free store in an embedded system?
 16. When can you safely use new in an embedded system?
 17. What is the potential problem with std::vector in the context of embed-

ded systems?

Stroustrup_book.indb 984Stroustrup_book.indb 984 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 REVIEW 985

 18. What is the potential problem with exceptions in the context of embed-
ded systems?

 19. What is a recursive function call? Why do some embedded systems pro-
grammers avoid them? What do they use instead?

 20. What is memory fragmentation?
 21. What is a garbage collector (in the context of programming)?
 22. What is a memory leak? Why can it be a problem?
 23. What is a resource? Give examples.
 24. What is a resource leak and how can we systematically prevent it?
 25. Why can’t we easily move objects from one place in memory to another?
 26. What is a stack?
 27. What is a pool?
 28. Why doesn’t the use of stacks and pools lead to memory fragmentation?
 29. Why is reinterpret_cast necessary? Why is it nasty?
 30. Why are pointers dangerous as function arguments? Give examples.
 31. What problems can arise from using pointers and arrays? Give examples.
 32. What are alternatives to using pointers (to arrays) in interfaces?
 33. What is “the first law of computer science”?
 34. What is a bit?
 35. What is a byte?
 36. What is the usual number of bits in a byte?
 37. What operations do we have on sets of bits?
 38. What is an “exclusive or” and why is it useful?
 39. How can we represent a set (sequence, whatever) of bits?
 40. How do we conventionally number bits in a word?
 41. How do we conventionally number bytes in a word?
 42. What is a word?
 43. What is the usual number of bits in a word?
 44. What is the decimal value of 0xf7?
 45. What sequence of bits is 0xab?
 46. What is a bitset and when would you need one?
 47. How does an unsigned int differ from a signed int?
 48. When would you prefer an unsigned int to a signed int?
 49. How would you write a loop if the number of elements to be looped over

was very high?
 50. What is the value of an unsigned int after you assign –3 to it?
 51. Why would we want to manipulate bits and bytes (rather than higher-

level types)?
 52. What is a bitfield?
 53. For what are bitfields used?
 54. What is encryption (enciphering)? Why do we use it?
 55. Can you encrypt a photo?

Stroustrup_book.indb 985Stroustrup_book.indb 985 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING986

 56. What does TEA stand for?
 57. How do you write a number to output in hexadecimal notation?
 58. What is the purpose of coding standards? List reasons for having them.
 59. Why can’t we have a universal coding standard?
 60. List some properties of a good coding standard.
 61. How can a coding standard do harm?
 62. Make a list of at least ten coding rules that you like (have found useful).

Why are they useful?
 63. Why do we avoid ALL_CAPITAL identifiers?

Terms
address
bit
bitfi eld
bitset
coding standard
embedded system

encryption
exclusive or
gadget
garbage collector
hard real time
leak

pool
predictability
real time
resource
soft real time
unsigned

Exercises
 1. If you haven’t already, do the Try this exercises in this chapter.
 2. Make a list of words that can be spelled with hexadecimal notation. Read

0 as o, read 1 as l, read 2 as to, etc.; for example, Foo1 and Beef. Kindly
eliminate vulgarities from the list before submitting it for grading.

 3. Initialize a 32-bit signed integer with the bit patterns and print the re-
sult: all zeros, all ones, alternating ones and zeros (starting with a left-
most one), alternating zeros and ones (starting with a leftmost zero), the
110011001100 . . . pattern, the 001100110011 . . . pattern, the pattern of
all-one bytes and all-zero bytes starting with an all-one byte, the pattern of
all-one bytes and all-zero bytes starting with an all-zero byte. Repeat that
exercise with a 32-bit unsigned integer.

 4. Add the bitwise logical operators &, |, ^, and ~ to the calculator from
Chapter 7.

 5. Write an infinite loop. Execute it.
 6. Write an infinite loop that is hard to recognize as an infinite loop. A loop

that isn’t really infinite because it terminates after completely consuming
some resource is acceptable.

 7. Write out the hexadecimal values from 0 to 400; write out the hexadeci-
mal values from –200 to 200.

 8. Write out the numerical values of each character on your keyboard.
 9. Without using any standard headers (such as <limits>) or documenta-

tion, compute the number of bits in an int and determine whether char is
signed or unsigned on your implementation.

Stroustrup_book.indb 986Stroustrup_book.indb 986 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 25 POSTSCRIPT 987

 10. Look at the bitfield example from §25.5.5. Write an example that initial-
izes a PPN, then reads and prints each field value, then changes each field
value (by assigning to the field) and prints the result. Repeat this exercise,
but store the PPN information in a 32-bit unsigned integer and use bit
manipulation operators (§25.5.4) to access the bits in the word.

 11. Repeat the previous exercise, but keep the bits in a bitset<32>.
 12. Write out the clear text of the example from §25.5.6.
 13. Use TEA (§25.5.6) to communicate “securely” between two computers.

Email is minimally acceptable.
 14. Implement a simple vector that can hold at most N elements allocated

from a pool. Test it for N==1000 and integer elements.
 15. Measure the time (§26.6.1) it takes to allocate 10,000 objects of random

sizes in the [1000:0)-byte range using new; then measure the time it takes
to deallocate them using delete. Do this twice, once deallocating in the
reverse order of allocation and once deallocating in random order. Then,
do the equivalent for allocating 10,000 objects of size 500 bytes from a
pool and freeing them. Then, do the equivalent of allocating 10,000 ob-
jects of random sizes in the [1000:0)-byte range on a stack and then free
them (in reverse order). Compare the measurements. Do each measure-
ment at least three times to make sure the results are consistent.

 16. Formulate 20 coding style rules (don’t just copy those in §25.6). Apply
them to a program of more than 300 lines that you recently wrote. Write
a short (a page or two) comment on the experience of applying those
rules. Did you find errors in the code? Did the code get clearer? Did some
code get less clear? Now modify the set of rules based on this experience.

 17. In §25.4.3–4 we provided a class Array_ref claimed to make access to el-
ements of an array simpler and safer. In particular, we claimed to handle
inheritance correctly. Try a variety of ways to get a Rectangle* into a
vector<Circle*> using an Array_ref<Shape*> but no casts or other opera-
tions involving undefined behavior. This ought to be impossible.

Postscript
So, is embedded systems programming basically “bit fi ddling”? Not at all, espe-
cially if you deliberately try to minimize bit fi ddling as a potential problem with
correctness. However, somewhere in a system bits and bytes have “to be fi ddled”;
the question is just where and how. In most systems, the low-level code can and
should be localized. Many of the most interesting systems we deal with are em-
bedded, and some of the most interesting and challenging programming tasks are
in this fi eld.

Stroustrup_book.indb 987Stroustrup_book.indb 987 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 988Stroustrup_book.indb 988 4/22/14 9:43 AM4/22/14 9:43 AM

989

26

Testing

 “I have only proven the
code correct, not tested it.”

—Donald Knuth

This chapter covers testing and design for correctness. These

are huge topics, so we can only scratch their surfaces. The

emphasis is on giving some practical ideas and techniques for

testing units, such as functions and classes, of a program. We dis-

cuss the use of interfaces and the selection of tests to run against

them. We emphasize the importance of designing systems to

simplify testing and the use of testing from the earliest stages of

development. Proving programs correct and dealing with perfor-

mance problems are also briefly considered.

Stroustrup_book.indb 989Stroustrup_book.indb 989 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING990

26.1 What we want
Let’s try a simple experiment. Write a binary search. Do it now. Don’t wait un-
til the end of the chapter. Don’t wait until after the next section. It’s important
that you try. Now! A binary search is a search in a sorted sequence that starts
at the middle:

• If the middle element is equal to what we are searching for, we are fi nished.
• If the middle element is less than what we are searching for, we look at the

right-hand half, doing a binary search on that.
• If the middle element is greater than what we are searching for, we look at

the left-hand half, doing a binary search on that.
• The result is an indicator of whether the search was successful and some-

thing that allows us to modify the element, if found, such as an index, a
pointer, or an iterator.

Use less than (<) as the comparison (sorting) criterion. Feel free to use any data
structure you like, any calling conventions you like, and any way of returning
the result that you like, but do write the search code yourself. In this rare case,
using someone else’s function is counterproductive, even with proper acknowl-
edgment. In particular, don’t use the standard library algorithm (binary_search or
equal_range) that would have been your first choice in most situations. Take as
much time as you like.

So now you have written your binary search function. If not, go back to the
previous paragraph. How do you know that your search function is correct? If
you haven’t already, write down why you are convinced that this code is correct.
How confident are you about your reasoning? Are there parts of your argument
that might be weak?

26.1 What we want
 26.1.1 Caveat

26.2 Proofs

26.3 Testing
 26.3.1 Regression tests

 26.3.2 Unit tests
 26.3.3 Algorithms and non-algorithms
 26.3.4 System tests
 26.3.5 Finding assumptions that do

not hold

26.4 Design for testing

26.5 Debugging

26.6 Performance
 26.6.1 Timing

26.7 References

Stroustrup_book.indb 990Stroustrup_book.indb 990 4/22/14 9:43 AM4/22/14 9:43 AM

26.1 WHAT WE WANT 991

That was a trivially simple piece of code. It implemented a very regular and
well-known algorithm. Your compiler is on the order of 200K lines of code, your
operating system is 10M to 50M lines of code, and the safety-critical code in the
airplane you’ll fly on for your next vacation or conference is 500K to 2M lines of
code. Does that make you feel comfortable? How do the techniques you used for
your binary search function scale to real-world software sizes?

Curiously, given all that complex code, most software works correctly most
of the time. We do not count anything running on a game-infested consumer PC
as “critical.” Even more importantly, safety-critical software works correctly just
about all of the time. We cannot recall an example of a plane or a car crashing
because of a software failure over the last decade. Stories about bank software
getting seriously confused by a check for $0.00 are now very old; such things
essentially don’t happen anymore. Yet software is written by people like you. You
know that you make mistakes; we all do, so how do “they” get it right?

The most fundamental answer is that “we” have figured out how to build re-
liable systems out of unreliable parts. We try hard to make every program, every
class, and every function correct, but we typically fail our first attempt at that.
Then we debug, test, and redesign to find and remove as many errors as possi-
ble. However, in any nontrivial system, some bugs will still be hiding. We know
that, but we can’t find them — or rather, we can’t find them all with the time and
effort we are able and willing to expend. Then, we redesign the system yet again
to recover from unexpected and “impossible” events. The result can be systems
that are spectacularly reliable. Note that such reliable systems may still harbor er-
rors — they usually do — and still occasionally work less well than we would like.
However, they don’t crash and always deliver minimally acceptable service. For
example, a phone system may not manage to connect every call when demand is
exceptionally high, but it never fails to connect many calls.

Now, we could be philosophical and discuss whether an unexpected error
that we have conjectured and catered for is really an error, but let’s not. It is more
profitable and productive for systems builders “just” to figure how to make our
systems more reliable.

26.1.1 Caveat
Testing is a huge topic. There are several schools of thought about how test-
ing should be done, and different industries and application areas have different
traditions and standards for testing. That’s natural — you really don’t need the
same reliability standard for video games and avionics software — but it leads to
confusing differences in terminology and tools. Treat this chapter as a source of
ideas for your personal projects and as a source of ideals if you encounter testing
of major systems. The testing of major systems involves a variety of combinations
of tools and organizational structures that it would make little sense to try to de-
scribe here.

Stroustrup_book.indb 991Stroustrup_book.indb 991 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING992

26.2 Proofs
Wait a minute! Why don’t we just prove that our programs are correct, rather
than fussing around with tests? As Edsger Dijkstra succinctly pointed out, “Test-
ing can reveal the presence of errors, not their absence.” This leads to an obvious
desire to prove programs correct “much as mathematicians prove theorems.”

Unfortunately, proving nontrivial programs correct is beyond the state of the
art (outside very constrained applications domains), the proofs themselves can
contain errors (as can the ones mathematicians produce), and the whole field of
program proving is an advanced topic. So, we try as hard as we can to structure
our programs so that we can reason about them and convince ourselves that they
are correct. However, we also test (§26.3) and try to organize our code to be resil-
ient against remaining errors (§26.4).

26.3 Testing
In §5.11, we described testing as “a systematic way to search for errors.” Let’s look
at techniques for doing that.

People distinguish between unit testing and system testing. A “unit” is something
like a function or a class that is a part of a complete program. If we test such units
in isolation, we know where to look for the cause of problems when we find an
error; any error will be in the unit that we are testing (or in the code we use to
conduct the tests). This contrasts with system testing, where we test a complete
system and all we know is that an error is “somewhere in the system.” Typically,
errors found in system testing — once we have done a good job at unit testing — re-
late to undesirable interactions between units. They are harder to find than errors
within individual units and often more expensive to fix.

Obviously, a unit (say, a class) can be composed of other units (say, functions
and other classes), and systems (say, an electronic commerce system) can be com-
posed of other systems (say, a database, a GUI, a networking system, and an or-
der validation system), so the distinction between unit testing and systems testing
isn’t as clear as you might have thought, but the general idea is that by testing our
units well, we save ourselves work — and our end users pain.

One way of looking at testing is that any nontrivial system is built out of
units, and these units are themselves built out of smaller units. So, we start testing
the smallest units, then we test the units composed from those, and we work our
way up until we have tested the whole system; that is, “the system” is just the
largest unit (until we use that as a unit for some yet larger system).

So, let’s first consider how to test a unit (such as a function, a class, a class hier-
archy, or a template). Testers distinguish between white-box testing (where you can
look at the detailed implementation of what you are testing) and black-box testing

Stroustrup_book.indb 992Stroustrup_book.indb 992 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 993

(where you can look only at the interface of what you are testing). We will not
make a big deal of this distinction; by all means read the implementation of what
you test. But remember that someone might later come and rewrite that imple-
mentation, so try not to depend on anything that is not guaranteed in the inter-
face. In fact, when testing anything, the basic idea is to throw anything we can at
its interface to see if it responds reasonably.

Mentioning that someone (maybe yourself) might change the code after you
tested it brings us to regression testing. Basically, whenever you make a change,
you have to retest to make sure that you have not broken anything. So when you
have improved a unit, you rerun its unit tests, and before you give the complete
system to someone else (or use it for something real yourself), you run the com-
plete system test.

Running such complete tests of a system is often called regression testing because
it usually includes running tests that have previously found errors to see if these er-
rors are still fixed. If not, the program has “regressed” and needs to be fixed again.

26.3.1 Regression tests
Building up a large collection of tests that have been useful for finding errors in
the past is a major part of building an effective test suite for a system. Assume that
you have users; they will send you bugs. Never throw away a bug report! Pro-
fessionals use bug-tracking systems to ensure that. Anyway, a bug report demon-
strates either an error in the system or an error in a user’s understanding of the
system. Either way it is useful.

Usually, a bug report contains far too much extraneous information, and the
first task of dealing with it is to produce the smallest program that exhibits the
reported problem. This often involves cutting away most of the code submitted:
in particular, we try to eliminate the use of libraries and application code that
does not affect the error. Finding that minimal test program often helps us localize
the bug in the system’s code, and that minimal program is what is added to the
regression test suite. The way we find that minimal program is to keep removing
code until the error disappears — and then reinsert the last bit of code we removed.
This we do until we run out of candidates for removal.

Just running hundreds (or tens of thousands) of tests produced from old
bug reports may not seem very systematic, but what we are really doing here is
to systematically use the experience of users and developers. The regression test
suite is a major part of a developer group’s institutional memory. For a large sys-
tem, we simply can’t rely on having the original developers available to explain
details of the design and implementation. The regression suite is what keeps a
system from mutating away from what the developers and users have agreed to
be its proper behavior.

Stroustrup_book.indb 993Stroustrup_book.indb 993 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING994

26.3.2 Unit tests
OK. Enough words for now! Let’s try a concrete example: let’s test a binary
search. Here is the specification from the ISO standard (§25.3.3.4):

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
 const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp);
Requires: The elements e of [first,last) are partitioned with respect to the
expressions e<value and !(value<e) or comp(e,value) and !comp(value,e).
Also, for all elements e of [first,last), e<value implies !(value<e) or comp
(e,value) implies !comp(value,e).
Returns: true if there is an iterator i in the range [first,last) that satisfies
the corresponding conditions: !(*i<value) && !(value<*i) or comp(*i,value)
==false && comp(value,*i)==false.
Complexity: At most log(last–fi rst)+2 comparisons.

Nobody said that a formal specification (well, semiformal) was easy to read for
the uninitiated. However, if you actually did the exercise of designing and im-
plementing a binary search that we strongly suggested at the beginning of the
chapter, you have a pretty good idea of what a binary search does and how to test
it. This (standard) version takes a pair of forward iterators (§20.10.1) and a value
as arguments and returns true if the value is in the range defined by the iterators.
The iterators must define a sorted sequence. The comparison (sorting) criterion
is <. We’ll leave the second version of binary_search that takes a comparison cri-
terion as an extra argument as an exercise.

Here, we will deal only with errors that are not caught by the compiler, so
examples like these are somebody else’s problem:

binary_search(1,4,5); // error: an int is not a forward iterator
vector<int> v(10);
binary_search(v.begin(),v.end(),"7"); // error: can’t search for a string
 // in a vector of ints
binary_search(v.begin(),v.end()); // error: forgot the value

How can we systematically test binary_search()? Obviously we can’t just try every
possible argument for it, because every possible argument would be every possi-
ble sequence of every possible type of value — that would be an infinite number of

Stroustrup_book.indb 994Stroustrup_book.indb 994 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 995

tests! So, we must choose tests and to choose, we need some principles for making
a choice:

• Test for likely mistakes (fi nd the most errors).
• Test for bad mistakes (fi nd the errors with the worst potential consequences).

By “bad,” we mean errors that would have the direst consequences. In general, that’s
a fuzzy notion, but it can be made precise for a specific program. For example, for a
binary search considered in isolation, all errors are about equally bad, but if we used
that binary_search() in a program where all answers were carefully double-checked,
getting a wrong answer from binary_search() might be far more acceptable than
having it not return because it went into an infinite loop. In that case, we would
spend greater effort tricking binary_search() into an infinite (or very long) loop than
we would trying to trick it into giving a wrong answer. Note our use of “tricking”
here. Testing is — among other things — an exercise in applying creative thinking to
the problem of “How can we get this code to misbehave?” The best testers are not
just systematic, but also quite devious (in a good cause, of course).

26.3.2.1 Testing strategy
How do we go about breaking binary_search()? We start by looking at binary_
search()’s requirements, that is, what it assumes about its inputs. Unfortunately,
from our perspective as testers, it is clearly stated that [first,last) must be a sorted
sequence; that is, it is the caller’s job to ensure that, so we can’t fairly try to break
binary_search() by giving it unsorted input or a [first,last) where last<first. Note
that the requirements for binary_search() do not say what it will do if we give it
input that doesn’t meet its requirements. Elsewhere in the standard, it says that
it may throw an exception in that case, but it is not required to. These facts are
good to remember for when we test uses of binary_search(), though, because a
caller failing to establish the requirements of a function, such as binary_search(),
is a likely source of errors.

We can imagine the following kinds of errors for binary_search():

• Never returned (e.g., infi nite loop)
• Crash (e.g., bad dereference, infi nite recursion)
• Value not found even though it was in the sequence
• Value found even though it wasn’t in the sequence

In addition, we remember the following “opportunities” for user errors:

• The sequence is not sorted (e.g., {2,1,5,–7,2,10}).
• The sequence is not a valid sequence (e.g., binary_search(&a[100],

&a[50],77)).

Stroustrup_book.indb 995Stroustrup_book.indb 995 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING996

How might an implementer have made a mistake (for testers to find) for a simple
call binary_search(p1,p2,v)? Errors often occur for “special cases.” In particular,
when considering sequences (of any sort), we always look for the beginning and
the end. In particular, the empty sequence should always be tested. So, let’s con-
sider a few arrays of integers that are properly ordered as required:

{ 1,2,3,5,8,13,21 } // an “ordinary sequence”
{ } // the empty sequence
{ 1 } // just one element
{ 1,2,3,4 } // even number of elements
{ 1,2,3,4,5 } // odd number of elements
{ 1, 1, 1, 1, 1, 1, 1 } // all elements equal
{ 0,1,1,1,1,1,1,1,1,1,1,1,1 } // different element at beginning
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,1 } // different element at end

Some test sequences are best generated by a program:

• vector<int> v1;

 for (int i=0; i<100000000; ++i) v.push_back(i); // a very large sequence

• Some sequences with a random number of elements
• Some sequences with random elements (but still ordered)

This is not as systematic as we’d have liked. After all, we “just picked” some
sequences. However, we used some fairly general rules of thumb that often are
useful when dealing with sets of values; consider:

• The empty set
• Small sets
• Large sets
• Sets with extreme distributions
• Sets where “what is of interest” happens near the end
• Sets with duplicate elements
• Sets with even and with odd numbers of elements
• Sets generated using random numbers

We use the random sequences just to see if we can get lucky (i.e., find an error)
with something we didn’t think about. It’s a brute-force technique, but relatively
cheap in terms of our time.

Why “odd and even”? Well, lots of algorithms partition their input sequences,
e.g., into the first half and the last half, and maybe the programmer considered
only the odd or the even case. More generally, when we partition a sequence,

Stroustrup_book.indb 996Stroustrup_book.indb 996 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 997

the point where we split it becomes the end of a subsequence, and we know that
errors are likely near ends of sequences.

In general, we look for

• Extreme cases (large, small, strange distributions of input, etc.)
• Boundary conditions (anything near a limit)

What that really means, depends on the particular program we are testing.

26.3.2.2 A simple test harness
We have two categories of tests: tests that should succeed (e.g., searching for a
value that’s in a sequence) and tests that should fail (e.g., searching for a value in
an empty sequence). For each of our sequences, let’s construct some succeeding
and some failing tests. We will start from the simplest and most obvious and
proceed to improve until we have something that’s good enough for our binary_
search example:

vector<int> v { 1,2,3,5,8,13,21 };
if (binary_search(v.begin(),v.end(),1) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),5) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),8) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),21) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),–7) == true) cout << "failed";
if (binary_search(v.begin(),v.end(),4) == true) cout << "failed";
if (binary_search(v.begin(),v.end(),22) == true) cout << "failed";

This is repetitive and tedious, but it will do for a start. In fact, many simple tests
are nothing but a long list of calls like this. This naive approach has the virtue
of being extremely simple. Even the newest member of the test team can add a
new test to the set. However, we can usually do much better. For example, when
something failed here, we are not told which test failed. That’s unacceptable. Also,
writing tests is no excuse for regressing to “cut and paste” programming. We need
to consider the design of our testing code, just like any other code. So:

vector<int> v { 1,2,3,5,8,13,21 };
for (int x : {1,5,8,21,-7,2,44})
 if (binary_search(v.begin(),v.end(),x) == false) cout << x << " failed";

Assuming that we will eventually have dozens of tests, this will make a huge dif-
ference. For testing real-world systems, we often have many thousands of tests, so
being precise about what test failed is essential.

Stroustrup_book.indb 997Stroustrup_book.indb 997 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING998

Before going further, note another example of (semi-systematic) testing tech-
nique: we tested with correct values, choosing some from the ends of the sequence
and some from “the middle.” For this sequence we could have tried all values, but
typically that’s not a realistic option. For the failing values, we chose one from
each end and one in the middle. Again, this is not perfectly systematic, but we
begin to see a pattern that is useful whenever we deal with sequences of values or
ranges of values — and that’s very common.

What’s wrong with these tests?

• We (initially) wrote the same things repeatedly.
• We (initially) numbered the tests manually.
• The output is very minimal (not very helpful).

After looking at this for a while, we decided to keep our tests as data in a file. Each
test would contain an identifying label, a value to be looked up, a sequence, and
an expected result. For example:

{ 27 7 { 1 2 3 5 8 13 21} 0 }

This is test number 27. It looks for 7 in the sequence { 1,2,3,5,8,13,21 } expecting
the result 0 (meaning false). Why do we put the test inputs in a file rather than
placing them right into the text of the test program? Well, in this case we could
have typed the tests straight into the program text, but having a lot of data in a
source code file can be messy, and often, we use programs to generate test cases.
Machine-generated test cases are typically in data files. Also, we can now write a
test program that we can run with a variety of files of test cases:

struct Test {
 string label;
 int val;
 vector<int> seq;
 bool res;
};

istream& operator>>(istream& is, Test& t); // use the described format

int test_all(istream& is)
{
 int error_count = 0;
 for (Test t; is>>t;) {
 bool r = binary_search(t.seq.begin(), t.seq.end(), t.val);

Stroustrup_book.indb 998Stroustrup_book.indb 998 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 999

 if (r !=t.res) {
 cout << "failure: test " << t.label
 << " binary_search: "
 << t.seq.size() << " elements, val==" << t.val
 << " –> " << t.res << '\n';
 ++error_count;
 }
 }
 return error_count;
}

int main()
{
 int errors = test_all(ifstream("my_tests.txt"));
 cout << "number of errors: " << errors << "\n";
}

Here is some test input using the sequences we listed above:

{ 1.1 1 { 1 2 3 5 8 13 21 } 1 }
{ 1.2 5 { 1 2 3 5 8 13 21 } 1 }
{ 1.3 8 { 1 2 3 5 8 13 21 } 1 }
{ 1.4 21 { 1 2 3 5 8 13 21 } 1 }
{ 1.5 –7 { 1 2 3 5 8 13 21 } 0 }
{ 1.6 4 { 1 2 3 5 8 13 21 } 0 }
{ 1.7 22 { 1 2 3 5 8 13 21 } 0 }

{ 2 1 { } 0 }

{ 3.1 1 { 1 } 1 }
{ 3.2 0 { 1 } 0 }
{ 3.3 2 { 1 } 0 }

Here we see why we used a string label rather than a number: that way we can
“number” our tests using a more flexible system — here using a decimal system to
indicate separate tests for the same sequence. A more sophisticated format would
eliminate the need to repeat a sequence in our test data file.

26.3.2.3 Random sequences
When we choose values to be used in testing, we try to outwit the implementers
(who are often ourselves) and to use values that focus on areas where we know
bugs can hide (e.g., complicated sequences of conditions, the ends of sequences,

Stroustrup_book.indb 999Stroustrup_book.indb 999 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1000

loops, etc.). However, that’s also what we did when we tried to write and debug
the code. So, we might repeat a logical mistake from the design when we design
the tests and completely miss a problem. This is one reason it is a good idea to
have someone different from the developer(s) involved with designing the tests.
We have one technique that occasionally helps with that problem: just generate (a
lot of) random values. For example, here is a function that writes a test description
to cout using randint() from §24.7 and std_lib_facilities.h:

void make_test(const string& lab, int n, int base, int spread)
 // write a test description with the label lab to cout
 // generate a sequence of n elements starting at base
 // the average distance between elements is uniformly distributed
 // in [0:spread)
{
 cout << "{ " << lab << " " << n << " { ";
 vector<int> v;
 int elem = base;
 for (int i = 0; i<n; ++i) { // make elements
 elem+= randint(spread);
 v.push_back(elem);
 }

 int val = base+ randint(elem–base); // make search value
 bool found = false;
 for (int i = 0; i<n; ++i) { // print elements and see if val is found
 if (v[i]==val) found = true;
 cout << v[i] << " ";
 }
 cout << "} " << found << " }\n";
}

Note that we did not use binary_search to see if the random val was in the ran-
dom sequence. We can’t use what we are testing to determine the correct value
of a test.

Actually, binary_search isn’t a particularly suitable example of the brute-
force random number approach to testing. We doubt that this will find any bugs
that are not picked up by our “hand-crafted” tests, but often this technique is use-
ful. Anyway, let’s make a few random tests:

int no_of_tests = randint(100); // make about 50 tests
for (int i = 0; i<no_of_tests; ++i) {
 string lab = "rand_test_";
 make_test(lab+to_string(i), // to_string from §23.2

Stroustrup_book.indb 1000Stroustrup_book.indb 1000 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 1001

 randint(500), // number of elements
 0, // base
 randint(50)); // spread
}

Generated tests based on random numbers are particularly useful when we need
to test the cumulative effects of many operations where the result of an operation
depends on how earlier operations were handled, that is, when a system has state;
see §5.2.

The reason that random numbers are not all that useful for binary_search
is that each search of a sequence is independent of all other searches of that se-
quence. That of course assumes that the implementation of binary_search hasn’t
done something terminally stupid, such as modifying its sequence. We have a
better test for that (exercise 5).

26.3.3 Algorithms and non-algorithms
We have used binary_search() as an example. It’s a proper algorithm with

• Well-specifi ed requirements on its inputs
• A well-specifi ed effect on its inputs (in this case, no effects)
• No dependencies on objects that are not its explicit inputs
• Without serious constraints imposed by the environment (e.g., no speci-

fi ed time, space, or resource-sharing requirements)

It has obvious and explicitly stated pre- and post-conditions (§5.10). In other words,
it’s a tester’s dream. Often, we are not so lucky: we have to test messy code that
(at best) is defined by a somewhat sloppy English text and a couple of diagrams.

Wait a minute! Are we indulging in sloppy logic here? How can we talk
about correctness and testing when we don’t have a precise specification of what
the code is supposed to do? The problem is that much of what needs to be done
in software is not easy to specify in perfectly clear mathematical terms. Also, in
many cases where it in theory could be specified like that, the math is beyond the
abilities of the programmers who write and test the code. So we are left with the
ideal of perfectly precise specifications and a reality of what someone (such as us)
can manage under real-world conditions and time pressures.

So, assume that you have a messy function that you have to test. By “messy”
we mean:

• Inputs: Its requirements on its (explicit or implicit) inputs are not specifi ed
quite as well as we would like.

• Outputs: Its (explicit or implicit) outputs are not specifi ed quite as well as
we would like.

• Resources: Its use of resources (time, memory, fi les, etc.) is not specifi ed
quite as well as we would like.

Stroustrup_book.indb 1001Stroustrup_book.indb 1001 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1002

By “explicit or implicit” we mean that we have to look not just at the formal
parameters and the return value, but also at any effects on global variables, io-
streams, files, free-store memory allocation, etc. So, what can we do? First of all,
such a function is almost certainly too long — or we could have stated its require-
ments and effects more clearly. Maybe we are talking about a function that is five
pages long or uses “helper functions” in complicated and non-obvious ways. You
may think that five pages is a lot for a function. It is, but we have seen much,
much longer functions than that. Unfortunately, they are not uncommon.

If it is our code and if we had time, we would first of all try to break such
a “messy function” up into smaller functions that come closer to our ideals of a
well-specified function and first test those. However, here we will assume that our
aim is to test the software — that is, to systematically find as many errors as possi-
ble — rather than (just) fixing bugs as we find them.

So, what do we look for? Our job as testers is to find errors. Where are bugs
likely to hide? What characterizes code that is likely to contain bugs?

• Subtle dependencies on “other code”: look for use of global variables,
non-const-reference arguments, pointers, etc.

• Resource management: look for memory management (new and delete),
fi le use, locks, etc.

• Look for loops: check end conditions (as for binary_search()).
• if-statements and switches (often referred to as “branching”): look for

 errors in their logic.

Let’s look at examples of each.

26.3.3.1 Dependencies
Consider this nonsense function:

int do_dependent(int a, int& b) // messy function
 // undisciplined dependencies
{
 int val ;
 cin>>val;
 vec[val] += 10;
 cout << a;
 b++;
 return b;
}

To test do_ dependent(), we can’t just synthesize sets of arguments and see what it
does with them. We have to take into account that it uses the global variables cin,

Stroustrup_book.indb 1002Stroustrup_book.indb 1002 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 1003

cout, and vec. That’s pretty obvious in this little nonsense function, but in real
code this may be hidden in a larger amount of code. Fortunately, there is software
that can help us find such dependencies. Unfortunately, it is not always easily
available or widely used. Assuming that we don’t have analysis software to help
us, we go through the function line by line, listing all its dependencies.

To test do_ dependent(), we have to consider

• Its inputs:

• The value of a
• The value of b and the value of the int referenced by b
• The input from cin (into val) and the state of cin

• The state of cout

• The value of vec, in particular, the value of vec[val]

• Its outputs:

• The return value
• The value of the int referenced by b (we incremented it)
• The state of cin (beware of stream state and format state)
• The state of cout (beware of stream state and format state)
• The state of vec (we assigned to vec[val])
• Any exceptions that vec might have thrown (vec[val] might be out

of range)

This is a long list. In fact, that list is longer than the function itself. This goes
a long way toward explaining our dislike of global variables and our concerns
about non-const references (and pointers). There really is something very nice
about a function that just reads its arguments and produces a result as a return
value: we can easily understand and test it.

Once the inputs and outputs are identified, we are basically back to the
 binary_search() case. We simply generate tests with input values (for explicit and
implicit inputs) to see if they give the desired outputs (considering both implicit
and explicit outputs). With do_ dependent(), we would probably start with a very
large val and a negative val, to see what happens. It looks as if vec had better be
a range-checked vector (or we can very simply generate really bad errors). We
would of course check what the documentation said about all those inputs and
outputs, but with a messy function like that we have little hope of the specification
being complete and precise, so we will just break the functions (i.e., find errors)
and start asking questions about what is correct. Often, such testing and questions
should lead to a redesign.

Stroustrup_book.indb 1003Stroustrup_book.indb 1003 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1004

26.3.3.2 Resource management
Consider this nonsense function:

void do_resources1(int a, int b, const char* s) // messy function
 // undisciplined resource use
{
 FILE* f = fopen(s,"r"); // open file (C style)
 int* p = new int[a]; // allocate some memory
 if (b<=0) throw Bad_arg(); // maybe throw an exception
 int* q = new int[b]; // allocate some more memory
 delete[] p; // deallocate the memory pointed to by p
}

To test do_resources1(), we have to consider whether every resource acquired
has been properly disposed of, that is, whether every resource has been either
released or passed to some other function.

Here, it is obvious that

• The fi le named s is not closed
• The memory allocated for p is leaked if b<=0 or if the second new throws
• The memory for q is leaked if 0<b

In addition, we should always consider the possibility that an attempt at open-
ing a file might fail. To get this miserable result, we deliberately used a very
old-fashioned programming style (fopen() is the standard C way of opening files).
We could have made the job for testers more straightforward by writing

void do_resources2(int a, int b, const char* s) // less messy function
{
 ifstream is(s); // open file
 vector<int>v1(a); // create vector (owning memory)
 if (b<=0) throw Bad_arg(); // maybe throw an exception
 vector<int> v2(b); // create another vector (owning memory)
}

Now every resource is owned by an object with a destructor that will release it.
Considering how we could write a function more simply (more cleanly) is some-
times a good way to get ideas for testing. The “Resource Acquisition Is Initializa-
tion” (RAII) technique from §19.5.2 provides a general strategy for this kind of
resource management problem.

Please note that resource management is not just checking that every piece of
memory allocated is deleted. Sometimes we receive resources from elsewhere (e.g.,

Stroustrup_book.indb 1004Stroustrup_book.indb 1004 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 1005

as an argument), and sometimes we pass resources out of a function (e.g., as a return
value). It can be quite hard to determine what is right about such cases. Consider:

FILE* do_resources3(int a, int* p, const char* s) // messy function
 // undisciplined resource passing
{
 FILE* f = fopen(s,"r");
 delete p;
 delete var;
 var = new int[27];
 return f;
}

Is it right for do_resources3() to pass the (supposedly) opened file back as the
return value? Is it right for do_resources3() to delete the memory passed to it
as the argument p? We also added a really sneaky use of the global variable
var (obviously a pointer). Basically, passing resources in and out of functions is
common and useful, but to know if it is correct requires knowledge of a resource
management strategy. Who owns the resource? Who is supposed to delete/release
it? The documentation should clearly and simply answer those questions. (Dream
on.) In either case, passing of resources is a fertile area for bugs and a tempting
target for testing.

Note how we (deliberately) complicated the resource management example
by using a global variable. Things can get really messy when we start to mix the
sources of likely bugs. As programmers, we try to avoid that. As testers, we look
for such examples as easy pickings.

26.3.3.3 Loops
We have looked at loops when we discussed binary_search(). Basically most er-
rors occur at the ends:

• Is everything properly initialized when we start the loop?
• Do we correctly end with the last case (often the last element)?

Here is an example where we get it wrong:

int do_loop(const vector<int>& v) // messy function
 // undisciplined loop
{
 int i;
 int sum;
 while(i<=vec.size()) sum+=v[i];
 return sum;
}

Stroustrup_book.indb 1005Stroustrup_book.indb 1005 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1006

There are three obvious errors. (What are they?) In addition, a good tester will
immediately spot the opportunity for an overflow where we are adding to sum:

• Many loops involve data and might cause some sort of overfl ow when
they are given large inputs.

A famous and particularly nasty loop error, the buffer overflow, falls into the
category that can be caught by systematically asking the two key questions about
loops:

char buf[MAX]; // fixed-size buffer

char* read_line() // dangerously sloppy
{
 int i = 0;
 char ch;
 while(cin.get(ch) && ch!='\n') buf[i++] = ch;
 buf[i+1] = 0;
 return buf;
}

Of course, you wouldn’t write something like that! (Why not? What’s so wrong
with read_line()?) However, it is sadly common and comes in many variations,
such as

// dangerously sloppy:
gets(buf); // read a line into buf
scanf("%s",buf); // read a line into buf

Look up gets() and scanf() in your documentation and avoid them like the plague.
By “dangerous,” we mean that such buffer overflows are a staple of “cracking” —
that is, break-ins — on computers. Many implementations now warn against gets()
and its cousins for exactly this reason.

26.3.3.4 Branching
Obviously, when we have to make a choice, we may make the wrong choice. This
makes if-statements and switch-statements good targets for testers. There are two
major problems to look for:

• Are all possibilities covered?
• Are the right actions associated with the right possibilities?

Stroustrup_book.indb 1006Stroustrup_book.indb 1006 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 1007

Consider this nonsense function:

void do_branch1(int x, int y) // messy function
 // undisciplined use of if
{
 if (x<0) {
 if (y<0)
 cout << "very negative\n";
 else
 cout << "somewhat negative\n";
 }
 else if (x>0) {
 if (y<0)
 cout << "very positive\n";
 else
 cout << "somewhat positive\n";
 }
}

The most obvious error here is that we “forgot” the case where x is 0. When
testing against zero (or for positive and negative values), zero is often forgot-
ten or lumped with the wrong case (e.g., considered negative). Also, there is a
more subtle (but not uncommon) error lurking here: the actions for (x>0 &&
y<0) and (x>0 && y>=0) have “somehow” been reversed. This happens a lot with
cut-and-paste editing.

The more complicated the use of if-statements is, the more likely such errors
become. From a tester’s point of view, we look at such code and try to make sure
that every branch is tested. For do_branch1() the obvious test set is

do_branch1(–1,–1);
do_branch1(–1, 1);
do_branch1(1,–1);
do_branch1(1,1);
do_branch1(–1,0);
do_branch1(0,–1);
do_branch1(1,0);
do_branch1(0,1);
do_branch1(0,0);

Basically, that’s the brute-force “try all the alternatives” approach after we noticed
that do_branch1() tested against 0 using < and >. To catch the wrong actions for
positive values of x, we have to combine the calls with their desired output.

Stroustrup_book.indb 1007Stroustrup_book.indb 1007 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1008

Dealing with switch-statements is fundamentally similar to dealing with if-
statements.

void do_branch1(int x, int y) // messy function
 // undisciplined use of switch
{
 if (y<0 && y<=3)
 switch (x) {
 case 1:
 cout << "one\n";
 break;
 case 2:
 cout << "two\n";
 case 3:
 cout << "three\n";
 }
}

Here we have made four classic mistakes:

• We range checked the wrong variable (y instead of x).
• We forgot a break statement leading to a wrong action for x==2.
• We forgot a default case (thinking we had taken care of that with the if-

statement).
• We wrote y<0 when we meant to say 0<y.

As testers, we always look for unhandled cases. Please note that “just fixing the
problem” is not enough. It may reappear when we are not looking. As testers,
we want to write tests that systematically catch errors. If we just fixed this simple
code, we may very well get our fix wrong so that it either doesn’t solve the prob-
lem or introduces new and different errors. The purpose of looking at the code
is not really to spot errors (though that’s always useful), but to design a suitable
set of tests that will catch all errors (or, more realistically, will catch many errors).

Note that loops have an implicit “if”: they test whether we have reached the
end. Thus loops are also branching statements. When we look at programs con-
taining branching, the first question is always, “Have we covered (tested) every
branch?” Surprisingly that is not always possible in real code (because in real
code, a function is called as needed by other functions and not necessarily in all
possible ways). Consequently, a common question for testers is, “What is your
code coverage?” and the answer had better be, “We tested most branches,” fol-
lowed by an explanation of why the remaining branches are hard to reach. 100%
coverage is the ideal.

Stroustrup_book.indb 1008Stroustrup_book.indb 1008 4/22/14 9:43 AM4/22/14 9:43 AM

26.3 TESTING 1009

26.3.4 System tests
Testing any significant system is a skilled job. For example, the testing of the com-
puters that control telephone systems takes place in specially constructed rooms
with racks full of computers simulating the traffic of tens of thousands of people.
Such systems cost millions and are the work of teams of very skilled engineers.
After it is deployed, a main telephone switch is supposed to work continuously for
20 years with at most 20 minutes of downtime (for any reason, including power
failures, flooding, and earthquakes). We will not go into detail here — it would
be easier to teach a physics freshman to calculate course corrections for a Mars
probe — but we’ll try to give you some ideas that could be useful for a smaller
project or for understanding the testing of a larger system.

First of all, please remember that the purpose of testing is to find errors, espe-
cially potentially frequent and potentially serious errors. It is not simply to write
and run the largest number of tests. This implies that some understanding of the
system being tested is highly desirable. Even more than for unit testing, effective
system testing relies on knowledge of the application (domain knowledge). Devel-
oping a system takes more than just knowledge of programming language issues
and computer science; it requires an understanding of the application areas and
of the people who use the applications. This is something we find important for
motivating us to work with code: we get to see so many interesting applications
and meet interesting people.

For a complete system to be tested, it has to be built out of all of its parts
(units). This can take significant time, so many system tests are run just once a
day (often at night while the developers are supposed to be asleep) after all unit
tests have been done. Regression tests are a key component here. The areas of a
program in which we are most likely to find errors are new code and areas of code
where errors were found earlier. So running the collection of old tests (the regres-
sion tests) is essential; without those a large system will never become stable. We
would introduce new bugs as fast as we removed old ones.

Note that we take it for granted that when we fix a few errors, we accidentally
introduce a few new ones. We hope the number of new bugs is lower than the
number of old ones that we removed, and that the consequences of the new ones
are less severe. However, at least until we have rerun our regression tests and
added new tests for our new code, we must assume that our system is broken (by
our bug fixes).

26.3.5 Finding assumptions that do not hold
The specification of binary_search clearly stated that the sequence in which we
search must be sorted. That deprived us of many opportunities for sneaky unit
tests. But obviously there are opportunities for writing bad code that we have not
devised tests to detect (except for the system tests). Can we use our understanding
of a system’s “units” (functions, classes, etc.) to devise better tests?

Stroustrup_book.indb 1009Stroustrup_book.indb 1009 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1010

Unfortunately, the simplest answer is no. As pure testers, we cannot change
the code, but to detect violations of an interface’s requirements (pre-conditions),
someone must either check before each call or as part of the implementation of
each call (see §5.5). However, if we are testing our own code, we can insert such
tests. If we are testers and the people who write the code will listen to us (that’s not
always the case), we can tell them about the unchecked requirements and have
them ensure that they are checked.

Consider again binary_search: we couldn’t test that the input sequence
[first:last) really was a sequence and that it was sorted (§26.3.2.2). However, we
could write a function that does check:

template<class Iter, class T>
bool b2(Iter first, Iter last, const T& value)
{
 // check if [first:last) is a sequence:
 if (last<first) throw Bad_sequence();

 // check if the sequence is ordered:
 if (2<=last–first)
 for (Iter p = first+1; p<last; ++p)
 if (*p<*(p–1)) throw Not_ordered();

 // all’s OK, call binary_search:
 return binary_search(first,last,value);
}

Now, there are reasons why binary_search isn’t written with such tests, including
these:

• The test for last<fi rst can’t be done for a forward iterator; for example,
the iterator for std::list does not have a < (§B.3.2). In general, there is no
really good way of testing that a pair of iterators defi nes a sequence (start-
ing to iterate from fi rst hoping to meet last is not a good idea).

• Scanning the sequence to check that the values are ordered is far more
expensive than executing binary_search itself (the real purpose of binary_
search is not to have to blindly walk through the sequence looking for a
value the way std::fi nd does).

So what could we do? We could replace binary_search with b2 when we are
testing (only for calls to binary_search with random-access iterators, though).

Stroustrup_book.indb 1010Stroustrup_book.indb 1010 4/22/14 9:43 AM4/22/14 9:43 AM

26.4 DESIGN FOR TESTING 1011

Alternatively, we could have the implementer of binary_search insert code that a
tester could enable:

template<class Iter, class T> // warning: contains pseudo code
bool binary_search (Iter first, Iter last, const T& value)
{
 if (test enabled) {
 if (Iter is a random access iterator) {
 // check if [first:last) is a sequence:
 if (last<first) throw Bad_sequence();
 }

 // check if the sequence is ordered:
 if (first!=last) {
 Iter prev = first;
 for (Iter p = ++first; p!=last; ++p, ++ prev)
 if (*p<*prev) throw Not_ordered();
 }
 }

 // now do binary_search
}

Since the meaning of test enabled depends on how testing of code is arranged (for
a specific system in a specific organization), we have left it as pseudo code: when
testing your own code, you could simply have a test_enabled variable. We also
left the Iter is a random access iterator test as pseudo code because we haven’t
explained “iterator traits.” Should you really need such a test, look up iterator traits
in a more advanced C++ textbook.

26.4 Design for testing
When we start writing a program, we know that we would like it to eventually be
complete and correct. We also know that to achieve that, we must test it. Conse-
quently, we try to design for correctness and testing from day one. In fact, many
good programmers have as their slogan “Test early and often” and don’t write
any code before they have some idea about how they would go about testing it.
Thinking about testing early helps to avoid errors in the first place (as well as
helping to find them later). We subscribe to that philosophy. Some programmers
even write unit tests before they implement a unit.

Stroustrup_book.indb 1011Stroustrup_book.indb 1011 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1012

The example in §26.3.2.1 and the examples in §26.3.3 illustrate these key
notions:

• Use well-defi ned interfaces so that you can write tests for the use of these
interfaces.

• Have a way of representing operations as text so that they can be stored,
analyzed, and replayed. This also applies to output operations.

• Embed tests of otherwise unchecked assumptions (assertions) in the call-
ing code to catch bad arguments before system testing.

• Minimize dependencies and keep dependencies explicit.
• Have a clear resource management strategy.

Philosophically, this could be seen as enabling unit-testing techniques for subsys-
tems and complete systems.

If performance didn’t matter, we could leave the test of the (otherwise) un-
checked assumptions (requirements, pre-conditions) enabled all the time. How-
ever, there are usually reasons why they are not systematically checked. For
example, we saw how checking whether a sequence is sorted is both complicated
and far more expensive than using binary_sort. Consequently, it is a good idea to
design a system that allows us to selectively enable and disable such checks. For
many systems, it is a good idea to leave a fair number of the cheaper checks en-
abled even in the final (shipping) version: sometimes “impossible” things happen
and we would prefer to know about them from a specific error message rather
than from a simple crash.

26.5 Debugging
Debugging is an issue of technique and attitude. Of these, attitude is the more
important. Please revisit Chapter 5. Note how debugging and testing differ. Both
catch bugs, but debugging is much more ad hoc and typically concerned with
removing known bugs and implementing features. Whatever we can do to make
debugging more like testing should be done. It is a slight exaggeration to say that
we love testing, but we definitely hate debugging. Good early unit testing and
design for testing help minimize debugging.

26.6 Performance
Having a program correct is not enough for it to be useful. Even assuming that it
has sufficient facilities to make it useful, it must also provide appropriate perfor-
mance. A good program is “efficient enough”; that is, it will run in an acceptable
time given the resources available. Note that absolute efficiency is uninteresting,

Stroustrup_book.indb 1012Stroustrup_book.indb 1012 4/22/14 9:43 AM4/22/14 9:43 AM

26.6 PERFORMANCE 1013

and an obsession with getting a program to run fast can seriously damage devel-
opment by complicating code (leading to more bugs and more debugging) and
making maintenance (including porting and performance tuning) more difficult
and costly.

So, how can we know that a program (or a unit of a program) is “efficient
enough”? In the abstract we cannot know, and for many programs the hardware
is so fast that the question doesn’t arise. We have seen products shipped that were
compiled in debug mode (i.e., running about 25 times slower than necessary) to
enable better diagnostics for errors occurring after deployment (this can happen
to even the best code when it has to coexist with code developed “elsewhere”).

Consequently, the answer to the “Is it efficient enough?” question is: “Mea-
sure how long interesting test cases take.” To do that, you obviously have to know
your end users well enough to have an idea of what they would consider “inter-
esting” and how much time such interesting uses can acceptably take. Logically,
we simply clock our tests with a stopwatch and check that none consumes an
unreasonable amount of time. This becomes practical when we use facilities such
as system_clock (§26.6.1) to do the timing for us, and we can automatically com-
pare the time taken by tests with estimates of what is reasonable. Alternatively (or
additionally) we can record how long tests take and compare them to earlier test
runs. This way we get a form of regression test for performance.

Some of the worst performance bugs are caused by poor algorithms and can
be found by testing. One reason for testing with large sets of data is to expose in-
efficient algorithms. As an example, assume that an application has to make sums
of the elements in rows of a matrix (using the Matrix library from Chapter 24).
Someone supplied an appropriate function:

double row_sum(Matrix<double,2> m, int n); // sum of elements in m[n]

Now someone uses that to generate a vector of sums where v[n] is the sum of the
elements of the first n rows:

double row_accum(Matrix<double,2> m, int n) // sum of elements in m[0:n)
{
 double s = 0;
 for (int i=0; i<n; ++i) s+=row_sum(m,i);
 return s;
}

// compute accumulated sums of rows of m:
vector<double> v;
for (int i = 0; i<m.dim1(); ++i) v.push_back(row_accum(m,i+1));

Stroustrup_book.indb 1013Stroustrup_book.indb 1013 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1014

You can imagine this to be part of a unit test or executed as part of the application
exercised by a system test. In either case, you will notice something strange if the
matrix ever gets really large: basically, the time needed goes up with the square of
the size of m. Why? What we did was to add all the elements of the first row, then
we added all the elements in the second row (revisiting all the elements of the first
row), then we added all the elements in the third row (revisiting all the elements
of the first and second rows), etc.

If you think this example was bad, consider what would have happened if the
row_sum() had had to access a database to get its data. Reading from disk is many
thousands of times slower than reading from main memory.

Now, you may complain: “Nobody would write something that stupid!”
Sorry, but we have seen much worse, and usually a poor algorithm (from the
performance point of view) is not that easy to spot when buried in application
code. Did you spot the performance problem when you first glanced at the code?
A problem can be quite hard to spot unless you are specifically looking for that
particular kind of problem. Here is a simple real-world example found in a server:

for (int i=0; i<strlen(s); ++i) {
 // . . . do something with s[i] . . .
}

Often, s was a string with about 20K characters.
Not all performance problems have to do with poor algorithms. In fact (as we

pointed out in §26.3.3), much of the code we write cannot be classified as proper
algorithms. Such “non-algorithmic” performance problems typically fall under the
broad classification of “poor design.” They include

• Repeated recalculation of information (e.g., the row-summing problem
above)

• Repeated checking of the same fact (e.g., checking that an index is in
range each time it is used in a loop or checking an argument repeatedly as
it is passed unchanged from function to function)

• Repeated visits to the disk (or to the web)

Note the (repeated) repeated. Obviously, we mean “unnecessarily repeated,” but
the point is that unless you do something many times, it will not have an impact
on performance. We are all for thorough checking of function arguments and loop
variables, but if we do the same check a million times for the same values, those
redundant checks just might hurt performance. If we — by measurement — find
that performance is hurt, we will try to see if we can remove a repeated action.
Don’t do that unless you are sure that performance is really a problem. Premature
optimization is the source of many bugs and much wasted time.

Stroustrup_book.indb 1014Stroustrup_book.indb 1014 4/22/14 9:43 AM4/22/14 9:43 AM

26.6 PERFORMANCE 1015

26.6.1 Timing
How do you know if a piece of code is fast enough? How do you know how long
an operation takes? Well, in many cases where it matters, you can simply look at a
clock (stopwatch, wall clock, or wristwatch). That’s not scientific or accurate, but
if that’s not feasible, you can often conclude that the program was fast enough. It
is not good to be obsessed with performance.

If you need to measure smaller increments of time or if you can’t sit around
with a stopwatch, you need to get your computer to help you; it knows the time
and can give it to you. For example, on a Unix system, simply prefixing a com-
mand with time will make the system print out the time taken. You might use
time to figure out how long it takes to compile a C++ source file x.cpp. Normally,
you compile it like this:

g++ x.cpp

To get that compilation timed, you just add time:

time g++ x.cpp

This will compile x.cpp and also print the time taken on the screen. This is a sim-
ple and effective way of timing small programs. Remember to always do several
timing runs because “other activities” on your machine might interfere. If you get
roughly the same answer three times, you can usually trust the result.

But what if you want to measure something that takes just milliseconds?
What if you want to do your own, more detailed, measurements of a part of
a program? You use standard library facilities from <chrono>. For example,
to measure the time used by a function do_something() you can write code
like this:

#include <chrono>
#include <iostream>
using namespace std;

int main()
{
 int n = 10000000; // repeat do_something() n times

 auto t1 = system_clock::now(); // begin time

 for (int i = 0; i<n; i++) do_something(); // timing loop

Stroustrup_book.indb 1015Stroustrup_book.indb 1015 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1016

 auto t2 = system_clock::now(); // end time

 cout << "do_something() " << n << " times took "
<< duration_cast<milliseconds>(t2-t1).count() << "milliseconds\n";

}

The system_clock is one of the standard timers, and system_clock::now() returns
the point of time (a time_point) at which it is called. Subtract two time_points
(here, t2–t1) and you get a length of time (a duration). We can use auto to save
us from the details of the duration and time_point types, which are surprisingly
complicated if your view of time is simply what you see on a wristwatch. In fact,
the standard library’s timing facilities were originally designed for advanced phys-
ics applications and are far more flexible and general than most users need.

To get a duration in terms of a particular unit of time, such as seconds,
 milliseconds, or nanoseconds, we convert (“cast”) it to that unit using the con-
version function duration_cast. You need something like duration_cast because
different systems and different clocks measure time in different units. Don’t forget
the .count(). That is what extracts the number of units (“clock ticks”) from the
duration that contains both the clock ticks and their unit.

The system_clock is meant to measure intervals from a fraction of a second
to a few seconds. Don’t try to use it to measure hours.

Again, don’t believe any time measurement that you cannot repeat with
roughly the same result three times. What does “roughly the same” mean?
“Within 10%” is a reasonable answer. Remember that modern computers are fast:
1,000,000,000 instructions per second is ordinary. This implies that you won’t be
able to measure anything unless you can repeat it tens of thousands of times or
it does something really slow, such as writing to disk or accessing the web. In the
latter case, you just have to get it to repeat a few hundred times, but you have to
worry that so much is going on that you might not understand the results.

26.7 References
Stone, Debbie, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User In-

terface Design and Evaluation. Morgan Kaufmann, 2005. ISBN 0120884364.
Whittaker, James A. How to Break Software: A Practical Guide to Testing. Addison-

Wesley, 2003. ISBN 0321194330.

Stroustrup_book.indb 1016Stroustrup_book.indb 1016 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 REVIEW 1017

Drill
Get the test of binary_search to run:

 1. Implement the input operator for Test from §26.3.2.2.
 2. Complete a file of tests for the sequences from §26.3:

a. { 1 2 3 5 8 13 21 } // an “ordinary sequence”
b. { }
c. { 1 }
d. { 1 2 3 4 } // even number of elements
e. { 1 2 3 4 5 } // odd number of elements
f. { 1 1 1 1 1 1 1 } // all elements equal
g. { 0 1 1 1 1 1 1 1 1 1 1 1 1 } // different element at beginning
h. { 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } // different element at end

 3. Based on §26.3.1.3, complete a program that generates

a. A very large sequence (what would you consider very large, and why?)
b. Ten sequences with a random number of elements
c. Ten sequences with 0, 1, 2 . . . 9 random elements (but still ordered)

 4. Repeat these tests for sequences of strings, such as { Bohr Darwin Einstein
Lavoisier Newton Turing }.

Review
 1. Make a list of applications, each with a brief explanation of the worst

thing that can happen if there is a bug; e.g., airplane control — crash: 231
people dead; $500M equipment loss.

 2. Why don’t we just prove our programs correct?
 3. What’s the difference between unit testing and system testing?
 4. What is regression testing and why is it important?
 5. What is the purpose of testing?
 6. Why doesn’t binary_search just check its requirements?
 7. If we can’t check for all possible errors, what kinds of errors do we pri-

marily look for?
 8. Where are bugs most likely to occur in code manipulating a sequence of

elements?
 9. Why is it a good idea to test for large values?
 10. Why do we often represent tests as data rather than as code?
 11. Why and when would we use lots of tests based on random values?

Stroustrup_book.indb 1017Stroustrup_book.indb 1017 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 • TESTING1018

 12. Why is it hard to test a program using a GUI?
 13. What is needed to test a “unit” in isolation?
 14. What is the connection between testability and portability?
 15. What makes testing a class harder than testing a function?
 16. Why is it important that tests be repeatable?
 17. What can a tester do when finding that a “unit” relies on unchecked as-

sumptions (pre-conditions)?
 18. What can a designer/implementer do to improve testing?
 19. How does testing differ from debugging?
 20. When does performance matter?
 21. Give two (or more) examples of how to (easily) create bad performance

problems.

Terms
assumptions
black-box testing
branching
design for testing
inputs
outputs
post-condition

pre-condition
proof
regression
resource usage
state
system_clock
system test

test coverage
test harness
testing
timing
unit test
white-box testing

Exercises
 1. Run your binary search algorithm from §26.1 with the tests presented in

§26.3.2.1.
 2. Modify the testing of binary_search to deal with arbitrary element types.

Then, test it with string sequences and floating-point sequences.
 3. Repeat exercise 1 with the version of binary_search that takes a compar-

ison criterion. Make a list of new opportunities for errors introduced by
that extra argument.

 4. Devise a format for test data so that you can define a sequence once and
run several tests against it.

 5. Add a test to the set of binary_search tests to try to catch the (unlikely)
error of a binary_search modifying the sequence.

 6. Modify the calculator from Chapter 7 minimally to let it take input from
a file and produce output to a file (or use your operating system’s facilities
for redirecting I/O). Then devise a reasonably comprehensive test for it.

 7. Test the “simple text editor” from §20.6.

Stroustrup_book.indb 1018Stroustrup_book.indb 1018 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 26 POSTSCRIPT 1019

 8. Add a text-based interface to the graphics interface library from Chapters
12–15. For example, the string Circle(Point(0,1),15) should generate a call
Circle(Point(0,1),15). Use this text interface to make a “kid’s drawing” of
a two-dimensional house with a roof, two wind ows, and a door.

 9. Add a text-based output format for the graphics interface library. For
example, when a call Circle(Point(0,1),15) is executed, a string like
 Circle(Point(0,1),15) should be produced on an output stream.

 10. Use the text-based interface from exercise 9 to write a better test for the
graphical interface library.

 11. Time the sum example from §26.6 with m being square matrices with
dimensions 100, 10,000, 1,000,000, and 10,000,000. Use random element
values in the range [–10:10). Rewrite the calculation of v to use a more
efficient (not O(N 2)) algorithm and compare the timings.

 12. Write a program that generates random floating-point numbers and sort
them using std::sort(). Measure the time used to sort 500,000 doubles
and 5,000,000 doubles.

 13. Repeat the experiment in the previous exercise, but with random strings
of lengths in the [0:100) range.

 14. Repeat the previous exercise, except using a map rather than a vector so
that we don’t need to sort.

Postscript
As programmers, we dream about writing beautiful programs that just work —
preferably the fi rst time we try them. The reality is different: it is hard to get
programs right, and it is hard to get them to stay right as we (and our colleagues)
work to improve them. Testing — including design for testing — is a major way of
ensuring that the systems we ship actually work. Whenever we reach the end of
a day in our highly technological world, we really ought to give a kind thought to
the (often forgotten) testers.

Stroustrup_book.indb 1019Stroustrup_book.indb 1019 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1020Stroustrup_book.indb 1020 4/22/14 9:43 AM4/22/14 9:43 AM

1021

27

The C Programming
Language

 “C is a strongly typed,
weakly checked,

programming language.”

—Dennis Ritchie

This chapter is a brief overview of the C programming lan-

guage and its standard library from the point of view of

someone who knows C++. It lists the C++ features missing from

C and gives examples of how a C programmer can cope with-

out those. C/C++ incompatibilities are presented, and C/C++

interoperability is discussed. Examples of I/O, list manipulation,

memory management, and string manipulation are included

as illustration.

Stroustrup_book.indb 1021Stroustrup_book.indb 1021 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1022

27.1 C and C++: siblings
The C programming language was designed and implemented by Dennis Ritchie
at Bell Labs and popularized by the book The C Programming Language by Brian
Kernighan and Dennis Ritchie (colloquially known as “K&R”), which is argu-
ably still the best introduction to C and one of the great books on programming
(§22.2.5). The text of the original definition of C++ was an edit of the text of the
1980 definition of C, supplied by Dennis Ritchie. After this initial branch, both
languages evolved further. Like C++, C is now defined by an ISO standard.

We see C primarily as a subset of C++. Thus, from a C++ point of view, the
problem of describing C boils down to two issues:

• Describe where C isn’t a subset of C++.
• Describe which C++ features are missing in C and which facilities and

techniques can be used to compensate.

Historically, modern C and modern C++ are siblings. Both are direct descendants
of “Classic C,” the dialect of C popularized by the first edition of Kernighan and
Ritchie’s The C Programming Language plus structure assignment and enumerations:

 27.1 C and C++: siblings
 27.1.1 C/C++ compatibility

 27.1.2 C++ features missing from C
 27.1.3 The C standard library

 27.2 Functions
 27.2.1 No function name

overloading
 27.2.2 Function argument type

checking
 27.2.3 Function defi nitions
 27.2.4 Calling C from C++ and C++

from C
 27.2.5 Pointers to functions

 27.3 Minor language differences
 27.3.1 struct tag namespace

 27.3.2 Keywords
 27.3.3 Defi nitions
 27.3.4 C-style casts
 27.3.5 Conversion of void*
 27.3.6 enum
 27.3.7 Namespaces

 27.4 Free store

 27.5 C-style strings
 27.5.1 C-style strings and const

 27.5.2 Byte operations
 27.5.3 An example: strcpy()
 27.5.4 A style issue

 27.6 Input/output: stdio
 27.6.1 Output

 27.6.2 Input
 27.6.3 Files

 27.7 Constants and macros

 27.8 Macros
 27.8.1 Function-like macros

 27.8.2 Syntax macros
 27.8.3 Conditional compilation

 27.9 An example: intrusive
containers

Stroustrup_book.indb 1022Stroustrup_book.indb 1022 4/22/14 9:43 AM4/22/14 9:43 AM

27.1 C AND C++: SIBLINGS 1023

Simula BCPL

B

K&R C

Classic C

C with Classes

Early C++

ARM C++

C89

1967

1978

1980

1985

1989

1998 C++98

C++11

C++14

C11

C99

2011

2014

The version of C that is used today is still mostly C89 (as described in the second
edition of K&R), and that’s what we are describing here. There is still some Clas-
sic C in use and some C99, but that should not cause you any problems when
you know C++ and C89.

Both C and C++ were “born” in the Computer Science Research Center of
Bell Labs in Murray Hill, New Jersey (for a while, my office was a couple of doors
down and across the corridor from those of Dennis Ritchie and Brian Kernighan):

Stroustrup_book.indb 1023Stroustrup_book.indb 1023 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1024

Both languages are now defined/controlled by ISO standards committees. For
each, many supported implementations are in use. Often, an implementation sup-
ports both languages with the desired language chosen by a compiler switch or a
source file suffix. Both are available on more platforms than any other language.
Both were primarily designed for and are now heavily used for hard system pro-
gramming tasks, such as

• Operating system kernels
• Device drivers
• Embedded systems
• Compilers
• Communications systems

There are no performance differences between equivalent C and C++
programs.

Like C++, C is very widely used. Taken together, the C/C++ community is
the largest software development community on earth.

27.1.1 C/C++ compatibility
It is not uncommon to hear references to “C/C++.” However, there is no such
language, and the use of “C/C++” is typically a sign of ignorance. We use “C/
C++” only in the context of C/C++ compatibility issues and when talking about
the large shared C/C++ technical community.

C++ is largely, but not completely, a superset of C. With a few very rare
exceptions, constructs that are both C and C++ have the same meaning (seman-
tics) in both languages. C++ was designed to be “as close as possible to C, but
no closer”:

• For ease of transition
• For coexistence

Most incompatibilities relate to C++’s stricter type checking.
An example of a program that is legal C but not C++ is one that uses a C++

keyword that is not a C keyword as an identifier (see §27.3.2):

int class(int new, int bool); /* C, but not C++ */

Examples where the semantics differ for a construct that is legal in both languages
are harder to find, but here is one:

int s = sizeof('a'); /* sizeof(int), often 4 in C and 1 in C++ */

Stroustrup_book.indb 1024Stroustrup_book.indb 1024 4/22/14 9:43 AM4/22/14 9:43 AM

27.1 C AND C++: SIBLINGS 1025

The type of a character literal, such as 'a', is int in C and char in C++. However,
for a char variable ch we have sizeof(ch)==1 in both languages.

Information related to compatibility and language differences is not exactly
exciting. There are no new neat programming techniques to learn. You might like
printf() (§27.6), but with that possible exception (and some feeble attempts at geek
humor), this chapter is bone dry. Its purpose is simple: to allow you to read and
write C if you need to. This includes pointing out the hazards that are obvious
to experienced C programmers, but typically unexpected by C++ programmers.
We hope you can learn to avoid those hazards with minimal grief.

Most C++ programmers will have to deal with C code at some point or
another, just as most C programmers will have to deal with C++ code. Much
of what we describe in this chapter will be familiar to most C programmers, but
some will be considered “expert level.” The reason for that is simple: not every-
one agrees about what is “expert level” and we just describe what is common in
real-world code. Maybe understanding compatibility issues can be a cheap way
of gaining an unfair reputation as a “C expert.” But do remember: real expertise
is in the use of a language (in this case C), rather than in understanding esoteric
language rules (as are exposed by considering compatibility issues).

References
ISO/IEC 9899:1999. Programming Languages — C. This defines C99; most imple-

mentations implement C89 (often with a few extensions).
ISO/IEC 9899:2011. Programming Languages — C. This defines C11.
ISO/IEC 14882:2011. Programming Languages — C++.
Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Pren-

tice Hall, 1988. ISBN 0131103628.
Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users

Journal, May 1999.
Stroustrup, Bjarne. “C and C++: Siblings”; “C and C++: A Case for Compat-

ibility”; and “C and C++: Case Studies in Compatibility.” The C/C++ Users
Journal, July, Aug., and Sept. 2002.

The papers by Stroustrup are most easily found on my publications home page.

27.1.2 C++ features missing from C
From a C++ perspective, C (i.e., C89) lacks a lot of features, such as

• Classes and member functions

• Use struct and global functions.

Stroustrup_book.indb 1025Stroustrup_book.indb 1025 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1026

• Derived classes and virtual functions

• Use structs, global functions, and pointers to functions (§27.2.3).

• Templates and inline functions

• Use macros (§27.8).

• Exceptions

• Use error codes, error return values, etc.

• Function overloading

• Give each function a distinct name.

• new/delete

• Use malloc()/free() and separate initialization/cleanup code.

• References

• Use pointers.

• const, constexpr, or functions in constant expressions

• Use macros.

• bool

• Use int.

• static_cast, reinterpret_cast, and const_cast

• Use C-style casts, e.g., (int)a rather than static<int>(a).

Lots of useful code is written in C, so this list should remind us that no one lan-
guage feature is absolutely necessary. Most language features — even most C lan-
guage features — are there for the convenience (only) of the programmer. After all,
given sufficient time, cleverness, and patience, every program can be written in as-
sembler. Note that because C and C++ share a machine model that is very close to
the real machine, they are well suited to emulate varieties of programming styles.

The rest of this chapter explains how to write useful programs without those
features. Our basic advice for using C is:

• Emulate the programming techniques that the C++ features were de-
signed to support with the facilities provided by C.

• When writing C, write in the C subset of C++.

Stroustrup_book.indb 1026Stroustrup_book.indb 1026 4/22/14 9:43 AM4/22/14 9:43 AM

27.1 C AND C++: SIBLINGS 1027

• Use compiler warning levels that ensure function argument checking.
• Use lint for large programs (see §27.2.2).

Many of the details of C/C++ incompatibilities are rather obscure and techni-
cal. However, to read and write C, you don’t actually have to remember most
of those:

• The compiler will remind you when you are using a C++ feature that is
not in C.

• If you follow the rules above, you are unlikely to encounter anything that
means something different in C from what it means in C++.

With the absence of all those C++ facilities, some facilities gain importance in C:

• Arrays and pointers
• Macros
• typedef (the C and C++98 equivalent to simple using declarations; see

§20.5, §A.16)
• sizeof

• Casts

We give examples of a few such uses in this chapter.
I introduced the // comments into C++ from C’s ancestor BCPL when I got

really fed up with typing /* . . . */ comments. The // comments are accepted by
most C dialects including C99 and C11, so it is probably safe just to use them.
Here, we will use /* . . . */ exclusively in examples meant to be C. C99 and C11
introduced a few more C++ features (as well as a few features that are incompati-
ble with C++), but here we will stick to C89, because that’s far more widely used.

27.1.3 The C standard library
Naturally, a C++ library facility that depends on classes and templates is not
available in C. This includes

• vector

• map

• set

• string

• The STL algorithms: e.g., sort(), fi nd(), and copy()

• iostreams
• regex

Stroustrup_book.indb 1027Stroustrup_book.indb 1027 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1028

For these, there are often C libraries based on arrays, pointers, and functions to
help compensate. The main parts of the C standard library are

• <stdlib.h>: general utilities (e.g., malloc() and free(); see §27.4)
• <stdio.h>: standard I/O; see §27.6
• <string.h>: C-style string manipulation and memory manipulation; see

§27.5
• <math.h>: standard fl oating-point mathematical functions; see §24.8
• <errno.h>: error codes for <math.h>; see §24.8
• <limits.h>: sizes of integer types; see §24.2
• <time.h>: date and time; see §26.6.1
• <assert.h>: debug assertions; see §27.9
• <ctype.h>: character classifi cation; see §11.6
• <stdbool.h>: Boolean macros

For a complete description, see a good C textbook, such as K&R. All of these
libraries (and header files) are also available in C++.

27.2 Functions
In C:

• There can be only one function of a given name.
• Function argument type checking is optional.
• There are no references (and therefore no pass-by-reference).
• There are no member functions.
• There are no inline functions (except in C99).
• There is an alternative function defi nition syntax.

Apart from that, things are much as you are used to in C++. Let us explore what
that means.

27.2.1 No function name overloading
Consider:

void print(int); /* print an int */
void print(const char*); /* print a string */ /* error! */

The second declaration is an error because there cannot be two functions with the
same name. So you’ll have to invent a suitable pair of names:

Stroustrup_book.indb 1028Stroustrup_book.indb 1028 4/22/14 9:43 AM4/22/14 9:43 AM

27.2 FUNCTIONS 1029

void print_int(int); /* print an int */
void print_string(const char*); /* print a string */

This is occasionally claimed to be a virtue: now you can’t accidentally use the
wrong function to print an int! Clearly we don’t buy that argument, and the lack
of overloaded functions does make generic programming ideas awkward to im-
plement because generic programming depends on semantically similar functions
having the same name.

27.2.2 Function argument type checking
Consider:

int main()
{
 f(2);
}

A C compiler will accept this: you don’t have to declare a function before you
call it (though you can and should). There may be a definition of f() somewhere.
That f() could be in another translation unit, but if it isn’t, the linker will complain.

Unfortunately, that definition in another source file might look like this:

/* other_file.c: */

int f(char* p)
{
 int r = 0;
 while (*p++) r++;
 return r;
}

The linker will not report that error. You will get a run-time error or some random
result.

How do we manage problems like that? Consistent use of header files is a
practical answer. If every function you call or define is declared in a header that
is consistently #included whenever needed, we get checking. However, in large
programs that can be hard to achieve. Consequently, most C compilers have op-
tions that give warnings for calls of undeclared functions: use them. Also, from
the earliest days of C, there have been programs that can be used to check for all
kinds of consistency problems. They are usually called lint. Use a lint for every
nontrivial C program. You will find that lint pushes you toward a style of C usage
that is rather similar to using a subset of C++. One of the observations that led

Stroustrup_book.indb 1029Stroustrup_book.indb 1029 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1030

to the design of C++ was that the compiler could easily check much (but not all)
of what lint checked.

You can ask to have function arguments checked in C. You do that simply
by declaring a function with its argument types specified (just as in C++). Such a
declaration is called a function prototype. However, beware of function declarations
that do not specify arguments; those are not function prototypes and do not imply
function argument checking:

int g(double); /* prototype — like C++ function declaration */
int h(); /* not a prototype — the argument types are unspecified */

void my_fct()
{
 g(); /* error: missing argument */
 g("asdf"); /* error: bad argument type */
 g(2); /* OK: 2 is converted to 2.0 */
 g(2,3); /* error: one argument too many */

 h(); /* OK by the compiler! May give unexpected results */
 h("asdf"); /* OK by the compiler! May give unexpected results */
 h(2); /* OK by the compiler! May give unexpected results */
 h(2,3); /* OK by the compiler! May give unexpected results */
}

The declaration of h() specifies no argument type. This does not mean that h()
doesn’t accept arguments; it means “Accept any set of arguments and hope they
are correct for the called function.” Again, a good compiler warns and lint will
catch the problem.

C++ C equivalent

void f(); // preferred void f(void);

void f(void); void f(void);

void f(. . .); // accept any arguments void f(); /* accept any arguments */

There is a special set of rules for converting arguments where no function proto-
type is in scope. For example, chars and shorts are converted to ints, and floats
are converted to doubles. If you need to know, say, what happens to a long, look
it up in a good C textbook. Our recommendation is simple: don’t call functions
without prototypes.

Stroustrup_book.indb 1030Stroustrup_book.indb 1030 4/22/14 9:43 AM4/22/14 9:43 AM

27.2 FUNCTIONS 1031

Note that even though the compiler will allow an argument of the wrong type
to be passed, such as a char* to a parameter of type int, the use of such an argu-
ment of a wrong type is an error. As Dennis Ritchie said, “C is a strongly typed,
weakly checked, programming language.”

27.2.3 Function defi nitions
You can define functions exactly as in C++ and such definitions are function
prototypes:

double square(double d)
{
 return d*d;
}

void ff()
{
 double x = square(2); /* OK: convert 2 to 2.0 and call */
 double y = square(); /* argument missing */
 double y = square("Hello"); /* error: wrong argument type */
 double y = square(2,3); /* error: too many arguments */
}

A definition of a function with no arguments is not a function prototype:

void f() { /* do something */ }

void g()
{
 f(2); /* OK in C; error in C++ */
}

Having

void f(); /* no argument type specified */

mean “f() can take any number of arguments of any type” seemed really strange.
In response, I invented a new notation where “nothing” was explicitly stated using
the keyword void (void is a four-letter word meaning “nothing”):

void f(void); /* no arguments accepted */

Stroustrup_book.indb 1031Stroustrup_book.indb 1031 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1032

I soon regretted that, though, since that looks odd and is completely redundant
when argument type checking is uniformly applied. Worse, Dennis Ritchie (the
father of C) and Doug McIlroy (the ultimate arbiter of taste in the Bell Labs Com-
puter Science Research Center; see §22.2.5) both called it “an abomination.” Un-
fortunately, that abomination became very popular in the C community. Don’t
use it in C++, though, where it is not only ugly, but also logically redundant.

C also provides a second, Algol60-style function definition, where the param-
eter types are (optionally) specified separately from their names:

int old_style(p,b,x) char* p; char b;
{
 /* . . . */
}

This “old-style definition” predates C++ and is not a prototype. By default, an
argument without a declared type is an int. So, x is an int parameter of old_style().
We can call old_style() like this:

old_style(); /* OK: all arguments missing */
old_style("hello", 'a', 17); /* OK: all arguments are of the right type */
old_style(12, 13, 14); /* OK: 12 is the wrong type, */
 /* but maybe old_style() won’t use p */

The compiler should accept these calls (but would warn, we hope, for the first
and third).

Our recommendation about function argument checking:

• Use function prototypes consistently (use header fi les).
• Set compiler warning levels so that argument type errors are caught.
• Use (some) lint.

The result will be code that’s also C++.

27.2.4 Calling C from C++ and C++ from C
You can link files compiled with a C compiler together with files compiled with a
C++ compiler provided the two compilers were designed for that. For example,
you can link object files generated from C and C++ using your GNU C and
C++ compiler (GCC) together. You can also link object files generated from C
and C++ using your Microsoft C and C++ compiler (MSC++) together. This
is common and useful because it allows you to use a larger set of libraries than
would be available in just one of those two languages.

C++ provides stricter type checking than C. In particular, a C++ compiler
and linker check that two functions f(int) and f(double) are consistently defined

Stroustrup_book.indb 1032Stroustrup_book.indb 1032 4/22/14 9:43 AM4/22/14 9:43 AM

27.2 FUNCTIONS 1033

and used — even in different source files. A linker for C doesn’t do that kind of
checking. To call a function defined in C from C++ and to have a function de-
fined in C++ called from C, we need to tell the compiler what we are doing:

// calling C function from C++:

extern "C" double sqrt(double); // link as a C function

void my_c_plus_plus_fct()
{
 double sr = sqrt(2);
}

Basically extern "C" tells the compiler to use C linker conventions. Apart from
that, all is normal from a C++ point of view. In fact, the C++ standard sqrt(dou-
ble) usually is the C standard library sqrt(double). Nothing is required from the
C program to make a function callable from C++ in this way. C++ simply adapts
to the C linkage convention.

We can also use extern "C" to make a C++ function callable from C:

// C++ function callable from C:

extern "C" int call_f(S* p, int i)
{
 return p–>f(i);
}

In a C program, we can now call the member function f() indirectly, like this:

/* call C++ function from C: */

int call_f(S* p, int i);
struct S* make_S(int,const char*);

void my_c_fct(int i)
{
 /* . . . */
 struct S* p = make_S(x, "foo");
 int x = call_f(p,i);
 /* . . . */
}

No mention of C++ is needed (or possible) in C for this to work.

Stroustrup_book.indb 1033Stroustrup_book.indb 1033 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1034

The benefit of this interoperability is obvious: code can be written in a mix of
C and C++. In particular, a C++ program can use libraries written in C, and C
programs can use libraries written in C++. Furthermore, most languages (notably
Fortran) have an interface for calling to/from C.

In the examples above, we assumed that C and C++ could share the class
object pointed to by p. That is true for most class objects. In particular, if you have
a class like this,

// in C++:
class complex {
 double re, im;
public:
 // all the usual operations
};

you can get away with passing a pointer to an object to and from C. You can even
access re and im in a C program using a declaration:

/* in C: */
struct complex {
 double re, im;
 /* no operations */
};

The rules for layout in any language can be complex, and the rules for layout
among languages can even be hard to specify. However, you can pass built-in types
between C and C++ and also classes (structs) without virtual functions. If a class
has virtual functions, you should just pass pointers to its objects and leave the
actual manipulation to C++ code. The call_f() was an example of this: f() might
be virtual and then that example would illustrate how to call a virtual function
from C.

Apart from sticking to the built-in types, the simplest and safest sharing of
types is a struct defined in a common C/C++ header file. However, that strategy
seriously limits how C++ can be used, so we don’t restrict ourselves to it.

27.2.5 Pointers to functions
What can we do in C if we want to use object-oriented techniques (§14.2–4)? Ba-
sically, we need an alternative to virtual functions. For most people, the first idea
that springs to mind is to use a struct with a “type field” that describes what kind
of shape a given object represents. For example:

Stroustrup_book.indb 1034Stroustrup_book.indb 1034 4/22/14 9:43 AM4/22/14 9:43 AM

27.2 FUNCTIONS 1035

struct Shape1 {
 enum Kind { circle, rectangle } kind;
 /* . . . */
};

void draw(struct Shape1* p)
{
 switch (p–>kind) {
 case circle:
 /* draw as circle */
 break;
 case rectangle:
 /* draw as rectangle */
 break;
 }
}

int f(struct Shape1* pp)
{
 draw(pp);
 /* . . . */
}

This works. There are two snags, though:

• For each “pseudo-virtual” function (such as draw()), we have to write a
new switch-statement.

• Each time we add a new shape, we have to modify every “pseudo-virtual”
function (such as draw()) by adding a case to the switch-statement.

The second problem is quite nasty because it means that we can’t provide our
“pseudo-virtual” functions as part of a library, because our users will have to
modify those functions quite often. The most effective alternative involves
pointers to functions:

typedef void (*Pfct0)(struct Shape2*);
typedef void (*Pfct1int)(struct Shape2*,int);

struct Shape2 {
 Pfct0 draw;
 Pfct1int rotate;
 /* . . . */
};

Stroustrup_book.indb 1035Stroustrup_book.indb 1035 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1036

void draw(struct Shape2* p)
{
 (p–>draw)(p);
}

void rotate(struct Shape2* p, int d)
{
 (p–>rotate)(p,d);
}

This Shape2 can be used just like Shape1.

int f(struct Shape2* pp)
{
 draw(pp);
 /* . . . */
}

With a little extra work, an object need not hold one pointer to a function for each
pseudo-virtual function. Instead, it can hold a pointer to an array of pointers to
functions (much as virtual functions are implemented in C++). The main prob-
lem with using such schemes in real-world programs is to get the initialization of
all those pointers to functions right.

27.3 Minor language differences
This section gives examples of minor C/C++ differences that could trip you up
if you have never heard of them. Few seriously impact programming in that the
differences have obvious work-arounds.

27.3.1 struct tag namespace
In C, the names of structs (there is no class keyword) are in a separate namespace
from other identifiers. Therefore, every name of a struct (called a structure tag)
must be prefixed with the keyword struct. For example:

struct pair { int x,y; };
pair p1; /* error: no identifier pair in scope */
struct pair p2; /* OK */
int pair = 7; /* OK: the struct tag pair is not in scope */
struct pair p3; /* OK: the struct tag pair is not hidden by the int */
pair = 8; /* OK: pair refers to the int */

Stroustrup_book.indb 1036Stroustrup_book.indb 1036 4/22/14 9:43 AM4/22/14 9:43 AM

27.3 MINOR LANGUAGE DIFFERENCES 1037

Amazingly enough, thanks to a devious compatibility hack, this also works in
C++. Having a variable (or a function) with the same name as a struct is a fairly
common C idiom, though not one we recommend.

If you don’t want to write struct in front of every structure name, use a
 typedef (§20.5). The following idiom is common:

typedef struct { int x,y; } pair;
pair p1 = { 1, 2 };

In general, you’ll find typedefs more common and more useful in C, where you
don’t have the option of defining new types with associated operations.

In C, names of nested structs are placed in the same scope as the struct in
which they are nested. For example:

struct S {
 struct T { /* . . . */ };
 / * . . . */
};

struct T x; /* OK in C (not in C++) */

In C++, you would write

S::T x; // OK in C++ (not in C)

Whenever possible, don’t nest structs in C: their scope rules differ from what
most people naively (and reasonably) expect.

27.3.2 Keywords
Many keywords in C++ are not keywords in C (because C doesn’t provide the
functionality) and can be used as identifiers in C:

C++ keywords that are not C keywords

alignas class inline private true

alignof compl mutable protected try

and concept namespace public typeid

and_eq const_cast new reinterpret_cast typename

asm constexpr noexcept requires using

bitand delete not static_assert virtual

Stroustrup_book.indb 1037Stroustrup_book.indb 1037 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1038

C++ keywords that are not C keywords (continued)

bitor dynamic_cast not_eq static_cast wchar_t

bool explicit nullptr template xor

catch export operator this xor_eq

char16_t false or thread_local

char32_t friend or_eq throw

Don’t use these names as identifiers in C, or your code will not be portable to
C++. If you use one of these names in a header file, that header won’t be useful
from C++.

Some C++ keywords are macros in C:

C++ keywords that are C macros

and bitor false or wchar_t

and_eq bool not or_eq xor

bitand compl not_eq true xor_eq

In C, they are defined in <iso646.h> and <stdbool.h> (bool, true, false). Don’t
take advantage of the fact that they are macros in C.

27.3.3 Defi nitions
C++ allows definitions in more places than C89. For example:

for (int i = 0; i<max; ++i) x[i] = y[i]; // definition of i not allowed in C

while (struct S* p = next(q)) { // definition of p not allowed in C
 /* . . . */
}

void f(int i)
{
 if (i< 0 || max<=i) error("range error");
 int a[max]; // error: declaration after statement not allowed in C
 /* . . . */
}

C (C89) doesn’t allow declarations as initializers in for-statements, as conditions,
or after a statement in a block. We have to write something like

Stroustrup_book.indb 1038Stroustrup_book.indb 1038 4/22/14 9:43 AM4/22/14 9:43 AM

27.3 MINOR LANGUAGE DIFFERENCES 1039

int i;
for (i = 0; i<max; ++i) x[i] = y[i];

struct S* p;
while (p = next(q)) {
 /* . . . */
}

void f(int i)
{
 if (i< 0 || max<=i) error("range error");
 {
 int a[max];
 /* . . . */
 }
}

In C++, an uninitialized declaration is a definition; in C, it is just a declaration so
that there can be two of them:

int x;
int x; /* defines or declares a single integer called x in C; error in C++ */

In C++, an entity must be defined exactly once. This gets a bit more interesting
if the two ints are in different translation units:

/* in file x.c: */
int x;

/* in file y.c: */
int x;

No C or C++ compiler will find any fault with either x.c or y.c. However, if x.c
and y.c are compiled as C++, the linker will give a “double definition” error. If x.c
and y.c are compiled as C, the linker accepts the program and (correctly according
to C rules) considers there to be just one x that is shared between code in x.c and
y.c. If you want a program where a global variable x is shared, say so explicitly:

/* in file x.c: */
int x = 0; /* the definition */

/* in file y.c: */
extern int x; /* a declaration, not a definition */

Stroustrup_book.indb 1039Stroustrup_book.indb 1039 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1040

Better still, use a header file:

/* in file x.h: */
extern int x; /* a declaration, not a definition */

/* in file x.c: */
#include "x.h"
int x = 0; /* the definition */

/* in file y.c: */
#include "x.h"
/* the declaration of x is in the header */

Better still, avoid the global variable.

27.3.4 C-style casts
In C (and C++), you can explicitly convert a value v to a type T by this minimal
notation:

(T)v

This “C-style cast” or “old-style cast” is beloved by poor typists and sloppy think-
ers because it’s minimal and you don’t have to know what it takes to make a T
from v. On the other hand, this style of cast is rightfully feared by maintenance
programmers because it is just about invisible and leaves no clue about the writ-
er’s intent. The C++ casts (named casts or template-style casts; see §A.5.7) were intro-
duced to make explicit type conversion easy to spot (ugly) and specific. In C, you
have no choice:

int* p = (int*)7; /* reinterpret bit pattern: reinterpret_cast<int*>(7) */
int x = (int)7.5; /* truncate double: static_cast<int>(7.5) */

typedef struct S1 { /* . . . */ } S1;
typedef struct S2 { /* . . . */ } S2;
S2 a;
const S2 b; /* uninitialized consts are allowed in C */

S1* p = (S1*)&a; /* reinterpret bit pattern: reinterpret_cast<S1*>(&a) */
S2* q = (S2*)&b; /* cast away const: const_cast<S2*>(&b) */
S1* r = (S1*)&b; /* remove const and change type; probably a bug */

Stroustrup_book.indb 1040Stroustrup_book.indb 1040 4/22/14 9:43 AM4/22/14 9:43 AM

27.3 MINOR LANGUAGE DIFFERENCES 1041

We hesitate to recommend a macro (§27.8) even in C, but it may be an idea to
express intent like this:

#define REINTERPRET_CAST(T,v) ((T)(v))
#define CONST_CAST(T,v) ((T)(v))

S1* p = REINTERPRET_CAST (S1*,&a);
S2* q = CONST_CAST(S2*,&b);

This does not give the type checking done by reinterpret_cast and const_cast,
but it does make these inherently ugly operations visible and the programmer’s
intent explicit.

27.3.5 Conversion of void*
In C, a void* may be used as the right-hand operand of an assignment to or
initialization of a variable of any pointer type; in C++ it may not. For example:

void* alloc(size_t x); /* allocate x bytes */

void f (int n)
{
 int* p = alloc(n*sizeof(int)); /* OK in C; error in C++ */
 /* . . . */
}

Here, the void* result of alloc() is implicitly converted to an int*. In C++, we
would have to rewrite that line to

int* p = (int*)alloc(n*sizeof(int)); /* OK in C and C++ */

We used the C-style cast (§27.3.4) so that it would be legal in both C and C++.
Why is the void*-to-T* implicit conversion illegal in C++? Because such con-

versions can be unsafe:

void f()
{
 char i = 0;
 char j = 0;
 char* p = &i;
 void* q = p;
 int* pp = q; /* unsafe; legal in C, error in C++ */
 pp = –1; / overwrite memory starting at &i */
}

Stroustrup_book.indb 1041Stroustrup_book.indb 1041 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1042

Here we can’t even be sure what memory is overwritten. Maybe j and part of p?
Maybe some memory used to manage the call of f() (f’s stack frame)? Whatever
data is being overwritten here, a call of f() is bad news.

Note that (the opposite) conversion of a T* to a void* is perfectly safe — you
can’t construct nasty examples like the one above for that — and those are allowed
in both C and C++.

Unfortunately, implicit void*-to-T* conversions are common in C and possi-
bly the major C/C++ compatibility problem in real code (see §27.4).

27.3.6 enum
In C, you can assign an int to an enum without a cast. For example:

enum color { red, blue, green };
int x = green; /* OK in C and C++ */
enum color col = 7; /* OK in C; error in C++ */

One implication of this is that we can use increment (++) and decrement (––) on
variables of enumeration type in C. That can be convenient but does imply a
hazard:

enum color x = blue;
++x; /* x becomes green; error in C++ */
++x; /* x becomes 3; error in C++ */

“Falling off the end” of the enumerators may or may not have been what we
wanted.

Note that like structure tags, the names of enumerations are in their own
namespace, so you have to prefix them with the keyword enum each time you
use them:

color c2 = blue; /* error in C: color not in scope; OK in C++ */
enum color c3 = red; /* OK */

27.3.7 Namespaces
There are no namespaces (in the C++ sense of the word) in C. So what do you
do when you want to avoid name clashes in large C programs? Typically, people
use prefixes or suffixes. For example:

/* in bs.h: */
typedef struct bs_string { /* . . . */ } bs_string; /* Bjarne’s string */
typedef int bs_bool ; /* Bjarne’s Boolean type */

Stroustrup_book.indb 1042Stroustrup_book.indb 1042 4/22/14 9:43 AM4/22/14 9:43 AM

27.4 FREE STORE 1043

/* in pete.h: */
typedef char* pete_string; /* Pete’s string */
typedef char pete_bool ; /* Pete’s Boolean type */

This technique is so popular that it is usually a bad idea to use one- or two-
letter prefixes.

27.4 Free store
C does not provide the new and delete operators dealing with objects. To use the
free store, you use functions dealing with memory. The most important functions
are defined in the “general utilities” standard header <stdlib.h>:

void* malloc(size_t sz); /* allocate sz bytes */
void free(void* p); /* deallocate the memory pointed to by p */
void* calloc(size_t n, size_t sz); /* allocate n*sz bytes initialized to 0 */
void* realloc(void* p, size_t sz); /* reallocate the memory pointed to by p

to a space of size sz */

The typedef size_t is an unsigned type also defined in <stdlib.h>.
Why does malloc() return a void*? Because malloc() has no idea which type

of object you want to put in that memory. Initialization is your problem. For
example:

struct Pair {
 const char* p;
 int val;
};

struct Pair p2 = {"apple",78};
struct Pair* pp = (struct Pair*) malloc(sizeof(Pair)); /* allocate */
pp–>p = "pear"; /* initialize */
pp–>val = 42;

Note that we cannot write

pp = {"pear", 42}; / error: not C or C++98 */

in either C or C++. However, in C++, we would define a constructor for Pair
and write

Pair* pp = new Pair("pear", 42);

Stroustrup_book.indb 1043Stroustrup_book.indb 1043 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1044

In C (but not C++; see §27.3.4), you can leave out the cast before malloc(), but
we don’t recommend that:

int* p = malloc(sizeof(int)*n); /* avoid this */

Leaving out the cast is quite popular because it saves some typing and because
it catches the rare error of (illegally) forgetting to include <stdlib.h> before us-
ing malloc(). However, it can also remove a visual clue that a size was wrongly
calculated:

p = malloc(sizeof(char)*m); /* probably a bug — not room for m ints */

Don’t use malloc()/free() in C++ programs; new/delete require no casts, deal
with initialization (constructors) and cleanup (destructors), report memory allo-
cation errors (through an exception), and are just as fast. Don’t delete an object
allocated by malloc() or free() an object allocated by new. For example:

int* p = new int[200];
// . . .
free(p); // error

X* q = (X*)malloc(n*sizeof(X));
// . . .
delete q; // error

This might work, but it is not portable code. Furthermore, for objects with con-
structors or destructors, mixing C-style and C++-style free-store management is
a recipe for disaster.

The realloc() function is typically used for expanding buffers:

int max = 1000;
int count = 0;
int c;
char* p = (char*)malloc(max);
while ((c=getchar())!=EOF) { /* read: ignore chars on eof line */
 if (count==max–1) { /* need to expand buffer */
 max += max; /* double the buffer size */
 p = (char*)realloc(p,max);
 if (p==0) quit();
 }
 p[count++] = c;
}

Stroustrup_book.indb 1044Stroustrup_book.indb 1044 4/22/14 9:43 AM4/22/14 9:43 AM

27.5 C-STYLE STRINGS 1045

For an explanation of the C input operations, see §27.6.2 and §B.11.2.
The realloc() function may or may not move the old allocation into newly

allocated memory. Don’t even think of using realloc() on memory allocated
by new.

Using the C++ standard library, the (roughly) equivalent code is

vector<char> buf;
char c;
while (cin.get(c)) buf.push_back(c);

Refer to the paper “Learning Standard C++ as a New Language” (see the refer-
ence list in §27.1) for a more thorough discussion of input and allocation strategies.

27.5 C-style strings
In C, a string (often called a C string or a C-style string in C++ literature) is a zero-
terminated array of characters. For example:

char* p = "asdf";
char s[] = "asdf";

'a' 's' 'd' 'f' 09p:

'a' 's' 'd' 'f' 0s:

In C, we cannot have member functions, we cannot overload functions, and we
cannot define an operator (such as ==) for a struct. It follows that we need a set of
(nonmember) functions to manipulate C-style strings. The C and C++ standard
libraries provide such functions in <string.h>:

size_t strlen(const char* s); /* count the characters */
char* strcat(char* s1, const char* s2); /* copy s2 onto the end of s1 */
int strcmp(const char* s1, const char* s2); /* compare lexicographically */
char* strcpy(char* s1,const char* s2); /* copy s2 into s1 */

char* strchr(const char *s, int c); /* find c in s */
char* strstr(const char *s1, const char *s2); /* find s2 in s1 */

char* strncpy(char*, const char*, size_t n); /* strcpy, max n chars */
char* strncat(char*, const char, size_t n); /* strcat with max n chars */
int strncmp(const char*, const char*, size_t n); /* strcmp with max n chars */

Stroustrup_book.indb 1045Stroustrup_book.indb 1045 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1046

This is not the full set, but these are the most useful and most used functions. We
will briefly illustrate their use.

We can compare strings. The equality operator (==) compares pointer values;
the standard library function strcmp() compares C-style string values:

const char* s1 = "asdf";
const char* s2 = "asdf";

if (s1==s2) { /* do s1 and s2 point to the same array? */
 /* (typically not what you want) */
}

if (strcmp(s1,s2)==0) { /* do s1 and s2 hold the same characters? */

}

The strcmp() function does a three-way comparison of its two arguments. Given
the values of s1 and s2 above, strcmp(s1,s2) will return 0, meaning a perfect
match. If s1 was lexicographically before s2, it would return a negative number,
and if s1 was lexicographically after s2, it would return a positive number. The
term lexicographical means roughly “as in a dictionary.” For example:

strcmp("dog","dog")==0
strcmp("ape","dodo")<0 /* "ape" comes before "dodo" in a dictionary */
strcmp("pig","cow")>0 /* "pig" comes after "cow" in a dictionary */

The value of the pointer comparison s1==s2 is not guaranteed to be 0 (false). An
implementation may decide to use the same memory to hold all copies of a char-
acter literal, so we would get the answer 1 (true). Usually, strcmp() is the right
choice for comparing C-style strings.

We can find the length of a C-style string using strlen():

int lgt = strlen(s1);

Note that strlen() counts characters excluding the terminating 0. In this case, str-
len(s1)==4 and it takes 5 bytes to store "asdf". This little difference is the source
of many off-by-one errors.

We can copy one C-style string (including the terminating 0) into another:

strcpy(s1,s2); /* copy characters from s2 into s1 */

It is your job to be sure that the target string (array) has enough space to hold the
characters from the source.

Stroustrup_book.indb 1046Stroustrup_book.indb 1046 4/22/14 9:43 AM4/22/14 9:43 AM

27.5 C-STYLE STRINGS 1047

The strncpy(), strncat(), and strncmp() functions are versions of strcpy(),
 strcat(), and strcmp() that will consider a maximum of n characters, where n is
their third argument. Note that if there are more than n characters in the source
string, strncpy() will not copy a terminating 0, so that the result will not be a valid
C-style string.

The strchr() and strstr() functions find their second argument in the string
that is their first argument and return a pointer to the first character of the match.
Like find(), they search from left to right in the string.

It is amazing both how much can be done with these simple functions and
how easy it is to make minor mistakes. Consider a simple problem of concate-
nating a user name with an address, placing the @ character in between. Using
std::string this can be done like this:

string s = id + '@' + addr;

Using the standard C-style string function we can write that as

char* cat(const char* id, const char* addr)
{
 int sz = strlen(id)+strlen(addr)+2;
 char* res = (char*) malloc(sz);
 strcpy(res,id);
 res[strlen(id)+1] = '@';
 strcpy(res+strlen(id)+2,addr);
 res[sz–1]=0;
 return res;
}

Did we get that right? Who will free() the string returned from cat()?

TRY THIS

Test cat(). Why 2? We left a beginner’s performance error in cat(); find it and
remove it. We “forgot” to comment our code. Add comments suitable for
someone who can be assumed to kn ow the standard C-string functions.

27.5.1 C-style strings and const
Consider:

char* p = "asdf";
p[2] = 'x';

T

Stroustrup_book.indb 1047Stroustrup_book.indb 1047 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1048

This is legal in C but not in C++. In C++, a string literal is a constant, an im-
mutable value, so p[2]='x' (to make the value pointed to "asxf") is illegal. Unfor-
tunately, few compilers will catch the assignment to p that leads to the problem.
If you are lucky, a run-time error will occur, but don’t rely on that. Instead, write

const char* p = "asdf"; // now you can’t write to "asdf" through p

This recommendation applies to both C and C++.
The C strchr() has a similar but even harder-to-spot problem. Consider:

char* strchr(const char* s, int c); /* find c in constant s (not C++) */

const char aa[] = "asdf"; /* aa is an array of constants */
char* q = strchr(aa, 'd'); /* finds 'd' */
q = 'x'; / change 'd' in aa to 'x' */

Again, this is illegal in C and C++, but C compilers can’t catch it. Sometimes this
is referred to as transmutation: it turns consts into non-consts, violating reasonable
assumptions about code.

In C++, the problem is solved by the standard library declaring strchr()
differently:

char const* strchr(const char* s, int c); // find c in constant s
char* strchr(char* s, int c); // find c in s

Similarly for strstr().

27.5.2 Byte operations
In the distant dark ages (the early 1980s), before the invention of void*, C (and
C++) programmers used the string operations to manipulate bytes. Now the
basic memory manipulation standard library functions have void* parameters
and return types to warn users about their direct manipulation of essentially
untyped memory:

/* copy n bytes from s2 to s1 (like strcpy): */
void* memcpy(void* s1, const void* s2, size_t n);

/* copy n bytes from s2 to s1 ([s1:s1+n) may overlap with [s2:s2+n)): */
void* memmove(void* s1, const void* s2, size_t n);

/* compare n bytes from s2 to s1 (like strcmp): */
int memcmp(const void* s1, const void* s2, size_t n);

Stroustrup_book.indb 1048Stroustrup_book.indb 1048 4/22/14 9:43 AM4/22/14 9:43 AM

27.5 C-STYLE STRINGS 1049

/* find c (converted to an unsigned char) in the first n bytes of s: */
void* memchr(const void* s, int c, size_t n);

/* copy c (converted to an unsigned char)
 into each of the first n bytes that s points to: */
void* memset(void* s, int c, size_t n);

Don’t use these functions in C++. In particular, memset() typically interferes with
the guarantees offered by constructors.

27.5.3 An example: strcpy()
The definition of strcpy() is both famous and infamous as an example of the terse
style that C (and C++) is capable of:

char* strcpy(char* p, const char* q)
{
 while (*p++ = *q++);
 return p;
}

We leave to you the explanation of why this actually copies the C-style string q
into p. Post-increment is described in §A.5: The value of p++ is the value of p
before increment.

TRY THIS

Is this implementation of strcpy() correct? Explain why.

If you can’t explain why, we won’t consider you a C programmer (however com-
petent you are at programming in other languages). Every language has its own
idioms, and this is one of C’s.

27.5.4 A style issue
We have quietly taken sides in a long-standing, often furiously debated, and
largely irrelevant style issue. We declare a pointer like this:

char* p; // p is a pointer to a char

and not like this:

char *p; /* p is something that you can dereference to get a char */

T

Stroustrup_book.indb 1049Stroustrup_book.indb 1049 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1050

The placement of the whitespace is completely irrelevant to the compiler, but
programmers care. Our style (common in C++) emphasizes the type of the vari-
able being declared, whereas the other style (more common in C) emphasizes the
use of the variable. Note that we don’t recommend declaring many variables in a
single declaration:

char c, *p, a[177], *f(); /* legal, but confusing */

Such declarations are not uncommon in older code. Instead, use multiple lines
and take advantage of the extra horizontal space for comments and initializers:

char c = 'a'; /* termination character for input using f() */
char* p = 0; /* last char read by f() */
char a[177]; /* input buffer */
char* f(); /* read into buffer a; return pointer to first char read */

Also, choose meaningful names.

27.6 Input/output: stdio
There are no iostreams in C, so we use the C standard I/O defined in <stdio.
h> and commonly referred to as stdio. The stdio equivalents to cin and cout are
stdin and stdout. Stdio and iostream use can be mixed in a single program (for
the same I/O streams), but we don’t recommend that. If you feel the need to mix,
read up on stdio and iostreams (especially ios_base::sync_with_stdio()) in an
expert-level textbook. See also §B.11.

27.6.1 Output
The most popular and useful function of stdio is printf(). The most basic use of
printf() just prints a (C-style) string:

#include<stdio.h>

void f(const char* p)
{
 printf("Hello, World!\n");
 printf(p);
}

Stroustrup_book.indb 1050Stroustrup_book.indb 1050 4/22/14 9:43 AM4/22/14 9:43 AM

27.6 INPUT/OUTPUT: STDIO 1051

That’s not particularly interesting. The interesting bit is that printf() can take an
arbitrary number of arguments, and the initial string controls if and how those
extra arguments are printed. The declaration of printf() in C looks like this:

int printf(const char* format, . . .);

The . . . means “and optionally more arguments.” We can call printf() like this:

void f1(double d, char* s, int i, char ch)
{
 printf("double %g string %s int %d char %c\n", d, s, i, ch);
}

Here, %g means “Print a floating-point number using the general format,” %s
means “Print a C-style string,” %d means “Print an integer using decimal dig-
its,” and %c means “Print a character.” Each such format specifier picks the next
so-far-unused argument, so %g prints d, %s prints s, %d prints i, and %c prints
ch. You can find the full list of printf() formats in §B.11.2.

Unfortunately, printf() is not type safe. For example:

char a[] = { 'a', 'b' }; /* no terminating 0 */

void f2(char* s, int i)
{
 printf("goof %s\n", i); /* uncaught error */
 printf("goof %d: %s\n", i); /* uncaught error */
 printf("goof %s\n", a); /* uncaught error */

}

The effect of the last printf() is interesting: it prints every byte in memory follow-
ing a[1] until it encounters a 0. That could be a lot of characters.

This lack of type safety is one reason we prefer iostreams over stdio even
though stdio works identically in C and C++. The other reason is that the stdio
functions are not extensible: you cannot extend printf() to print values of your
own types, the way you can using iostreams. For example, there is no way you
can define your own %Y to print some struct Y.

There is a useful version of printf() that takes a file descriptor as its first
argument:

int fprintf(FILE* stream, const char* format, . . .);

Stroustrup_book.indb 1051Stroustrup_book.indb 1051 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1052

For example:

fprintf(stdout,"Hello, World!\n"); // exactly like printf("Hello, World!\n");
FILE* ff = fopen("My_file","w"); // open My_file for writing
fprintf(ff,"Hello, World!\n"); // write "Hello, World!\n" to My_file

File handles are described in §27.6.3.

27.6.2 Input
The most popular stdio functions include

int scanf(const char* format, . . .); /* read from stdin using a format */
int getchar(void); /* get a char from stdin */
int getc(FILE* stream); /* get a char from stream */
char* gets(char* s); /* get characters from stdin */

The simplest way of reading a string of characters is using gets(). For example:

char a[12];
gets(a); /* read into char array pointed to by a until a '\n' is input */

Never do that! Consider gets() poisoned. Together with its close cousin scan-
f("%s"), gets() used to be the root cause of about a quarter of all successful hack-
ing attempts. It is still a major security problem. In the trivial example above, how
would you know that at most 11 characters would be input before a newline? You
can’t know that. Thus, gets() almost certainly leads to memory corruption (of the
bytes after the buffer), and memory corruption is a major tool of crackers. Don’t
think that you can guess a maximum buffer size that is “large enough for all uses.”
Maybe the “person” at the other end of the input stream is a program that does
not meet your criteria for reasonableness.

The scanf() function reads using a format just as printf() writes using a for-
mat. Like printf() it can be very convenient:

void f()
{
 int i;
 char c;
 double d;
 char* s = (char*)malloc(100);
 /* read into variables passed as pointers: */
 scanf("%i %c %g %s", &i, &c, &d, s);
 /* %s skips initial whitespace and is terminated by whitespace */
}

Stroustrup_book.indb 1052Stroustrup_book.indb 1052 4/22/14 9:43 AM4/22/14 9:43 AM

27.6 INPUT/OUTPUT: STDIO 1053

Like printf(), scanf() is not type safe. The format characters and the arguments
(all pointers) must match exactly, or strange things will happen at run time. Note
also that the %s read into s may lead to an overflow. Don’t ever use gets() or
scanf("%s")!

So how do we read characters safely? We can use a form of %s that places a
limit on the number of characters read. For example:

char buf[20];
scanf("%19s",buf);

We need space for a terminating 0 (supplied by scanf()), so 19 is the maximum
number of characters we can read into buf. However, that leaves us with the
problem of what to do if someone does type more than 19 characters. The “extra”
characters will be left in the input stream to be “found” by later input operations.

The problem with scanf() implies that it is often prudent and easier to use
getchar(). The typical way of reading characters with getchar() is

while((x=getchar())!=EOF) {
 /* . . . */
}

EOF is a stdio macro meaning “end of file”; see also §27.4.
The C++ standard library alternative to scanf("%s") and gets() doesn’t suffer

from these problems:

string s;
cin >> s; // read a word
getline(cin,s); // read a line

27.6.3 Files
In C (or C++), files can be opened using fopen() and closed using fclose(). These
functions, together with the representation of a file handle, FILE, and the EOF
(end-of-file) macro, are found in <stdio.h>:

FILE *fopen(const char* filename, const char* mode);
int fclose(FILE *stream);

Basically, you use files like this:

void f(const char* fn, const char* fn2)
{
 FILE* fi = fopen(fn, "r"); /* open fn for reading */
 FILE* fo = fopen(fn2, "w"); /* open fn2 for writing */

Stroustrup_book.indb 1053Stroustrup_book.indb 1053 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1054

 if (fi == 0) error("failed to open input file");
 if (fo == 0) error("failed to open output file");

 /* read from file using stdio input functions, e.g., getc() */
 /* write to file using stdio output functions, e.g., fprintf() */

 fclose(fo);
 fclose(fi);
}

Consider this: there are no exceptions in C, so how do we make sure that the files
are closed whichever error happens?

27.7 Constants and macros
In C, a const is never a compile-time constant:

const int max = 30;
const int x; /* const not initialized: OK in C (error in C++) */

void f(int v)
{
 int a1[max]; /* error: array bound not a constant (OK in C++) */
 /* (max is not allowed in a constant expression!) */
 int a2[x]; /* error: array bound not a constant */

 switch (v) {
 case 1:
 /* . . . */
 break;
 case max: /* error: case label not a constant (OK in C++) */
 /* . . . */
 break;
 }
}

The technical reason in C (though not in C++) is that a const is implicitly acces-
sible from other translation units:

/* file x.c: */
const int x; /* initialize elsewhere */

Stroustrup_book.indb 1054Stroustrup_book.indb 1054 4/22/14 9:43 AM4/22/14 9:43 AM

27.8 MACROS 1055

/* file xx.c: */
const int x = 7; /* here is the real definition */

In C++, that would be two different objects, each called x in its own file. Instead
of using const to represent symbolic constants, C programmers tend to use mac-
ros. For example:

#define MAX 30

void f(int v)
{
 int a1[MAX]; /* OK */

 switch (v) {
 case 1:
 /* . . . */
 break;
 case MAX: /* OK */
 /* . . . */
 break;
 }
}

The name of the macro MAX is replaced by the characters 30, which is the value of
the macro; that is, the number of elements of a1 is 30 and the value in the second
case label is 30. We use all capital letters for the MAX macro, as is conventional.
This naming convention helps minimize errors caused by macros.

27.8 Macros
Beware of macros: in C there are no really effective ways of avoiding macros, but
their use has serious side effects because they don’t obey the usual C (or C++)
scope and type rules. Macros are a form of text substitution. See also §A.17.2.

How do we try to protect ourselves from the potential problems of macros
apart from (relying on C++ alternatives and) minimizing their use?

• Give all macros we defi ne ALL_CAPS names.
• Don’t give anything that isn’t a macro an ALL_CAPS name.
• Never give a macro a short or “cute” name, such as max or min.
• Hope that everybody else follows this simple and common convention.

Stroustrup_book.indb 1055Stroustrup_book.indb 1055 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1056

The main uses of macros are

• Defi nition of “constants”
• Defi nition of function-like constructs
• “Improvements” to the syntax
• Control of conditional compilation

In addition, there is a wide variety of less common uses.
We consider macros seriously overused, but there are no reasonable and com-

plete alternatives to the use of macros in C programs. It can even be hard to avoid
them in C++ programs (especially if you need to write programs that have to be
portable to very old compilers or to platforms with unusual constraints).

Apologies to people who consider the techniques described below “dirty
tricks” and believe such are best not mentioned in polite company. However, we
believe that programming is to be done in the real world and that these (very
mild) examples of uses and misuses of macros can save hours of grief for the
novice programmer. Ignorance about macros is not bliss.

27.8.1 Function-like macros
Here is a fairly typical function-like macro:

#define MAX(x, y) ((x)>=(y)?(x):(y))

We use the capital MAX to distinguish it from the many functions called max (in
various programs). Obviously, this is very different from a function: there are no
argument types, no block, no return statement, etc., and what are all those paren-
theses doing? Consider:

int aa = MAX(1,2);
double dd = MAX(aa++,2);
char cc = MAX(dd,aa)+2;

This expands to

int aa = ((1)>=(2)?(1):(2));
double dd = ((aa++)>=(2)?(aa++):(2));
char cc = ((dd)>=(aa)?(dd):(aa))+2;

Had “all the parentheses” not been there, the last expansion would have ended
up as

char cc = dd>=aa?dd:aa+2;

Stroustrup_book.indb 1056Stroustrup_book.indb 1056 4/22/14 9:43 AM4/22/14 9:43 AM

27.8 MACROS 1057

That is, cc could easily have gotten a different value from what you would reason-
ably expect looking at the definition of cc. When you define a macro, remember
to put every use of an argument as an expression in parentheses.

On the other hand, not all the parentheses in the world could save the second
expansion. The macro parameter x was given the value aa++, and since x is used
twice in MAX, a can get incremented twice. Don’t pass an argument with a side
effect to a macro.

As it happens, some genius did define a macro like that and stuck it in a pop-
ular header file. Unfortunately, he also called it max, rather than MAX, so when
the C++ standard header defines

template<class T> inline T max(T a,T b) { return a<b?b:a; }

the max gets expanded with the arguments T a and T b, and the compiler sees

template<class T> inline T ((T a)>=(T b)?(T a):(T b)) { return a<b?b:a; }

The compiler error messages are “interesting” and not very helpful. In an emer-
gency, you can “undefine” a macro:

#undef max

Fortunately, that macro was not all that important. However, there are tens of
thousands of macros in popular header files; you can’t undefine them all without
causing havoc.

Not all macro parameters are used as expressions. Consider:

#define ALLOC(T,n) ((T*)malloc(sizeof(T)*n))

This is a real example that can be very useful for avoiding errors stemming from
a mismatch of the intended type of an allocation and its use in a sizeof:

double* p = malloc(sizeof(int)*10); /* likely error */

Unfortunately, it is nontrivial to write a macro that also catches memory exhaus-
tion. This might do, provided that you define error_var and error() appropriately
somewhere:

#define ALLOC(T,n) (error_var = (T*)malloc(sizeof(T)*n), \
 (error_var==0)\
 ?(error("memory allocation failure"),0)\
 :error_var)

Stroustrup_book.indb 1057Stroustrup_book.indb 1057 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1058

The lines ending with \ are not a typesetting problem; it is the way you break a
macro definition across lines. When writing C++, we prefer to use new.

27.8.2 Syntax macros
You can define macros that make the source code look more to your taste. For
example:

#define forever for(;;)
#define CASE break; case
#define begin {
#define end }

We strongly recommend against this. Many people have tried this idea. They (or
the people who maintain their code) find that

• Many people don’t share their idea of what is a better syntax.
• The “improved” syntax is nonstandard and surprising; others get confused.
• There are uses of the “improved” syntax that cause obscure compile-time

errors.
• What you see is not what the compiler sees, and the compiler reports

errors in the vocabulary it knows (and sees in source code), not in yours.

Don’t write syntactic macros to “improve” the look of code. You and your best
friends might find it really nice, but experience shows that you’ll be a tiny mi-
nority in the larger community, so that someone will have to rewrite your code
(assuming it survives).

27.8.3 Conditional compilation
Imagine you have two versions of a header file, say, one for Linux and one for
Windows. How do you select in your code? Here is a common way:

#ifdef WINDOWS
 #include "my_windows_header.h"
#else
 #include "my_linux_header.h"
#endif

Now, if someone had defined WINDOWS before the compiler sees this, the effect is

#include "my_windows_header.h"

Otherwise it is

#include "my_linux_header.h"

Stroustrup_book.indb 1058Stroustrup_book.indb 1058 4/22/14 9:43 AM4/22/14 9:43 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1059

The #ifdef WINDOWS test doesn’t care what WINDOWS is defined to be; it just
tests that it is defined.

Most major systems (including all operating system variants) have macros
defined so that you can check. The check whether you are compiling as C++ or
compiling as C is

#ifdef __cplusplus
 // in C++
#else
 /* in C */
#endif

A similar construct, often called an include guard, is commonly used to prevent a
header file from being #included twice:

/* my_windows_header.h: */
#ifndef MY_WINDOWS_HEADER
#define MY_WINDOWS_HEADER
 /* here is the header information */
#endif

The #ifndef test checks that something is not defined; i.e., #ifndef is the opposite
of #ifdef. Logically, these macros used for source file control are very different
from the macros we use for modifying source code. They just happen to use the
same underlying mechanisms to do their job.

27.9 An example: intrusive containers
The C++ standard library containers, such as vector and map, are non-intrusive;
that is, they require no data in the types used as elements. That is how they gener-
alize nicely to essentially all types (built-in or user-defined) as long as those types
can be copied. There is another kind of container, an intrusive container, that is pop-
ular in both C and C++. We will use a non-intrusive list to illustrate C-style use
of structs, pointers, and free store.

Let’s define a doubly-linked list with nine operations:

void init(struct List* lst); /* initialize lst to empty */
struct List* create(); /* make a new empty list on free store */
void clear(struct List* lst); /* free all elements of lst */
void destroy(struct List* lst); /* free all elements of lst, then free lst */

void push_back(struct List* lst, struct Link* p); /* add p at end of lst */
void push_front(struct List*, struct Link* p); /* add p at front of lst */

Stroustrup_book.indb 1059Stroustrup_book.indb 1059 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1060

/* insert q before p in lst: */
void insert(struct List* lst, struct Link* p, struct Link* q);
struct Link* erase(struct List* lst, struct Link* p); /* remove p from lst */

/* return link n “hops” before or after p: */
struct Link* advance(struct Link* p, int n);

The idea is to define these operations so that their users need only use List*s and
Link*s. This implies that the implementation of these functions could be changed
radically without affecting those users. Obviously, the naming is influenced by the
STL. List and Link can be defined in the obvious and trivial manner:

struct List {
 struct Link* first;
 struct Link* last;
};

struct Link { /* link for doubly-linked list */
 struct Link* pre;
 struct Link* suc;
};

Here is a graphical representation of a List:

first
last

List:

pre
suc

Link:
pre
suc

pre
suc

It is not our aim to demonstrate clever representation techniques or clever al-
gorithms, so there are none of those here. However, do note that there is no
mention of any data held by the Links (the elements of a List). Looking back at
the functions provided, we note that we are doing something very similar to de-
fining a pair of abstract classes Link and List. The data for Links will be supplied
later. Link* and List* are sometimes called handles to opaque types; that is, giving
Link*s and List*s to our functions allows us to manipulate elements of a List with-
out knowing anything about the internal structure of a Link or a List.

Stroustrup_book.indb 1060Stroustrup_book.indb 1060 4/22/14 9:43 AM4/22/14 9:43 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1061

To implement our List functions, we first #include some standard library
headers:

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

C doesn’t have namespaces, so we need not worry about using declarations or
using directives. On the other hand, we should probably worry that we have
grabbed some very common short names (Link, insert, init, etc.), so this set of
functions cannot be used “as is” outside a toy program.

Initializing is trivial, but note the use of assert():

void init(struct List* lst) /* initialize *lst to the empty list */
{
 assert(lst);
 lst–>first = lst–>last = 0;
}

We decided not to deal with error handling for bad pointers to lists at run time.
By using assert(), we simply give a (run-time) system error if a list pointer is null.
The “system error” will give the file name and line number of the failed assert();
assert() is a macro defined in <assert.h> and the checking is enabled only during
debugging. In the absence of exceptions, it is not easy to know what to do with
bad pointers.

The create() function simply makes a List on the free store. It is a sort of com-
bination of a constructor (init() initializes) and new (malloc() allocates):

struct List* create() /* make a new empty list */
{
 struct List* lst = (struct List*)malloc(sizeof(struct List));
 init(lst);
 return lst;
}

The clear() function assumes that all Links are created on the free store and free()
s them:

void clear(struct List* lst) /* free all elements of lst */
{
 assert(lst);
 {

Stroustrup_book.indb 1061Stroustrup_book.indb 1061 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1062

 struct Link* curr = lst–>first;
 while(curr) {
 struct Link* next = curr–>suc;
 free(curr);
 curr = next;
 }
 lst–>first = lst–>last = 0;
 }
}

Note the way we traverse using the suc member of Link. We can’t safely access a
member of a struct object after that object has been free()d, so we introduce the
variable next to hold our position in the List while we free() a Link.

If we didn’t allocate all of our Links on the free store, we had better not call
clear(), or clear() will create havoc.

The destroy() function is essentially the opposite of create(), that is, a sort of
combination of a destructor and a delete:

void destroy(struct List* lst) /* free all elements of lst; then free lst */
{
 assert(lst);
 clear(lst);
 free(lst);
}

Note that we are making no provisions for calling a cleanup function (destructor)
for the elements represented by Links. This design is not a completely faithful im-
itation of C++ techniques or generality — it couldn’t and probably shouldn’t be.

The push_back() function — adding a Link as the new last Link — is pretty
straightforward:

void push_back(struct List* lst, struct Link* p) /* add p at end of lst */
{
 assert(lst);
 {
 struct Link* last = lst–>last;
 if (last) {
 last–>suc = p; /* add p after last */
 p–>pre = last;
 }
 else {
 lst–>first = p; /* p is the first element */
 p–>pre = 0;

Stroustrup_book.indb 1062Stroustrup_book.indb 1062 4/22/14 9:43 AM4/22/14 9:43 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1063

 }
 lst–>last = p; /* p is the new last element */
 p–>suc = 0;
 }
}

However, we would never have gotten it right without drawing a few boxes and
arrows on our doodle pad. Note that we “forgot” to consider the case where the
argument p was null. Pass 0 instead of a pointer to a Link and this code will fail
miserably. This is not inherently bad code, but it is not industrial strength. Its
purpose is to illustrate common and useful techniques (and, in this case, also a
common weakness/bug).

The erase() function can be written like this:

struct Link* erase(struct List* lst, struct Link* p)
/*
 remove p from lst;
 return a pointer to the link after p
*/
{
 assert(lst);
 if (p==0) return 0; /* OK to erase(0) */

 if (p == lst–>first) {
 if (p–>suc) {
 lst–>first = p–>suc; /* the successor becomes first */
 p–>suc–>pre = 0;
 return p–>suc;
 }
 else {
 lst–>first = lst–>last = 0; /* the list becomes empty */
 return 0;
 }
 }
 else if (p == lst–>last) {
 if (p–>pre) {
 lst–>last = p–>pre; /* the predecessor becomes last */
 p–>pre–>suc = 0;
 }
 else {
 lst–>first = lst–>last = 0; /* the list becomes empty */
 return 0;
 }

Stroustrup_book.indb 1063Stroustrup_book.indb 1063 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1064

 }
 else {
 p–>suc–>pre = p–>pre;
 p–>pre–>suc = p–>suc;
 return p–>suc;
 }
}

We will leave the rest of the functions as an exercise, as we don’t need them for
our (all too simple) test. However, now we must face the central mystery of this
design: Where is the data in the elements of the list? How do we implement a
simple list of names represented by a C-style string? Consider:

struct Name {
 struct Link lnk; /* the Link required by List operations */
 char* p; /* the name string */
};

So far, so good, though how we get to use that Link member is a mystery; but
since we know that a List likes its Links on the free store, we write a function cre-
ating Names on the free store:

struct Name* make_name(char* n)
{
 struct Name* p = (struct Name*)malloc(sizeof(struct Name));
 p–>p = n;
 return p;
}

Or graphically:

first
last

List:

pre
suc

Link:
pre
suc

pre
suc

n n n

Stroustrup_book.indb 1064Stroustrup_book.indb 1064 4/22/14 9:43 AM4/22/14 9:43 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1065

Now let’s use that:

int main()
{
 int count = 0;
 struct List names; /* make a list */
 struct List* curr;
 init(&names);

 /* make a few Names and add them to the list: */
 push_back(&names,(struct Link*)make_name("Norah"));
 push_back(&names,(struct Link*)make_name("Annemarie"));
 push_back(&names,(struct Link*)make_name("Kris"));

 /* remove the second name (with index 1): */
 erase(&names,advance(names.first,1));

 curr = names.first; /* write out all names */
 for (; curr!=0; curr=curr–>suc) {
 count++;
 printf("element %d: %s\n", count, ((struct Name*)curr)–>p);
 }
}

So we “cheated.” We used a cast to treat a Name* as a Link*. In that way, the user
knows about the “library-type” Link. However, the “library” doesn’t know about
the “application-type” Name. Is that allowed? Yes, it is: in C (and C++), you can
treat a pointer to a struct as a pointer to its first element and vice versa.

Obviously, this List example is also C++ exactly as written.

TRY THIS

A common refrain among C++ programmers talking with C programmers
is, “Everything you can do, I can do better!” So, rewrite the intrusive List
example in C++, showing how to make it shorter and easier to use without
making the code slower or the objects bigger.

T

Stroustrup_book.indb 1065Stroustrup_book.indb 1065 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1066

Drill
 1. Write a “Hello, World!” program in C, compile it, and run it.
 2. Define two variables holding “Hello” and “World!” respectively; concat-

enate them with a space in between; and output them as Hello World!.
 3. Define a C function that takes a char* parameter p and an int parameter x

and print out their values in this format: p is "foo" and x is 7. Call it with
a few argument pairs.

Review
In the following, assume that by C we mean ISO standard C89.

 1. Is C++ a subset of C?
 2. Who invented C?
 3. Name a highly regarded C textbook.
 4. In what organization were C and C++ invented?
 5. Why is C++ (almost) compatible with C?
 6. Why is C++ only almost compatible with C?
 7. List a dozen C++ features not present in C.
 8. What organization “owns” C and C++?
 9. List six C++ standard library components that cannot be used in C.
 10. Which C standard library components can be used in C++?
 11. How do you achieve function argument type checking in C?
 12. What C++ features related to functions are missing in C? List at least

three. Give examples.
 13. How do you call a C function from C++?
 14. How do you call a C++ function from C?
 15. Which types are layout compatible between C and C++? (Just) give

examples.
 16. What is a structure tag?
 17. List 20 C++ keywords that are not keywords in C.
 18. Is int x; a definition in C++? In C?
 19. What is a C-style cast and why is it dangerous?
 20. What is void* and how does it differ in C and C++?
 21. How do enumerations differ in C and C++?
 22. What do you do in C to avoid linkage problems from popular names?
 23. What are the three most common C functions from free-store use?
 24. What is the definition of a C-style string?
 25. How do == and strcmp() differ for C-style strings?

Stroustrup_book.indb 1066Stroustrup_book.indb 1066 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 EXERCISES 1067

 26. How do you copy C-style strings?
 27. How do you find the length of a C-style string?
 28. How would you copy a large array of ints?
 29. What’s nice about printf()? What are its problems/limitations?
 30. Why should you never use gets()? What can you use instead?
 31. How do you open a file for reading in C?
 32. What is the difference between const in C and const in C++?
 33. Why don’t we like macros?
 34. What are common uses of macros?
 35. What is an include guard?

Terms
#defi ne
#ifdef
#ifndef
Bell Labs
Brian Kernighan
C/C++
compatibility
conditional compilation
C-style cast
C-style string

Dennis Ritchie
FILE
fopen()
format string
intrusive
K&R
lexicographical
linkage
macro
malloc()

non-intrusive
opaque type
overloading
printf()
strcpy()
structure tag
three-way comparison
void
void*

Exercises
For these exercises it may be a good idea to compile all programs with both a C
and a C++ compiler. If you use only a C++ compiler, you may accidentally use
non-C features. If you use only a C compiler, type errors may remain undetected.

 1. Implement versions of strlen(), strcmp(), and strcpy().
 2. Complete the intrusive List example in §27.9 and test it using every

function.
 3. “Pretty up” the intrusive List example in §27.9 as best you can to make

it convenient to use. Do catch/handle as many errors as you can. It is
fair game to change the details of the struct definitions, to use macros,
whatever.

 4. If you didn’t already, write a C++ version of the intrusive List example in
§27.9 and test it using every function.

 5. Compare the results of exercises 3 and 4.

Stroustrup_book.indb 1067Stroustrup_book.indb 1067 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1068

 6. Change the representation of Link and List from §27.9 without changing
the user interface provided by the functions. Allocate Links in an array of
links and have the members first, last, pre, and suc be ints (indices into
the array).

 7. What are the advantages and disadvantages of intrusive containers com-
pared to C++ standard (non-intrusive) containers? Make lists of pros
and cons.

 8. What is the lexicographical order on your machine? Write out every
character on your keyboard together with its integer value; then, write
the characters out in the order determined by their integer value.

 9. Using only C facilities, including the C standard library, read a sequence
of words from stdin and write them to stdout in lexicographical order.
Hint: The C sort function is called qsort(); look it up somewhere. Alter-
natively, insert the words into an ordered list as you read them. There is
no C standard library list.

 10. Make a list of C language features adopted from C++ or C with Classes
(§27.1).

 11. Make a list of C language features not adopted by C++.
 12. Implement a (C-style string, int) lookup table with operations such as

find(struct table*, const char*), insert(struct table*, const char*, int),
and remove(struct table*, const char*). The representation of the table
could be an array of a struct pair or a pair of arrays (const char*[] and
int*); you choose. Also choose return types for your functions. Document
your design decisions.

 13. Write a program that does the equivalent of string s; cin>>s; in C; that
is, define an input operation that reads an arbitrarily long sequence of
whitespace-terminated characters into a zero-terminated array of chars.

 14. Write a function that takes an array of ints as its input and finds the
smallest and the largest elements. It should also compute the median and
mean. Use a struct holding the results as the return value.

 15. Simulate single inheritance in C. Let each “base class” contain a pointer
to an array of pointers to functions (to simulate virtual functions as free-
standing functions taking a pointer to a “base class” object as their first ar-
gument); see §27.2.3. Implement “derivation” by making the “base class”
the type of the first member of the derived class. For each class, initialize
the array of “virtual functions” appropriately. To test the ideas, implement
a version of “the old Shape example” with the base and derived draw()
just printing out the name of their class. Use only language features and
library facilities available in standard C.

 16. Use macros to obscure (simplify the notation for) the implementation in
the previous exercise.

Stroustrup_book.indb 1068Stroustrup_book.indb 1068 4/22/14 9:43 AM4/22/14 9:43 AM

CHAPTER 27 POSTSCRIPT 1069

Postscript
We did mention that compatibility issues are not all that exciting. However, there
is a lot of C code “out there” (billions of lines of code), and if you have to read
or write it, this chapter prepares you to do so. Personally, we prefer C++, and
the information in this chapter gives part of the reason for that. And please don’t
underestimate that “intrusive List” example — both “intrusive Lists” and opaque
types are important and powerful techniques (in both C and C++).

Stroustrup_book.indb 1069Stroustrup_book.indb 1069 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1070Stroustrup_book.indb 1070 4/22/14 9:43 AM4/22/14 9:43 AM

Part V
Appendices

Stroustrup_book.indb 1071Stroustrup_book.indb 1071 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1072Stroustrup_book.indb 1072 4/22/14 9:43 AM4/22/14 9:43 AM

1073

A

Language Summary

“Be careful what you wish for;
you might get it.”

—Traditional

This appendix summarizes key language elements of C++.

The summary is very selective and specifically geared to

novices who want to explore a bit beyond the sequence of topics

in the book. The aim is conciseness, not completeness.

Stroustrup_book.indb 1073Stroustrup_book.indb 1073 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1074

A.1 General
This appendix is a reference. It is not intended to be read from beginning to end
like a chapter. It (more or less) systematically describes key elements of the C++
language. It is not a complete reference, though; it is just a summary. Its focus and
emphasis were determined by student questions. Often, you will need to look at
the chapters for a more complete explanation. This summary does not attempt
to equal the precision and terminology of the standard. Instead, it attempts to be
accessible. For more information, see Stroustrup, The C++ Programming Language.

 A.1 General
 A.1.1 Terminology
 A.1.2 Program start and termination
 A.1.3 Comments

 A.2 Literals
 A.2.1 Integer literals
 A.2.2 Floating-point-literals
 A.2.3 Boolean literals
 A.2.4 Character literals
 A.2.5 String literals
 A.2.6 The pointer literal

 A.3 Identifi ers
 A.3.1 Keywords

 A.4 Scope, storage class, and lifetime
 A.4.1 Scope
 A.4.2 Storage class
 A.4.3 Lifetime

 A.5 Expressions
 A.5.1 User-defi ned operators
 A.5.2 Implicit type conversion
 A.5.3 Constant expressions
 A.5.4 sizeof
 A.5.5 Logical expressions
 A.5.6 new and delete
 A.5.7 Casts

 A.6 Statements

 A.7 Declarations
 A.7.1 Defi nitions

 A.8 Built-in types
 A.8.1 Pointers
 A.8.2 Arrays
 A.8.3 References

 A.9 Functions
 A.9.1 Overload resolution
 A.9.2 Default arguments
 A.9.3 Unspecifi ed arguments
 A.9.4 Linkage specifi cations

 A.10 User-defi ned types
 A.10.1 Operator overloading

 A.11 Enumerations

 A.12 Classes
 A.12.1 Member access
 A.12.2 Class member defi nitions
 A.12.3 Construction, destruction,

and copy
 A.12.4 Derived classes
 A.12.5 Bitfi elds
 A.12.6 Unions

 A.13 Templates
 A.13.1 Template arguments
 A.13.2 Template instantiation
 A.13.3 Template member types

 A.14 Exceptions

 A.15 Namespaces

 A.16 Aliases

 A.17 Preprocessor directives
 A.17.1 #include
 A.17.2 #defi ne

Stroustrup_book.indb 1074Stroustrup_book.indb 1074 4/22/14 9:43 AM4/22/14 9:43 AM

A.1 GENERAL 1075

The definition of C++ is the ISO C++ standard, but that document is neither
intended for nor suitable for novices. Don’t forget to use your online documen-
tation. If you look at this appendix while working on the early chapters, expect
much to be “mysterious,” that is, explained in later chapters.

For standard library facilities, see Appendix B.
The standard for C++ is defined by a committee working under the auspices

of the ISO (the international organization for standards) in collaboration with na-
tional standards bodies, such as INCITS (United States), BSI (United Kingdom),
and AFNOR (France). The current definition is ISO/IEC 14882:2011 Standard
for Programming Language C++.

A.1.1 Terminology
The C++ standard defines what a C++ program is and what the various con-
structs mean:

• Conforming: A program that is C++ according to the standard is called
conforming (or colloquially, legal or valid).

• Implementation defi ned: A program can (and usually does) depend on fea-
tures (such as the size of an int and the numeric value of 'a') that are only
well defi ned on a given compiler, operating system, machine architecture,
etc. The implementation-defi ned features are listed in the standard and
must be documented in implementation documentation, and many are
refl ected in standard headers, such as <limits> (see §B.1.1). So, being con-
forming is not the same as being portable to all C++ implementations.

• Unspecifi ed: The meaning of some constructs is unspecifi ed, undefi ned, or not
conforming but not requiring a diagnostic. Obviously, such features are best
avoided. This book avoids them. The unspecifi ed features to avoid include
• Inconsistent defi nitions in separate source fi les (use header fi les con-

sistently; see §8.3)
• Reading and writing the same variable repeatedly in an expression

(the main example is a[i]=++i;)
• Many uses of explicit type conversion (casts), especially of reinterpret_

cast

A.1.2 Program start and termination
A C++ program must have a single global function called main(). The program
starts by executing main(). The return type of main() is int (void is not a con-
forming alternative). The value returned by main() is the program’s return value
to “the system.” Some systems ignore that value, but successful termination is
indicated by returning zero and failure by returning a nonzero value or by an
uncaught exception (but an uncaught exception is considered poor style).

Stroustrup_book.indb 1075Stroustrup_book.indb 1075 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1076

The arguments to main() can be implementation defined, but every imple-
mentation must accept two versions (though only one per program):

int main(); // no arguments
int main(int argc, char* argv[]); // argv[] holds argc C-style strings

The definition of main() need not explicitly return a value. If it doesn’t, “dropping
through the bottom,” it returns a zero. This is the minimal C++ program:

int main() { }

If you define a global (namespace) scope object with a constructor and a destruc-
tor, the constructor will logically be executed “before main()” and the destructor
logically executed “after main()” (technically, executing those constructors is part
of invoking main() and executing the destructors part of returning from main()).
Whenever you can, avoid global objects, especially global objects requiring non-
trivial construction and destruction.

A.1.3 Comments
What can be said in code, should be. However, C++ offers two comment styles to
allow the programmer to say things that are not well expressed as code:

// this is a line comment

/*
 this is a
 block comment
*/

Obviously, block comments are mostly used for multi-line comments, though
some people prefer single-line comments even for multiple lines:

// this is a
// multi-line comment
// expressed using three line comments

/* and this is a single line of comment expressed using a block comment */

Comments are essential for documenting the intent of code; see also §7.6.4.

Stroustrup_book.indb 1076Stroustrup_book.indb 1076 4/22/14 9:43 AM4/22/14 9:43 AM

A.2 LITERALS 1077

A.2 Literals
Literals represent values of various types. For example, the literal 12 represents
the integer value “twelve,” "Morning" represents the character string value Morn-
ing, and true represents the Boolean value true.

A.2.1 Integer literals
Integer literals come in three varieties:

• Decimal: a series of decimal digits
Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• Octal: a series of octal digits starting with 0
Octal digits: 0, 1, 2, 3, 4, 5, 6, and 7

• Hexadecimal: a series of hexadecimal digits starting with 0x or 0X
Hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E,
and F

• Binary: a series of binary digits starting with 0b or 0B (C++14)
Binary digits: 0, 1

A suffix u or U makes an integer literal unsigned (§25.5.3), and a suffix l or L
makes it long, for example, 10u and 123456UL.

C++14 also allows the use of the single quote as a digit separator in numeric
literals. For example, 0b0000'0001'0010'0011 means 0b0000000100100011 and
1'000'000 means 1000000.

A.2.1.1 Number systems
We usually write out numbers in decimal notation. 123 means 1 hundred plus
2 tens plus 3 ones, or 1*100+2*10+3*1, or (using ^ to mean “to the power of”)
1*10^2+2*10^1+3*10^0. Another word for decimal is base-10. There is nothing re-
ally special about 10 here. What we have is 1*base^2+2*base^1+3*base^0 where
base==10. There are lots of theories about why we use base-10. One theory has
been “built into” some natural languages: we have ten fingers and each symbol,
such as 0, 1, and 2, that directly stands for a value in a positional number system
is called a digit. Digit is Latin for “finger.”

Occasionally, other bases are used. Typically, positive integer values in com-
puter memory are represented in base-2 (it is relatively easy to reliably represent
0 and 1 as physical states in materials), and humans dealing with low-level hard-
ware issues sometimes use base-8 and more often base-16 to refer to the content
of memory.

Stroustrup_book.indb 1077Stroustrup_book.indb 1077 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1078

Consider hexadecimal. We need to name the 16 values from 0 to 15. Usually,
we use 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, where A has the decimal value
10, B the decimal value 11, and so on:

A==10, B==11, C==12, D==13, E==14, F==15

We can now write the decimal value 123 as 7B using the hexadecimal notation. To
see that, note that in the hexadecimal system 7B means 7*16+11, which is (decimal)
123. Conversely, hexadecimal 123 means 1*16^2+2*16+3, which is 1*256+2*16+3,
which is (decimal) 291. If you have never dealt with non-decimal integer repre-
sentations, we strongly recommend you try converting a few numbers to and
from decimal and hexadecimal. Note that a hexadecimal digit has a very simple
correspondence to a binary value:

Hexadecimal and binary

hex 0 1 2 3 4 5 6 7

binary 0000 0001 0010 0011 0100 0101 0110 0111

hex 8 9 A B C D E F

binary 1000 1001 1010 1011 1100 1101 1110 1111

This goes a long way toward explaining the popularity of hexadecimal notation.
In particular, the value of a byte is simply expressed as two hexadecimal digits.

In C++, (fortunately) numbers are decimal unless we specify otherwise. To
say that a number is hexadecimal, we prefix 0X (“X for hex”), so 123==0X7B and
0X123==291. We can equivalently use a lowercase x, so we also have 123==0x7B
and 0x123==291. Similarly, we can use lowercase a, b, c, d, e, and f for the hexa-
decimal digits. For example, 123==0x7b.

Octal is base-8. We need only eight octal digits: 0, 1, 2, 3, 4, 5, 6, 7. In C++,
base-8 numbers are represented starting with a 0, so 0123 is not the decimal num-
ber 123, but 1*8^2+2*8+3, that is, 1*64+2*8+3, or (decimal) 83. Conversely, oc-
tal 83, that is, 083, is 8*8+3, which is (decimal) 67. Using C++ notation, we get
0123==83 and 083==67.

Binary is base-2. We need only two digits, 0 and 1. We cannot directly rep-
resent base-2 numbers as literals in C++. Only base-8 (octal), base-10 (decimal),
and base-16 (hexadecimal) are directly supported as literals and as input and out-
put formats for integers. However, binary numbers are useful to know even if we
cannot directly represent them in C++ text. For example, (decimal) 123 is

1*2^6+1*2^5+1*2^4+1*2^3+0*2^2+1*2+1

Stroustrup_book.indb 1078Stroustrup_book.indb 1078 4/22/14 9:43 AM4/22/14 9:43 AM

A.2 LITERALS 1079

which is 1*64+1*32+1*16+1*8+0*4+1*2+1, which is (binary) 1111011.

A.2.2 Floating-point-literals
A floating-point-literal contains a decimal point (.), an exponent (e.g., e3), or a
floating-point suffix (d or f). For example:

123 // int (no decimal point, suffix, or exponent)
123. // double: 123.0
123.0 // double
123 // double: 0.123
0.123 // double
1.23e3 // double: 1230.0
1.23e–3 // double: 0.00123
1.23e+3 // double: 1230.0

Floating-point-literals have type double unless a suffix indicates otherwise. For
example:

1.23 // double
1.23f // float
1.23L // long double

A.2.3 Boolean literals
The literals of type bool are true and false. The integer value of true is 1 and the
integer value of false is 0.

A.2.4 Character literals
A character literal is a character enclosed in single quotes, for example, 'a' and '@'.
In addition, there are some “special characters”:

Name ASCII name C++ name

newline NL \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

alert BEL \a

Stroustrup_book.indb 1079Stroustrup_book.indb 1079 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1080

Name ASCII name C++ name

backslash \ \\

question mark ? \?

single quote ' \'

double quote " \"

octal number ooo \ooo

hexadecimal number hhh \xhhh

A special character is represented as its “C++ name” enclosed in single quotes, for
example, '\n' (newline) and '\t' (tab).

The character set includes the following visible characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!@#$%^&*()_+|~`{}[]:";'<>?,./

In portable code, you cannot rely on more visible characters. The value of a
character, such as 'a' for a, is implementation dependent (but easily discovered,
for example, cout << int('a')).

A.2.5 String literals
A string literal is a series of characters enclosed in double quotes, for example,
"Knuth" and "King Canute". A newline cannot be part of a string; instead use the
special character \n to represent newline in a string:

"King
Canute " // error: newline in string literal
"King\nCanute" // OK: correct way to get a newline into a string literal

Two string literals separated only by whitespace are taken as a single string literal.
For example:

"King" "Canute" // equivalent to "KingCanute" (no space)

Note that special characters, such as \n, can appear in string literals.

Stroustrup_book.indb 1080Stroustrup_book.indb 1080 4/22/14 9:43 AM4/22/14 9:43 AM

A.3 IDENTIFIERS 1081

A.2.6 The pointer literal
There is only one pointer literal: the null pointer, nullptr. For compatibility, any
constant expression that evaluates to 0 can also be used as the null pointer. For
example:

t* p1 = 0; // OK: null pointer
int* p2 = 2–2; // OK: null pointer
int* p3 = 1; // error: 1 is an int, not a pointer
int z = 0;
int* p4 = z; // error: z is not a constant

The value 0 is implicitly converted to the null pointer.
In C++ (but not in C, so beware of C headers), NULL is defined to mean 0

so that you can write

int* p4 = NULL; // (given the right definition of NULL) the null pointer

A.3 Identifi ers
An identifier is a sequence of characters starting with a letter or an underscore
followed by zero or more (uppercase or lowercase) letters, digits, or underscores:

int foo_bar; // OK
int FooBar; // OK
int foo bar; // error: space can’t be used in an identifier
int foo$bar; // error: $ can’t be used in an identifier

Identifiers starting with an underscore or containing a double underscore are re-
served for use by the implementation; don’t use them. For example:

int _foo; // don’t
int foo_bar; // OK
int foo__bar; // don’t
int foo_; // OK

A.3.1 Keywords
Keywords are identifiers used by the language itself to express language constructs.

Stroustrup_book.indb 1081Stroustrup_book.indb 1081 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1082

Keywords (reserved identifi ers)

alignas class explicit noexcept signed typename

alignof compl export not sizeof union

and concept extern not_eq static unsigned

and_eq const false nullptr static_assert using

asm const_cast float operator static_cast virtual

auto constexpr for or struct void

bitand continue friend or_eq switch volatile

bitor decltype goto private template wchar_t

bool default if protected this while

break delete inline public thread_local xor

case do int register throw xor_eq

catch double long reinterpret_cast true

char dynamic_cast mutable requires try

char16_t else namespace return typedef

char32_t enum new short typeid

A.4 Scope, storage class, and lifetime
Every name in C++ (with the lamentable exception of preprocessor names; see
§A.17) exists in a scope; that is, the name belongs to a region of text in which it
can be used. Data (objects) are stored in memory somewhere; the kind of mem-
ory used to store an object is called its storage class. The lifetime of an object is from
the time it is first initialized until it is finally destroyed.

A.4.1 Scope
There are five kinds of scopes (§8.4):

• Global scope: A name is in global scope unless it is declared inside some
language construct (e.g., a class or a function).

• Namespace scope: A name is in a namespace scope if it is defi ned within
a namespace and not inside some language construct (e.g., a class or a
function). Technically, the global scope is a namespace scope with “the
empty name.”

Stroustrup_book.indb 1082Stroustrup_book.indb 1082 4/22/14 9:43 AM4/22/14 9:43 AM

A.4 SCOPE, STORAGE CLASS, AND LIFETIME 1083

• Local scope: A name is in a local scope if it is declared inside a function (this
includes function parameters).

• Class scope: A name is in a class scope if it is the name of a member of a
class.

• Statement scope: A name is in a statement scope if it is declared in the (. . .)
part of a for-, while-, switch-, or if-statement.

The scope of a variable extends (only) to the end of the statement in which it is
defined. For example:

for (int i = 0; i<v.size(); ++i) {
 // i can be used here
}
if (i < 27) // the i from the for-statement is not in scope here

Class and namespace scopes have names, so that we can refer to a member from
“elsewhere.” For example:

void f(); // in global scope

namespace N {
 void f() // in namespace scope N
 {
 int v; // in local scope
 ::f(); // call the global f()
 }
}

void f()
{
 N::f(); // call N’s f()
}

What would happen if you called N::f() or ::f()? See also §A.15.

A.4.2 Storage class
There are three storage classes (§17.4):

• Automatic storage: Variables defi ned in functions (including function param-
eters) are placed in automatic storage (i.e., “on the stack”) unless explicitly
declared to be static. Automatic storage is allocated when a function is
called and deallocated when a call returns; thus, if a function is (directly

Stroustrup_book.indb 1083Stroustrup_book.indb 1083 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1084

or indirectly) called by itself, multiple copies of automatic data can exist:
one for each call (§8.5.8).

• Static storage: Variables declared in global and namespace scope are stored
in static storage, as are variables explicitly declared static in functions
and classes. The linker allocates static storage “before the program starts
running.”

• Free store (heap): Objects created by new are allocated in the free store.

For example:

vector<int> vg(10); // constructed once at program start (“before main()”)

vector<int>* f(int x)
{
 static vector<int> vs(x); // constructed in first call of f() only
 vector<int> vf(x+x); // constructed in each call of f()

 for (int i=1; i<10; ++i) {
 vector<int> vl(i); // constructed in each iteration
 // . . .
 } // v1 destroyed here (in each iteration)

 return new vector<int>(vf); // constructed on free store as a copy of vf
} // vf destroyed here

void ff()
{
 vector<int>* p = f(10); // get vector from f()
 // . . .
 delete p; // delete the vector from f
}

The statically allocated variables vg and vs are destroyed at program termination
(“after main()”), provided they have been constructed.

Class members are not allocated as such. When you allocate an object some-
where, the non-static members are placed there also (with the same storage class
as the class object to which they belong).

Code is stored separately from data. For example, a member function is not
stored in each object of its class; one copy is stored with the rest of the code for
the program.

See also §14.3 and §17.4.

Stroustrup_book.indb 1084Stroustrup_book.indb 1084 4/22/14 9:43 AM4/22/14 9:43 AM

A.4 SCOPE, STORAGE CLASS, AND LIFETIME 1085

A.4.3 Lifetime
Before an object can be (legally) used, it must be initialized. This initialization can
be explicit using an initializer or implicit using a constructor or a rule for default
initialization of built-in types. The lifetime of an object ends at a point determined
by its scope and storage class (e.g., see §17.4 and §B.4.2):

• Local (automatic) objects are constructed if/when the thread of execution gets
to them and are destroyed at end of scope.

• Temporary objects are created by a specifi c sub-expression and destroyed at
the end of their full expression. A full expression is an expression that is
not a sub-expression of some other expression.

• Namespace objects and static class members are constructed at the start of the
program (“before main()”) and destroyed at the end of the program (“after
main()”).

• Local static objects are constructed if/when the thread of execution gets to
them and (if constructed) are destroyed at the end of the program.

• Free-store objects are constructed by new and optionally destroyed using
delete.

A temporary variable bound to a local or namespace reference “lives” as long as
the reference. For example:

const char* string_tbl[] = { "Mozart", "Grieg", "Haydn", "Chopin" };
const char* f(int i) { return string_tbl[i]; }
void g(string s){}

void h()
{
 const string& r = f(0); // bind temporary string to r
 g(f(1)); // make a temporary string and pass it
 string s = f(2); // initialize s from temporary string
 cout << "f(3): " << f(3) // make a temporary string and pass it
 <<" s: " << s
 << " r: " << r << '\n';
}

The result is

f(3): Chopin s: Haydn r: Mozart

Stroustrup_book.indb 1085Stroustrup_book.indb 1085 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1086

The string temporaries generated for the calls f(1), f(2), and f(3) are destroyed at
the end of the expression in which they were created. However, the temporary
generated for f(0) is bound to r and “lives” until the end of h().

A.5 Expressions
This section summarizes C++’s operators. We use abbreviations that we find
mnemonic, such as m for a member name, T for a type name, p for an expression
yielding a pointer, x for an expression, v for an lvalue expression, and lst for an
argument list. The result type of the arithmetic operations is determined by “the
usual arithmetic conversions” (§A.5.2.2). The descriptions in this section are of
the built-in operators, not of any operator you might define on your own, though
when you define your own operators, you are encouraged to follow the semantic
rules described for built-in operations (§9.6).

Scope resolution

N :: m m is in the namespace N; N is the name of a namespace or a class.

:: m m is in the global namespace.

Note that members can themselves nest, so that you can get N::C::m; see also
§8.7.

Postfi x expressions

x . m member access; x must be a class object

p –> m member access; p must point to a class object; equivalent to (*p).m

p[x] subscripting; equivalent to *(p+x)

f(lst) function call: call f with the argument list lst

T(lst) construction: construct a T with the argument list lst

v++ (post-)increment; the value of v++ is the value of v before incrementing

v–– (post-)decrement; the value of v–– is the value of v before decrementing

typeid(x) run-time type identification for x

typeid(T) run-time type identification for T

dynamic_cast<T>(x) run-time checked conversion of x to T

static_cast<T>(x) compile-time checked conversion of x to T

const_cast<T>(x) unchecked conversion to add or remove const from x’s type to get T

reinterpret_cast<T>(x) unchecked conversion of x to T by reinterpreting the bit pattern of x

Stroustrup_book.indb 1086Stroustrup_book.indb 1086 4/22/14 9:43 AM4/22/14 9:43 AM

A.5 EXPRESSIONS 1087

The typeid operator and its uses are not covered in this book; see an expert-
level reference. Note that casts do not modify their argument. Instead, they pro-
duce a result of their type, which somehow corresponds to the argument value;
see §A.5.7.

Unary expressions

sizeof(T) the size of a T in bytes

sizeof(x) the size of an object of x’s type in bytes

++v (pre-)increment; equivalent to v+=1

––v (pre-)decrement; equivalent to v–=1

~x complement of x; ~ is a bitwise operation

!x not x; returns true or false

&v address of v

*p contents of object pointed to by p

new T make a T on the free store

new T(lst) make a T on the free store and initialize it with lst

new(lst) T construct a T at the location determined by lst

new(lst) T(lst2) construct a T at the location determined by lst and initialize it with lst2

delete p free the object pointed to by p

delete[] p free the array of objects pointed to by p

(T)x C-style cast; convert x to T

Note that the object(s) pointed to by p in delete p and delete[] p must be allo-
cated using new; see §A.5.6. Note that (T)x is far less specific — and therefore more
error-prone — than the more specific cast operators; see §A.5.7.

Member selection

x.*ptm the member of x identified by the pointer-to-member ptm

p–>*ptm the member of *p identified by the pointer-to-member ptm

Not covered in this book; see an expert-level reference.

Stroustrup_book.indb 1087Stroustrup_book.indb 1087 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1088

Multiplicative operators

x*y Multiply x by y.

x/y Divide x by y.

x%y Modulo (remainder) of x by y (not for floating-point types).

The effect of x/y and x%y is undefined if y==0. The effect of x%y is implementa-
tion defined if x or y is negative.

Additive operators

x+y Add x and y.

x–y Subtract y from x.

Shift operators

x<<y Shift x left by y bit positions.

x>>y Shift x right by y bit positions.

For the (built-in) use of >> and << for shifting bits, see §25.5.4. When their left-
most operators are iostreams, these operators are used for I/O; see Chapters 10
and 11.

Relational operators

x<y x less than y; returns a bool

x<=y x less than or equal to y

x>y x greater than y

x>=y x greater than or equal to y

The result of a relational operator is a bool.

Equality operators

x==y x equals y; returns a bool

x!=y x not equal to y

Note that x!=y is !(x==y). The result of an equality operator is a bool.

Stroustrup_book.indb 1088Stroustrup_book.indb 1088 4/22/14 9:43 AM4/22/14 9:43 AM

A.5 EXPRESSIONS 1089

Bitwise and

x&y bitwise and of x and y

Note that & (like ^, |, ~, >>, and <<) delivers a set of bits. For example, if a and
b are unsigned chars, a&b is an unsigned char with each bit being the result of
applying & to the corresponding bits in a and b; see §A.5.5.

Bitwise xor

x^y bitwise exclusive or of x and y

Bitwise or

x|y bitwise or of x and y

Logical and

x&&y logical and; returns true or false; evaluate y only if x is true

Logical or

x||y logical or; returns true or false; evaluate y only if x is false

See §A.5.5.

Conditional expression

x?y:z If x the result is y; otherwise the result is z.

For example:

template<class T> T& max(T& a, T& b) { return (a>b)?a:b; }

The “question mark colon operator” is explained in §8.4.

Assignments

v=x assign x to v; result is the resulting v

v*=x roughly v=v*(x)

Stroustrup_book.indb 1089Stroustrup_book.indb 1089 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1090

Assignments (continued)

v/=x roughly v=v/(x)

v%=x roughly v=v%(x)

v+=x roughly v=v+(x)

v–=x roughly v=v–(x)

v>>=x roughly v=v>>(x)

v<<=x roughly v=v<<(x)

v&=x roughly v=v&(x)

v^=x roughly v=v^(x)

v|=x roughly v=v|(x)

By “roughly v=v*(x)” we mean that v*=x has that value except that v is evalu-
ated only once. For example, v[++i]*=7+3 means (++i, v[i]=v[i]*(7+3)) rather than
(v[++i]=v[++i]*(7+3)) (which would be undefined; see §8.6.1).

Throw expression

throw x Throw the value of x.

The type of a throw expression is void.

Comma expression

x,y Execute x then y; the result is y.

Each box holds operators with the same precedence. Operators in higher boxes
have higher precedence than operators in lower boxes. For example, a+b*c means
a+(b*c) rather than (a+b)*c because * has higher precedence than +. Similarly,
*p++ means *(p++), not (*p)++. Unary operators and assignment operators are
right-associative; all others are left-associative. For example, a=b=c means a=(b=c)
and a+b+c means (a+b)+c.

An lvalue is an expression that identifies an object that could in principle be
modified (but obviously an lvalue that has a const type is protected against modi-
fication by the type system) and have its address taken. The complement to lvalue
is rvalue, that is, an expression that identifies something that may not be modified
or have its address taken, such as a value returned from a function (&f(x) is an
error because f(x) is an rvalue).

Stroustrup_book.indb 1090Stroustrup_book.indb 1090 4/22/14 9:43 AM4/22/14 9:43 AM

A.5 EXPRESSIONS 1091

A.5.1 User-defi ned operators
The rules defined here are for built-in types. If a user-defined operator is used, an
expression is simply transformed into a call of the appropriate user-defined opera-
tor function, and the rules for function call determine what happens. For example:

class Mine { /* . . . */ };
bool operator==(Mine, Mine);

void f(Mine a, Mine b)
{
 if (a==b) { // a==b means operator==(a,b)
 // . . .
 }
}

A user-defined type is a class (§A.12, Chapter 9) or an enumeration (§A.11, §9.5).

A.5.2 Implicit type conversion
Integral and floating-point types (§A.8) can be mixed freely in assignments and
expressions. Wherever possible, values are converted so as not to lose informa-
tion. Unfortunately, value-destroying conversions are also performed implicitly.

A.5.2.1 Promotions
The implicit conversions that preserve values are commonly referred to as pro-
motions. Before an arithmetic operation is performed, integral promotion is used to
create ints out of shorter integer types. This reflects the original purpose of these
promotions: to bring operands to the “natural” size for arithmetic operations. In
addition, float to double is considered a promotion.

Promotions are used as part of the usual arithmetic conversions (see §A.5.2.2).

A.5.2.2 Conversions
The fundamental types can be converted into each other in a bewildering number
of ways. When writing code, you should always aim to avoid undefined behavior
and conversions that quietly throw away information (see §3.9 and §25.5.3). A
compiler can warn about many questionable conversions.

• Integral conversions: An integer can be converted to another integer type.
An enumeration value can be converted to an integer type. If the desti-
nation type is unsigned, the resulting value is simply as many bits from
the source as will fi t in the destination (high-order bits are thrown away
if necessary). If the destination type is signed, the value is unchanged if it

Stroustrup_book.indb 1091Stroustrup_book.indb 1091 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1092

can be represented in the destination type; otherwise, the value is imple-
mentation defi ned. Note that bool and char are integer types.

• Floating-point conversions: A fl oating-point value can be converted to another
fl oating-point type. If the source value can be exactly represented in the
destination type, the result is the original numeric value. If the source
value is between two adjacent destination values, the result is one of those
values. Otherwise, the behavior is undefi ned. Note that fl oat to double is
considered a promotion.

• Pointer and reference conversions: Any pointer to an object type can be implic-
itly converted to a void* (§17.8, §27.3.5). A pointer (reference) to a derived
class can be implicitly converted to a pointer (reference) to an accessible
and unambiguous base (§14.3). A constant expression (§A.5, §4.3.1) that
evaluates to 0 can be implicitly converted to any pointer type. A T* can
be implicitly converted to a const T*. Similarly, a T& can be implicitly
converted to a const T&.

• Boolean conversions: Pointers, integrals, and fl oating-point values can be im-
plicitly converted to bool. A nonzero value converts to true; a zero value
converts to false.

• Floating-to-integer conversions: When a fl oating-point value is converted to an
integer value, the fractional part is discarded. In other words, conversion
from a fl oating-point type to an integer type truncates. The behavior is
undefi ned if the truncated value cannot be represented in the destination
type. Conversions from integer to fl oating types are as mathematically
correct as the hardware allows. Loss of precision occurs if an integral
value cannot be represented exactly as a value of the fl oating type.

• Usual arithmetic conversions: These conversions are performed on the oper-
ands of a binary operator to bring them to a common type, which is then
used as the type of the result:

1. If either operand is of type long double, the other is converted to
long double. Otherwise, if either operand is double, the other is
converted to double. Otherwise, if either operand is float, the other
is converted to float. Otherwise, integral promotions are performed
on both operands.

2. Then, if either operand is unsigned long, the other is converted to
unsigned long. Otherwise, if one operand is a long int and the other
is an unsigned int, then if a long int can represent all the values of
an unsigned int, the unsigned int is converted to a long int; other-
wise, both operands are converted to unsigned long int. Otherwise,
if either operand is long, the other is converted to long. Otherwise,
if either operand is unsigned, the other is converted to unsigned.
Otherwise, both operands are int.

Stroustrup_book.indb 1092Stroustrup_book.indb 1092 4/22/14 9:43 AM4/22/14 9:43 AM

A.5 EXPRESSIONS 1093

Obviously, it is best not to rely too much on complicated mixtures of types, so as
to minimize the need for implicit conversions.

A.5.2.3 User-defined conversions
In addition to the standard promotions and conversions, a programmer can de-
fine conversions for user-defined types. A constructor that takes a single argument
defines a conversion from its argument type to its type. If the constructor is ex-
plicit (see §18.4.1), the conversion happens only when the programmer explicitly
requires the conversion. Otherwise, the conversion can be implicit.

A.5.3 Constant expressions
A constant expression is an expression that can be evaluated at compile time. For
example:

const int a = 2.7*3;
const int b = a+3;

constexpr int a = 2.7*3;
constexpr int b = a+3;

A const can be initialized with an expression involving variables. A constexpr
must be initialized by a constant expression. Constant expressions are required
in a few places, such as array bounds, case labels, enumerator initializers, and int
template arguments. For example:

int var = 7;
switch (x) {
case 77: // OK
case a+2: // OK
case var: // error (var is not a constant expression)
 // . . .
};

A function declared constexpr can be used in a constant expression.

A.5.4 sizeof
In sizeof(x), x can be a type or an expression. If x is an expression, the value of
sizeof(x) is the size of the resulting object. If x is a type, sizeof(x) is the size of an
object of type x. Sizes are measured in bytes. By definition, sizeof(char)==1.

Stroustrup_book.indb 1093Stroustrup_book.indb 1093 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1094

A.5.5 Logical expressions
C++ provides logical operators for integer types:

Bitwise logical operations

x&y bitwise and of x and y

x|y bitwise or of x and y

x^y bitwise exclusive or of x and y

Logical operations

x&&y logical and; returns true or false; evaluate y only if x is true

x||y logical or; returns true or false; evaluate y only if x is false

The bitwise operators do their operation on each bit of their operands, whereas
the logical operators (&& and ||) treat a 0 as the value false and anything else as
the value true. The definitions of the operations are:

& 0 1 | 0 1 ^ 0 1

0 0 0 0 0 1 0 0 1

1 0 1 1 1 1 1 1 0

A.5.6 new and delete
Memory on the free store (dynamic store, heap) is allocated using new and deal-
located (“freed”) using delete (for individual objects) or delete[] (for an array).
If memory is exhausted, new throws a bad_alloc exception. A successful new
operation allocates at least 1 byte and returns a pointer to the allocated object. The
type of object allocated is specified after new. For example:

int* p1 = new int; // allocate an (uninitialized) int
int* p2 = new int(7); // allocate an int initialized to 7
int* p3 = new int[100]; // allocate 100 (uninitialized) ints
// . . .
delete p1; // deallocate individual object
delete p2;
delete[] p3; // deallocate array

Stroustrup_book.indb 1094Stroustrup_book.indb 1094 4/22/14 9:43 AM4/22/14 9:43 AM

A.5 EXPRESSIONS 1095

If you allocate objects of a built-in type using new, they will not be initialized un-
less you specify an initializer. If you allocate objects of a class with a constructor
using new, a constructor is called; the default constructor is called unless you
specify an initializer (§17.4.4).

A delete invokes the destructor, if any, for its operand. Note that a destructor
may be virtual (§A.12.3.1).

A.5.7 Casts
There are four type-conversion operators:

Type-conversion operators

x=dynamic_cast<D*>(p) Try to convert p into a D* (may return 0).

x=dynamic_cast<D&>(*p) Try to convert *p into a D& (may throw bad_cast).

x=static_cast<T>(v) Convert v into a T if a T can be converted into v’s type.

x=reinterpret_cast<T>(v) Convert v into a T represented by the same bit pattern.

x=const_cast<T>(v) Convert v into a T by adding or subtracting const.

x=(T)v C-style cast: do any old cast.

x=T(v) Functional cast: do any old cast.

X=T{v} Construct a T from v (no narrowing will be done).

The dynamic cast is typically used for class hierarchy navigation where p is a
pointer to a base class and D is derived from that base. It returns 0 if v is not a D*.
If you want dynamic_cast to throw an exception (bad_cast) instead of returning
0, cast to a reference instead of to a pointer. The dynamic cast is the only cast that
relies on run-time checking.

Static cast is used for “reasonably well-behaved conversions,” that is, where v
could have been the result of an implicit conversion from a T; see §17.8.

Reinterpret cast is used for reinterpreting a bit pattern. It is not guaranteed
to be portable. In fact, it is best to assume that every use of reinterpret_cast is
non-portable. A typical example is an int-to-pointer conversion to get a machine
address into a program; see §17.8 and §25.4.1.

The C-style and functional casts can perform any conversion that can be
achieved by a static_cast or a reinterpret_cast, combined with a const_cast.

Casts are best avoided. In most cases, consider their use a sign of poor
programming. Exceptions to this rule are presented in §17.8 and §25.4.1. The
C-style cast and function-style casts have the nasty property that you don’t have
to understand exactly what the cast is doing (§27.3.4). Prefer the named casts
when you cannot avoid an explicit type conversion.

Stroustrup_book.indb 1095Stroustrup_book.indb 1095 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1096

A.6 Statements
Here is a grammar for C++’s statements (opt means “optional”):

statement:
 declaration
 { statement-listopt }
 try { statement-listopt } handler-list
 expressionopt ;
 selection-statement
 iteration-statement
 labeled-statement
 control-statement

selection-statement:
 if (condition) statement
 if (condition) statement else statement
 switch (condition) statement

iteration-statement:
 while (condition) statement
 do statement while (expression) ;
 for (for-init-statement conditionopt ; expressionopt) statement
 for (declaration : expression) statement

labeled-statement:
 case constant-expression : statement
 default : statement
 identifier : statement

control-statement:
 break ;
 continue ;
 return expressionopt ;
 goto identifier ;

statement-list:
 statement statement-listopt

condition:
 expression
 type-specifier declarator = expression

Stroustrup_book.indb 1096Stroustrup_book.indb 1096 4/22/14 9:43 AM4/22/14 9:43 AM

A.6 STATEMENTS 1097

for-init-statement:
 expressionopt ;
 type-specifier declarator = expression ;

handler-list:
 catch (exception-declaration) { statement-listopt }
 handler-list handler-listopt

Note that a declaration is a statement and that there is no assignment statement
or procedure call statement; assignments and function calls are expressions. More
information:

• Iteration (for and while); see §4.4.2.
• Selection (if, switch, case, and break); see §4.4.1. A break “breaks out of”

the nearest enclosing switch-statement, while-statement, do-statement, or
for-statement; that is, the next statement executed will be the statement
following that enclosing statement.

• Expressions; see §A.5, §4.3.
• Declarations; see §A.6, §8.2.
• Exceptions (try and catch); see §5.6, §19.4.

Here is an example concocted simply to demonstrate a variety of statements
(what does it do?):

int* f(int p[], int n)
{
 if (p==0) throw Bad_p(n);
 vector<int> v;
 int x;
 while (cin>>x) {
 if (x==terminator) break; // exit while loop
 v.push_back(x);
 }
 for (int i = 0; i<v.size() && i<n; ++i) {
 if (v[i]==*p)
 return p;
 else
 ++p;
 }
 return 0;
}

Stroustrup_book.indb 1097Stroustrup_book.indb 1097 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1098

A.7 Declarations
A declaration consists of three parts:

• The name of the entity being declared
• The type of the entity being declared
• The initial value of the entity being declared (optional in most cases)

We can declare

• Objects of built-in types and user-defi ned types (§A.8)
• User-defi ned types (classes and enumerations) (§A.10–11, Chapter 9)
• Templates (class templates and function templates) (§A.13)
• Aliases (§A.16)
• Namespaces (§A.15, §8.7)
• Functions (including member functions and operators) (§A.9, Chapter 8)
• Enumerators (values for enumerations) (§A.11, §9.5)
• Macros (§A.17.2, §27.8)

The initializer can be a { }-delimited list of expressions with zero or more
elements (§3.9.2, §9.4.2, §18.2). For example:

vector<int> v {a,b,c,d};
int x {y*z};

If the type of the object in a definition is auto, the object must be initialized and
the type is the type of the initializer (§13.3, §21.2). For example:

auto x = 7; // x is an int
const auto pi = 3.14; // pi is a double
for (const auto& x : v) // x is a reference to an element of v

A.7.1 Defi nitions
A declaration that initializes, sets aside memory, or in other ways provides all
the information necessary for using a name in a program is called a definition.
Each type, object, and function in a program must have exactly one definition.
Examples:

double f(); // a declaration
double f() { /* . . . */ }; // (also) a definition
extern const int x; // a declaration

Stroustrup_book.indb 1098Stroustrup_book.indb 1098 4/22/14 9:43 AM4/22/14 9:43 AM

A.8 BUILT-IN TYPES 1099

int y; // (also) a definition
int z = 10; // a definition with an explicit initializer

A const must be initialized. This is achieved by requiring an initializer for a const
unless it has an explicit extern in its declaration (so that the initializer must be
on its definition elsewhere) or it is of a type with a default constructor (§A.12.3).
Class members that are consts must be initialized in every constructor using a
member initializer (§A.12.3).

A.8 Built-in types
C++ has a host of fundamental types and types constructed from fundamental
types using modifiers:

Built-in types

bool x x is a Boolean (values true and false).

char x x is a character (usually 8 bits).

short x x is a short int (usually 16 bits).

int x x is of the default integer type.

float x x is a floating-point number (a “short double”).

double x x is a (“double-precision”) floating-point number.

void* p p is a pointer to raw memory (memory of unknown type).

T* p p is a pointer to T.

T *const p p is a constant (immutable) pointer to T.

T a[n] a is an array of n Ts.

T& r r is a reference to T.

T f(arguments) f is a function taking arguments and returning a T.

const T x x is a constant (immutable) version of T.

long T x x is a long T.

unsigned T x x is an unsigned T.

signed T x x is a signed T.

Here, T indicates “some type,” so you can have a long unsigned int, a long double,
an unsigned char, and a const char * (pointer to constant char). However, this
system is not perfectly general; for example, there is no short double (that would
have been a float), no signed bool (that would have been meaningless), no short

Stroustrup_book.indb 1099Stroustrup_book.indb 1099 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1100

long int (that would have been redundant), and no long long long long int. A long
long is guaranteed to hold at least 64 bits.

The floating-point types are float, double, and long double. They are C++’s
approximation of real numbers.

The integer types (sometimes called integral types) are bool, char, short, int, long,
and long long and their unsigned variants. Note that an enumeration type or
value can often be used where an integer type or value is needed.

The sizes of built-in types are discussed in §3.8, §17.3.1, and §25.5.1. Point-
ers and arrays are discussed in Chapters 17 and 18. References are discussed in
§8.5.4–6.

A.8.1 Pointers
A pointer is an address of an object or a function. Pointers are stored in variables of
pointer types. A valid object pointer holds the address of an object:

int x = 7;
int* pi = &x; // pi points to x
int xx = *pi; // *pi is the value of the object pointed to by pi, that is, 7

An invalid pointer is a pointer that does not hold the value of an object:

int* pi2; // uninitialized
*pi2 = 7; // undefined behavior
pi2 = nullptr; // the null pointer (pi2 is still invalid)
*pi2 = 7; // undefined behavior

pi2 = new int(7); // now pi2 is valid
int xxx = *pi2; // fine: xxx becomes 7

We try to have invalid pointers hold the null pointer (nullptr) so that we can test it:

if (p2 == nullptr) { // “if invalid”
 // don’t use *p2
}

Or simply

if (p2) { // “if valid”
 // use *p2
}

See §17.4 and §18.6.4.

Stroustrup_book.indb 1100Stroustrup_book.indb 1100 4/22/14 9:43 AM4/22/14 9:43 AM

A.8 BUILT-IN TYPES 1101

The operations on a (non-void) object pointer are:

Pointer operations

*p dereference/indirection

p[i] dereference/subscripting

p=q assignment and initialization

p==q equality

p!=q inequality

p+i add integer

p–i subtract integer

p–q distance: subtract pointers

++p pre-increment (move forward)

p++ post-increment (move forward)

––p pre-decrement (move backward)

p–– post-decrement (move backward)

p+=i move forward i elements

p–=i move backward i elements

Note that any form of pointer arithmetic (e.g., ++p and p+=7) is allowed only
for pointers into an array and that the effect of dereferencing a pointer pointing
outside the array is undefined (and most likely not checked by the compiler or the
language run-time system). The comparisons <, <=, >, and >= can also be used
for pointers of the same type into the same object or array.

The only operations on a void* pointer are copying (assignment or initializa-
tion), casting (type conversion), and comparison (==, !=, <, <=, >, and >=).

A pointer to function (§27.2.5) can only be copied and called. For example:

using Handle_type = void (*)(int);
void my_handler(int);
Handle_type handle = my_handler;
handle(10); // equivalent to my_handler(10)

A.8.2 Arrays
An array is a fixed-length contiguous sequence of objects (elements) of a given type:

int a[10]; // 10 ints

Stroustrup_book.indb 1101Stroustrup_book.indb 1101 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1102

If an array is global, its elements will be initialized to the appropriate default value
for the type. For example, the value of a[7] will be 0. If the array is local (a vari-
able declared in a function) or allocated using new, elements of built-in types will
be uninitialized and elements of class types will be initialized as required by the
class’s constructors.

The name of an array is implicitly converted to a pointer to its first element.
For example:

int* p = a; // p points to a[0]

An array or a pointer to an element of an array can be subscripted using the []
operator. For example:

a[7] = 9;
int xx = p[6];

Array elements are numbered starting with 0; see §18.6.
Arrays are not range checked, and since they are often passed as pointers, the

information to range check them is not reliably available to users. Prefer vector.
The size of an array is the sum of the sizes of its elements. For example:

int a[max]; // sizeof(a); that is, sizeof(int)*max

You can define and use an array of an array (a two-dimensional array), an array of
an array of an array, etc. (multidimensional arrays). For example:

double da[100][200][300]; // 300 elements of type
 // 200 elements of type
 // 100 type double
da[7][9][11] = 0;

Nontrivial uses of multidimensional arrays are subtle and error-prone; see §24.4.
If you have a choice, prefer a Matrix library (such as the one in Chapter 24).

A.8.3 References
A reference is an alias (alternative name) for an object:

int a = 7;
int& r = a;
r = 8; // a becomes 8

Stroustrup_book.indb 1102Stroustrup_book.indb 1102 4/22/14 9:43 AM4/22/14 9:43 AM

A.9 FUNCTIONS 1103

References are most common as function parameters, where they are used to
avoid copying:

void f(const string& s);
// . . .
f("this string could be somewhat costly to copy, so we use a reference");

See §8.5.4–6.

A.9 Functions
A function is a named piece of code taking a (possibly empty) set of arguments
and optionally returning a value. A function is declared by giving the return type
followed by its name followed by the parameter list:

char f(string, int);

So, f is a function taking a string and an int returning a char. If the function is
just being declared, the declaration is terminated by a semicolon. If the function is
being defined, the argument declaration is followed by the function body:

char f(string s, int i) { return s[i]; }

The function body must be a block (§8.2) or a try-block (§5.6.3).
A function declared to return a value must return a value (using the

return-statement):

char f(string s, int i) { char c = s[i]; } // error: no value returned

The main() function is the odd exception to that rule (§A.1.2). Except for main(),
if you don’t want to return a value, declare the function void; that is, use void as
the “return type”:

void increment(int& x) { ++x; } // OK: no return value required

A function is called using the call operator (application operator), (), with an
acceptable list of arguments:

char x1 = f(1,2); // error: f()’s first argument must be a string
string s = "Battle of Hastings";
char x2 = f(s); // error: f() requires two arguments
char x3 = f(s,2); // OK

Stroustrup_book.indb 1103Stroustrup_book.indb 1103 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1104

For more information about functions, see Chapter 8.
A function definition can be prefixed with constexpr. In that case, it must be

simple enough for the compiler to evaluate when called with constant expression
arguments. A constexpr function can be used in a constant expression (§8.5.9).

A.9.1 Overload resolution
Overload resolution is the process of choosing a function to call based on a set of
arguments. For example:

void print(int);
void print(double);
void print(const std::string&);

print(123); // use print(int)
print(1.23); // use print(double)
print("123"); // use print(const string&)

It is the compiler’s job to pick the right function according to the language rules.
Unfortunately, in order to cope with complicated examples, the language rules are
quite complicated. Here we present a simplified version.

Finding the right version to call from a set of overloaded functions is done by
looking for a best match between the type of the argument expressions and the
parameters (formal arguments) of the functions. To approximate our notions of
what is reasonable, a series of criteria is tried in order:

 1. Exact match, that is, match using no or only trivial conversions (for ex-
ample, array name to pointer, function name to pointer to function, and
T to const T)

 2. Match using promotions, that is, integral promotions (bool to int, char to
int, short to int, and their unsigned counterparts; see §A.8) and float to
double

 3. Match using standard conversions, for example, int to double, double to
int, double to long double, Derived* to Base* (§14.3), T* to void* (§17.8),
int to unsigned int (§25.5.3)

 4. Match using user-defined conversions (§A.5.2.3)
 5. Match using the ellipsis . . . in a function declaration (§A.9.3)

If two matches are found at the highest level where a match is found, the call is
rejected as ambiguous. The resolution rules are this elaborate primarily to take
into account the elaborate rules for built-in numeric types (§A.5.3).

Stroustrup_book.indb 1104Stroustrup_book.indb 1104 4/22/14 9:43 AM4/22/14 9:43 AM

A.9 FUNCTIONS 1105

For overload resolution based on multiple arguments, we first find the best
match for each argument. If one function is at least as good a match as all other
functions for every argument and is a better match than all other functions for one
argument, that function is chosen; otherwise the call is ambiguous. For example:

void f(int, const string&, double);
void f(int, const char*, int);

f(1,"hello",1); // OK: call f(int, const char*, int)
f(1,string("hello"),1.0); // OK: call f(int, const string&, double)
f(1, "hello",1.0); // error: ambiguous

In the last call, the "hello" matches const char* without a conversion and const
string& only with a conversion. On the other hand, 1.0 matches double without
a conversion, but int only with a conversion, so neither f() is a better match than
the other.

If these simplified rules don’t agree with what your compiler says and what
you thought reasonable, please first consider if your code is more complicated
than necessary. If so, simplify your code; if not, consult an expert-level reference.

A.9.2 Default arguments
A general function sometimes needs more arguments than are needed for the most
common cases. To handle that, a programmer may provide default arguments to be
used if a caller of a function doesn’t specify an argument. For example:

void f(int, int=0, int=0);
f(1,2,3);
f(1,2); // calls f(1,2,0)
f(1); // calls f(1,0,0)

Only trailing arguments can be defaulted and left out in a call. For example:

void g(int, int =7, int); // error: default for non-trailing argument
f(1,,1); // error: second argument missing

Overloading can be an alternative to using default arguments (and vice versa).

A.9.3 Unspecifi ed arguments
It is possible to specify a function without specifying the number or types of its
arguments. This is indicated by an ellipsis (. . .), meaning “and possibly more

Stroustrup_book.indb 1105Stroustrup_book.indb 1105 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1106

arguments.” For example, here is the declaration of and some calls to what is
arguably the most famous C function, printf() (§27.6.1, §B.11.2):

void printf(const char* format ...); // takes a format string and maybe more

int x = 'x';
printf("hello, world!");
printf("print a char '%c'\n",x); // print the int x as a char
printf("print a string \"%s\"",x); // shoot yourself in the foot

The “format specifiers” in the format string, such as %c and %s, determine if and
how further arguments are used. As demonstrated, this can lead to nasty type
errors. In C++, unspecified arguments are best avoided.

A.9.4 Linkage specifi cations
C++ code is often used in the same program as C code; that is, parts of a pro-
gram are written in C++ (and compiled by a C++ compiler) and other parts in C
(and compiled by a C compiler). To ease that, C++ offers linkage specifications for
the programmer to say that a function obeys C linkage conventions. A C linkage
specification can be placed in front of a function declaration:

extern "C" void callable_from_C(int);

Alternatively it can apply to all declarations in a block:

extern "C" {
 void callable_from_C(int);
 int and_this_one_also(double, int*);
 /* . . . */
}

For details of use, see §27.2.3.
C doesn’t offer function overloading, so you can put a C linkage specification

on at most one version of a C++ overloaded function.

A.10 User-defi ned types
There are two ways for a programmer to define a new (user-defined) type: as a
class (class, struct, or union; see §A.12) and as an enumeration (enum; see §A.11).

Stroustrup_book.indb 1106Stroustrup_book.indb 1106 4/22/14 9:43 AM4/22/14 9:43 AM

A.11 ENUMERATIONS 1107

A.10.1 Operator overloading
A programmer can define the meaning of most operators to take operands of
one or more user-defined types. It is not possible to change the standard meaning
of an operator for built-in types or to introduce a new operator. The name of
a user-defined operator (“overloaded operator”) is the operator prefixed by the
keyword operator; for example, the name of a function defining + is operator +:

Matrix operator+(const Matrix&, const Matrix&);

For examples, see std::ostream (Chapters 10–11), std::vector (Chapters 17–19,
§B.4), std::complex (§B.9.3), and Matrix (Chapter 24).

All but the following operators can be user-defined:

?: . .* :: sizeof typeid alignas noexcept

Functions defining the following operators must be members of a class:

= [] () –>

All other operators can be defined as member functions or as freestanding functions.
Note that every user-defined type has = (assignment and initialization), &

(address of), and , (comma) defined by default.
Be restrained and conventional with operator overloading.

A.11 Enumerations
An enumeration defines a type with a set of named values (enumerators):

enum Color { green, yellow, red }; // “plain” enumeration
enum class Traffic_light { yellow, red, green }; // scoped enumeration

The enumerators of an enum class are in the scope of the enumeration, whereas
the enumerators of a “plain” enum are exported to the scope of the enum. For
example:

Color col = red; // OK
Traffic_light tl = red; // error: cannot convert integer value
 // (i.e., Color::red) to Traffic_light

Stroustrup_book.indb 1107Stroustrup_book.indb 1107 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1108

By default the value of the first enumerator is 0, so that Color::green==0, and the
values increase by one, so that Color’s yellow==1 and red==2. It is also possible
to explicitly define the value of an enumerator:

enum Day { Monday=1, Tuesday, Wednesday };

Here, we get Monday==1, Tuesday==2, and Wednesday==3.
Enumerators and enumeration values of a “plain” enum implicitly convert to

integers, but integers do not implicitly convert to enumeration types:

int x = green; // OK: implicit Color-to-int conversion
Color c = green; // OK
c = 2; // error: no implicit int-to-Color conversion
c = Color(2); // OK: (unchecked) explicit conversion
int y = c; // OK: implicit Color-to-int conversion

Enumerators and enumeration values of an enum class do not convert to integers,
and integers do not implicitly convert to enumeration types:

int x = Traffic_light::green; // error: no implicit Traffic_light-to-int conversion
Traffic_light c = green; // error: no implicit int-to-Traffic_light conversion

For a discussion of the uses of enumerations, see §9.5.

A.12 Classes
A class is a type for which the user defines the representation of its objects and the
operations allowed on those objects:

class X {
public:
 // user interface
private:
 // implementation
};

A variable, function, or type defined within a class declaration is called a member
of the class. See Chapter 9 for class technicalities.

A.12.1 Member access
A public member can be accessed by users; a private member can be accessed
only by the class’s own members:

Stroustrup_book.indb 1108Stroustrup_book.indb 1108 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1109

class Date {
public:
 // . . .
 int next_day();
private:
 int y, m, d;
};

void Date::next_day() { return d+1; } // OK

void f(Date d)
{
 int nd = d.d+1; // error: Date::d is private
 // . . .
}

A struct is a class where members are by default public:

struct S {
 // members (public unless explicitly declared private)
};

For more details of member access, including a discussion of protected, see §14.3.4.
Members of an object can be accessed through a variable or referenced using

the . (dot) operator or through a pointer using the –> (arrow) operator:

struct Date {
 int d, m, y;
 int day() const { return d; } // defined in-class
 int month() const; // just declared; defined elsewhere
 int year() const; // just declared; defined elsewhere
};

Date x;
x.d = 15; // access through variable
int y = x.day(); // call through variable
Date* p = &x;
p–>m = 7; // access through pointer
int z = p–>month(); // call through pointer

Members of a class can be referred to using the :: (scope resolution) operator:

int Date::year() const { return y; } // out-of-class definition

Stroustrup_book.indb 1109Stroustrup_book.indb 1109 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1110

Within a member function, we can refer to other members by their unqualified
name:

struct Date {
 int d, m, y;
 int day() const { return d; }
 // . . .
};

Such unqualified names refer to the member of the object for which the member
function was called:

void f(Date d1, Date d2)
{
 d1.day(); // will access d1.d
 d2.day(); // will access d2.d
 // . . .
}

A.12.1.1 The this pointer
If we want to be explicit when referring to the object for which the member func-
tion is called, we can use the predefined pointer this:

struct Date {
 int d, m, y;
 int month() const { return this–>m; }
 // . . .
};

A member function declared const (a const member function) cannot modify the
value of a member of the object for which it is called:

struct Date {
 int d, m, y;
 int month() const { ++m; } // error: month() is const
 // . . .
};

For more information about const member functions, see §9.7.4.

Stroustrup_book.indb 1110Stroustrup_book.indb 1110 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1111

A.12.1.2 Friends
A function that is not a member of a class can be granted access to all members
through a friend declaration. For example:

// needs access to Matrix and Vector members:
Vector operator*(const Matrix&, const Vector&);

class Vector {
 friend
 Vector operator*(const Matrix&, const Vector&); // grant access
 // . . .
};

class Matrix {
 friend
 Vector operator*(const Matrix&, const Vector&); // grant access
 // . . .
};

As shown, this is usually done for functions that need to access two classes. An-
other use of friend is to provide an access function that should not be called using
the member access syntax. For example:

class Iter {
public:
 int distance_to(const iter& a) const;
 friend int difference(const Iter& a, const Iter& b);
 // . . .
};

void f(Iter& p, Iter& q)
{
 int x = p.distance_to(q); // invoke using member syntax
 int y = difference(p,q); // invoke using “mathematical syntax”
 // . . .
}

Note that a function declared friend cannot also be declared virtual.

Stroustrup_book.indb 1111Stroustrup_book.indb 1111 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1112

A.12.2 Class member defi nitions
Class members that are integer constants, functions, or types can be defined/
initialized either in-class (§9.7.3) or out-of-class (§9.4.4):

struct S {
 int c = 1;
 int c2;

 void f() { }
 void f2();

 struct SS { int a; };
 struct SS2;
};

The members that were not defined in-class must be defined “elsewhere”:

int S::c2 = 7;

void S::f2() { }

struct S::SS2 { int m; };

If you want to initialize a data member with a value specified by the creator of an
object, do it in a constructor.

Function members do not occupy space in an object:

struct S {
 int m;
 void f();
};

Here, sizeof(S)==sizeof(int). That’s not actually guaranteed by the standard, but
it is true for all implementations we know of. But note that a class with a virtual
function has one “hidden” member to allow virtual calls (§14.3.1).

A.12.3 Construction, destruction, and copy
You can define the meaning of initialization for an object of a class by defining one
or more constructors. A constructor is a member function with the same name as its
class and no return type:

Stroustrup_book.indb 1112Stroustrup_book.indb 1112 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1113

class Date {
public:
 Date(int yy, int mm, int dd) :y{yy}, m{mm}, d{dd} { }
 // . . .
private:
 int y,m,d;
};

Date d1 {2006,11,15}; // OK: initialization done by the constructor
Date d2; // error: no initializers
Date d3 {11,15}; // error: bad initializers (three initializers required)

Note that data members can be initialized by using an initializer list in the con-
structor (a base and member initializer list). Members will be initialized in the
order in which they are declared in the class.

Constructors are typically used to establish a class’s invariant and to acquire
resources (§9.4.2–3).

Class objects are constructed “from the bottom up,” starting with base class
objects (§14.3.1) in declaration order, followed by members in declaration order,
followed by the code in the constructor itself. Unless the programmer does some-
thing really strange, this ensures that every object is constructed before use.

Unless declared explicit, a single-argument constructor defines an implicit
conversion from its argument type to its class:

class Date {
public:
 Date(const char*);
 explicit Date(long); // use an integer encoding of Date
 // . . .
};

void f(Date);

Date d1 = "June 5, 1848"; // OK
f("June 5, 1848"); // OK

Date d2 = 2007*12*31+6*31+5; // error: Date(long) is explicit
f(2007*12*31+6*31+5); // error: Date(long) is explicit

Date d3(2007*12*31+6*31+5); // OK

Stroustrup_book.indb 1113Stroustrup_book.indb 1113 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1114

Date d4 = Date{2007*12*31+6*31+5}; // OK
f(Date{2007*12*31+6*31+5}); // OK

Unless a class has bases or members that require explicit arguments, and unless the
class has other constructors, a default constructor is automatically generated. This
default constructor initializes each base or member that has a default constructor
(leaving members without default constructors uninitialized). For example:

struct S {
 string name, address;
 int x;
};

This S has an implicit constructor S{} that initializes name and address, but not x.
In addition, a class without a constructor can be initialized using an initializer list:

S s1 {"Hello!"}; // s1 becomes { "Hello! ",0}
S s2 {"Howdy!", 3};
S* p = new S{"G'day!"}; // *p becomes {"G'day",0};

As shown, trailing unspecified values become the default value (here, 0 for the int).

A.12.3.1 Destructors
You can define the meaning of an object being destroyed (e.g., going out of scope)
by defining a destructor. The name of a destructor is ~ (the complement operator)
followed by the class name:

class Vector { // vector of doubles
public:
 explicit Vector(int s) : sz{s}, p{new double[s]} { } // constructor
 ~Vector() { delete[] p; } // destructor
 // . . .
private:
 int sz;
 double* p;
};

void f(int ss)
{
 Vector v(s);
 // . . .
} // v will be destroyed upon exit from f(); Vector’s destructor will be called for v

Stroustrup_book.indb 1114Stroustrup_book.indb 1114 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1115

Destructors that invoke the destructors of members of a class can be generated by
the compiler, and if a class is to be used as a base class, it usually needs a virtual
destructor; see §17.5.2.

A destructor is typically used to “clean up” and release resources.
Class objects are destructed “from the top down” starting with the code in the

destructor itself, followed by members in declaration order, followed by the base
class objects in declaration order, that is, in reverse order of construction.

A.12.3.2 Copying
You can define the meaning of copying an object of a class:

class Vector { // vector of doubles
public:
 explicit Vector(int s) : sz{s}, p{new double[s]} { } // constructor
 ~Vector() { delete[] p; } // destructor
 Vector(const Vector&); // copy constructor
 Vector& operator=(const Vector&); // copy assignment
 // . . .
private:
 int sz;
 double* p;
};

void f(int ss)
{
 Vector v(ss);
 Vector v2 = v; // use copy constructor
 // . . .
 v = v2; // use copy assignment
 // . . .
}

By default (that is, unless you define a copy constructor and a copy assignment),
the compiler will generate copy operations for you. The default meaning of copy
is memberwise copy; see also §14.2.4 and §18.3.

A.12.3.3 Moving
You can define the meaning of moving an object of a class:

class Vector { // vector of doubles
public:
 explicit Vector(int s) : sz{s}, p{new double[s]} { } // constructor
 ~Vector() { delete[] p; } // destructor

Stroustrup_book.indb 1115Stroustrup_book.indb 1115 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1116

 Vector(Vector&&); // move constructor
 Vector& operator=(Vector&&); // move assignment
 // . . .
private:
 int sz;
 double* p;
};

Vector f(int ss)
{
 Vector v(ss);
 // . . .
 return v; // use move constructor
}

By default (that is, unless you define a copy constructor and a copy assignment),
the compiler will generate move operations for you. The default meaning of move
is memberwise move; see also §18.3.4.

A.12.4 Derived classes
A class can be defined as derived from other classes, in which case it inherits the
members of the classes from which it is derived (its base classes):

struct B {
 int mb;
 void fb() { };
};

class D : B {
 int md;
 void fd();
};

Here B has two members, mb and fb(), whereas D has four members, mb, fb(),
md, and fd().

Like members, bases can be public or private:

Class DD : public B1, private B2 {
 // . . .
};

So, the public members of B1 become public members of DD, whereas the public
members of B2 become private members of DD. A derived class has no special

Stroustrup_book.indb 1116Stroustrup_book.indb 1116 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1117

access to members of its bases, so DD does not have access to the private members
of B1 or B2.

A class with more than one direct base class (such as DD) is said to use multiple
inheritance.

A pointer to a derived class, D, can be implicitly converted to a pointer to
its base class, B, provided B is accessible and is unambiguous in D. For example:

struct B { };
struct B1: B { }; // B is a public base of B1
struct B2: B { }; // B is a public base of B2
struct C { };
struct DD : B1, B2, private C { };

DD* p = new DD;
B1* pb1 = p; // OK
B* pb = p; // error: ambiguous: B1::B or B2::B
C* pc = p; // error: DD::C is private

Similarly, a reference to a derived class can be implicitly converted to an unambig-
uous and accessible base class.

For more information about derived classes, see §14.3. For more information
about protected, see an expert-level textbook or reference.

A.12.4.1 Virtual functions
A virtual function is a member function that defines a calling interface to functions
of the same name taking the same argument types in derived classes. When call-
ing a virtual function, the function invoked by the call will be the one defined for
the most derived class. The derived class is said to override the virtual function
in the base class.

class Shape {
public:
 virtual void draw(); // virtual means “can be overridden”
 virtual ~Shape() { } // virtual destructor
 // . . .
};

class Circle : public Shape {
public:
 void draw(); // override Shape::draw
 ~Circle(); // override Shape::~Shape()
 // . . .
};

Stroustrup_book.indb 1117Stroustrup_book.indb 1117 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1118

Basically, the virtual functions of a base class (here, Shape) define a calling inter-
face for the derived class (here, Circle):

void f(Shape& s)
{
 // . . .
 s.draw();
}

void g()
{
 Circle c{Point{0,0}, 4};
 f(c); // will call Circle’s draw
}

Note that f() doesn’t know about Circles, only about Shapes. An object of a class
with a virtual function contains one extra pointer to allow it to find the set of
overriding functions; see §14.3.

Note that a class with virtual functions usually needs a virtual destructor (as
Shape has); see §17.5.2.

The wish to override a base class’s virtual function can be made explicit using
the override suffix. For example:

class Square : public Shape {
public:
 void draw() override; // override Shape::draw
 ~Circle() override; // override Shape::~Shape()
 void silly() override; // error: Shape does not have a virtual Shape::silly()
 // . . .
};

A.12.4.2 Abstract classes
An abstract class is a class that can be used only as a base class. You cannot make
an object of an abstract class:

Shape s; // error: Shape is abstract

class Circle : public Shape {

Stroustrup_book.indb 1118Stroustrup_book.indb 1118 4/22/14 9:43 AM4/22/14 9:43 AM

A.12 CLASSES 1119

public:
 void draw(); // override Shape::draw
 // . . .
};

Circle c{p,20}; // OK: Circle is not abstract

The most common way of making a class abstract is to define at least one pure
virtual function. A pure virtual function is a virtual function that requires overriding:

class Shape {
public:
 virtual void draw() = 0; // =0 means “pure”
 // . . .
};

See §14.3.5.
The rarer, but equally effective, way of making a class abstract is to declare all

its constructors protected (§14.2.1).

A.12.4.3 Generated operations
When you define a class, it will by default have several operations defined for its
objects:

• Default constructor
• Copy operations (copy assignment and copy initialization)
• Move operations (move assignment and move initialization)
• Destructor

Each is (again by default) defined to apply recursively to each of its base classes
and members. Construction is done “bottom-up,” that is, bases before members.
Destruction is done “top-down,” that is, members before bases. Members and
bases are constructed in order of appearance and destroyed in the opposite order.
That way, constructor and destructor code always relies on well-defined base and
member objects. For example:

struct D : B1, B2 {
 M1 m1;
 M2 m2;
};

Stroustrup_book.indb 1119Stroustrup_book.indb 1119 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1120

Assuming that B1, B2, M1, and M2 are defined, we can now write

D f()
{
 D d; // default initialization
 D d2 = d; // copy initialization
 d = D{}; // default initialization followed by copy assignment
 return d; // d is moved out of f()
} // d and d2 are destroyed here

For example, the default initialization of d invokes four default constructors (in
order): B1::B1(), B2::B2(), M1::M1(), and M2::M2(). If one of those doesn’t exist
or can’t be called, the construction of d fails. At the return, four move construc-
tors are invoked (in order): B1::B1(), B2::B2(), M1::M1(), and M2::M2(). If one of
those doesn’t exist or can’t be called, the return fails. The destruction of d invokes
four destructors (in order): M2::~M2(), M1::~M1(), B2::~B2(), and B1::~B1(). If
one of those doesn’t exist or can’t be called, the destruction of d fails. Each of
these constructors and destructors can be either user-defined or generated.

The implicit (compiler-generated) default constructor is not defined (gener-
ated) if a class has a user-defined constructor.

A.12.5 Bitfi elds
A bitfield is a mechanism for packing many small values into a word or to match
an externally imposed bit-layout format (such as a device register). For example:

struct PPN { // R6000 Physical Page Number
 unsigned int PFN : 22 ; // Page Frame Number
 int : 3 ; // unused
 unsigned int CCA : 3 ; // Cache Coherency Algorithm
 bool nonreachable : 1 ;
 bool dirty : 1 ;
 bool valid : 1 ;
 bool global : 1 ;
};

Packing the bitfields into a word left to right leads to a layout of bits in a word like
this (see §25.5.5):

1

1:
1

0:
1

2:
3

5:
3

8:
22

31:position:

valid
globaldirtyCCAunusedPFNname:

PPN:

Stroustrup_book.indb 1120Stroustrup_book.indb 1120 4/22/14 9:43 AM4/22/14 9:43 AM

A.13 TEMPLATES 1121

A bitfield need not have a name, but if it doesn’t, you can’t access it.
Surprisingly, packing many small values into a single word does not neces-

sarily save space. In fact, using one of those values often wastes space compared
to using a char or an int to represent even a single bit. The reason is that it takes
several instructions (which have to be stored in memory somewhere) to extract a
bit from a word and to write a single bit of a word without modifying other bits
of a word. Don’t try to use bitfields to save space unless you need lots of objects
with tiny data fields.

A.12.6 Unions
A union is a class where all members are allocated starting at the same address. A
union can hold only one element at a time, and when a member is read it must be
the same as was last written. For example:

union U {
 int x;
 double d;
}

U a;
a.x = 7;
int x1 = a.x; // OK
a.d = 7.7;
int x2 = a.x; // oops

The rule requiring consistent reads and writes is not checked by the compiler. You
have been warned.

A.13 Templates
A template is a class or a function parameterized by a set of types and/or integers:

template<typename T>
class vector {
public:
 // . . .
 int size() const;
private:
 int sz;
 T* p;
};

Stroustrup_book.indb 1121Stroustrup_book.indb 1121 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1122

template<class T>
int vector<T>::size() const
{
 return sz;
}

In a template argument list, class means type; typename is an equivalent alterna-
tive. A member function of a template class is implicitly a template function with
the same template arguments as its class.

Integer template arguments must be constant expressions:

template<typename T, int sz>
class Fixed_array {
public:
 T a[sz];
 // . . .
 int size() const { return sz; };
};

Fixed_array<char,256> x1; // OK
int var = 226;
Fixed_array<char,var> x2; // error: non-const template argument

A.13.1 Template arguments
Arguments for a template class are specified whenever its name is used:

vector<int> v1; // OK
vector v2; // error: template argument missing
vector<int,2> v3; // error: too many template arguments
vector<2> v4; // error: type template argument expected

Arguments for template functions are typically deduced from the function
arguments:

template<class T>
T find(vector<T>& v, int i)
{
 return v[i];
}

vector<int> v1;
vector<double> v2;

Stroustrup_book.indb 1122Stroustrup_book.indb 1122 4/22/14 9:43 AM4/22/14 9:43 AM

A.13 TEMPLATES 1123

// . . .
int x1 = find(v1,2); // find()’s T is int
int x2 = find(v2,2); // find()’s T is double

It is possible to define a template function for which it is not possible to deduce
its template arguments from its function arguments. In that case we must spec-
ify the missing template arguments explicitly (exactly as for class templates). For
example:

template<class T, class U> T* make(const U& u) { return new T{u}; }
int* pi = make<int>(2);
Node* pn = make<Node>(make_pair("hello",17));

This works if a Node can be initialized by a pair<const char *,int> (§B.6.3). Only
trailing template arguments can be left out of an explicit argument specialization
(to be deduced).

A.13.2 Template instantiation
A version of a template for a specific set of template arguments is called a special-
ization. The process of generating specializations from a template and a set of argu-
ments is called template instantiation. Usually, the compiler generates a specialization
from a template and a set of template arguments, but the programmer can also
define a specific specialization. This is usually done when a general template is
unsuitable for a particular set of arguments. For example:

template<class T> struct Compare { // general compare
 bool operator()(const T& a, const T& b) const
 {
 return a<b;
 }
};

template<> struct Compare<const char*> { // compare C-style strings
 bool operator()(const char* a, const char* b) const
 {
 return strcmp(a,b)==0;
 }
};

Compare<int> c2; // general compare
Compare<const char*> c; // C-style string compare

Stroustrup_book.indb 1123Stroustrup_book.indb 1123 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1124

bool b1 = c2(1,2); // use general compare
bool b2 = c("asd","dfg"); // use C-style string compare

For functions, the rough equivalent is achieved through overloading:

template<class T> bool compare(const T& a, const T& b)
{
 return a<b;
}

bool compare (const char* a, const char* b) // compare C-style strings
{
 return strcmp(a,b)==0;
}

bool b3 = compare(2,3); // use general compare
bool b4 = compare("asd","dfg"); // use C-style string compare

Separate compilation of templates (i.e., keeping declarations only in header files
and unique definitions in .cpp files) does not work portably, so if a template needs
to be used in several .cpp files, put its complete definition in a header file.

A.13.3 Template member types
A template can have members that are types and members that are not types
(such as data members and member functions). This means that in general, it can
be hard to tell whether a member name refers to a type or to a non-type. For
language-technical reasons, the compiler has to know, so occasionally we must tell
it. For that, we use the keyword typename. For example:

template<class T> struct Vec {
 typedef T value_type; // a member type
 static int count; // a data member
 // . . .
};

template<class T> void my_fct(Vec<T>& v)
{
 int x = Vec<T>::count; // by default member names
 // are assumed to refer to non-types
 v.count = 7; // a simpler way to refer to a non-type member
 typename Vec<T>::value_type xx = x; // typename is needed here
 // . . .
}

Stroustrup_book.indb 1124Stroustrup_book.indb 1124 4/22/14 9:43 AM4/22/14 9:43 AM

A.14 EXCEPTIONS 1125

For more information about templates, see Chapter 19.

A.14 Exceptions
An exception is used (with a throw statement) to tell a caller about an error that
cannot be handled locally. For example, move Bad_size out of Vector:

struct Bad_size {
 int sz;
 Bad_size(int s) : ss{s} { }
};

class Vector {
 Vector(int s) { if (s<0 || maxsize<s) throw Bad_size{s}; }
 // . . .
};

Usually, we throw a type that is defined specifically to represent a particular error.
A caller can catch an exception:

void f(int x)
{
 try {
 Vector v(x); // may throw
 // . . .
 }
 catch (Bad_size bs) {
 cerr << "Vector with bad size (" << bs.sz << ")\n";
 // . . .
 }
}

A “catch all” clause can be used to catch every exception:

try {
 // . . .
} catch (. . .) { // catch all exceptions
 // . . .
}

Usually, the RAII (“Resource Acquisition Is Initialization”) technique is better (sim-
pler, easier, more reliable) than using lots of explicit trys and catches; see §19.5.

Stroustrup_book.indb 1125Stroustrup_book.indb 1125 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1126

A throw without an argument (i.e., throw;) re-throws the current exception.
For example:

try {
 // . . .
} catch (Some_exception& e) {
 // do local cleanup
 throw; // let my caller do the rest
}

You can define your own types for use as exceptions. The standard library defines
a few exception types that you can also use; see §B.2.1. Never use a built-in type
as an exception (someone else might have done that and your exceptions might
be confused with those).

When an exception is thrown, the run-time support system for C++ searches
“up the call stack” for a catch-clause with a type that matches the type of the
object thrown; that is, it looks through try-statements in the function that threw,
then through the function that called the function that threw, then through the
function that called the function that called, etc., until it finds a match. If it doesn’t
find a match, the program terminates. In each function encountered in this search
of a matching catch-clause and in each scope on the way, destructors are called to
clean up. This process is called stack unwinding.

An object is considered constructed once its constructor has completed and
will then be destroyed during unwinding or any other exit from its scope. This
implies that partially constructed objects (with some members or bases con-
structed and some not), arrays, and variables in a scope are correctly handled.
Sub-objects are destroyed if and only if they have been constructed.

Do not throw an exception so that it leaves a destructor. This implies that a
destructor should not fail. For example:

X::~X() { if (in_a_real_mess()) throw Mess{}; } // never do this!

The primary reason for this Draconian advice is that if a destructor throws (and
doesn’t itself catch the exception) during unwinding, we wouldn’t know which
exception to handle. It is worthwhile to go to great lengths to avoid a destructor
exiting by a throw because we know of no systematic way of writing correct code
where that can happen. In particular, no standard library facility is guaranteed to
work if that happens.

Stroustrup_book.indb 1126Stroustrup_book.indb 1126 4/22/14 9:43 AM4/22/14 9:43 AM

A.15 NAMESPACES 1127

A.15 Namespaces
A namespace groups related declarations together and is used to prevent name
clashes:

int a;

namespace Foo {
 int a;
 void f(int i)
 {
 a+= i; // that’s Foo’s a (Foo::a)
 }
}

void f(int);

int main()
{
 a = 7; // that’s the global a (::a)
 f(2); // that’s the global f (::f)
 Foo::f(3); // that’s Foo’s f
 ::f(4); // that’s the global f (::f)
}

Names can be explicitly qualified by their namespace name (e.g., Foo::f(3)) or by
:: (e.g., ::f(2)), indicating the global scope.

All names from a namespace (here, the standard library namespace, std) can
be made accessible by a single namespace directive:

using namespace std;

Be restrained in the use of using directives. The notational convenience offered
by a using directive is achieved at the cost of potential name clashes. In particular,
avoid using directives in header files. A single name from a namespace can be
made available by a namespace declaration:

using Foo::g;
g(2); // that’s Foo’s g (Foo::g)

For more information about namespaces, see §8.7.

Stroustrup_book.indb 1127Stroustrup_book.indb 1127 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1128

A.16 Aliases
We can define an alias for a name; that is, we can define a symbolic name that
means exactly the same as what it refers to (for most uses of the name):

using Pint = int*; // Pint means pointer to int

namespace Long_library_name { /* . . . */ }
namespace Lib = Long_library_name; // Lib means Long_library_name

int x = 7;
int& r = x; // r means x

A reference (§8.5.5, §A.8.3) is a run-time mechanism, referring to objects. The
using (§20.5) and namespace aliases are compile-time mechanisms, referring to
names. In particular, a using does not introduce a new type, just a new name for
a type. For example:

using Pchar = char*; // Pchar is a name for char*
Pchar p = "Idefix"; // OK: p is a char*
char* q = p; // OK: p and q are both char*s
int x = strlen(p); // OK: p is a char*

Older code uses the keyword typedef (§27.3.1) rather than the (C++) using nota-
tion to define a type alias. For example:

typedef char* Pchar; // Pchar is a name for char*

A.17 Preprocessor directives
Every C++ implementation includes a preprocessor. In principle, the preprocessor
runs before the compiler proper and transforms the source code we wrote into
what the compiler sees. In reality, this action is integrated into the compiler and
uninteresting except when it causes problems. Every line starting with # is a pre-
processor directive.

A.17.1 #include
We have used the preprocessor extensively to include headers. For example:

#include "file.h"

Stroustrup_book.indb 1128Stroustrup_book.indb 1128 4/22/14 9:43 AM4/22/14 9:43 AM

A.17 PREPROCESSOR DIRECTIVES 1129

This is a directive that tells the preprocessor to include the contents of file.h at the
point of the source text where the directive occurs. For standard headers, we can
also use < . . . > instead of " . . . ". For example:

#include<vector>

That is the recommended notation for standard header inclusion.

A.17.2 #defi ne
The preprocessor implements a form of character manipulation called macro substi-
tution. For example, we can define a name for a character string:

#define FOO bar

Now, whenever FOO is seen, bar will be substituted:

int FOO = 7;
int FOOL = 9;

Given that, the compiler will see

int bar = 7;
int FOOL = 9;

Note that the preprocessor knows enough about C++ names not to replace the
FOO that’s part of FOOL.

You can also define macros that take parameters:

#define MAX(x,y) (((x)>(y))?(x) : (y))

And we can use it like this:

int xx = MAX(FOO+1,7);
int yy = MAX(++xx,9);

This will expand to

int xx = (((bar+1)>(7))?(bar+1) : (7));
int yy = (((++xx)>(9))?(++xx) : (9));

Note how the parentheses were necessary to get the right result for FOO+1.
Also note that xx was incremented twice in a very non-obvious way. Macros are

Stroustrup_book.indb 1129Stroustrup_book.indb 1129 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX A • LANGUAGE SUMMARY1130

immensely popular — primarily because C programmers have few alternatives
to using them. Common header files define thousands of macros. You have
been warned!

If you must use macros, the convention is to name them using ALL_CAPITAL_
LETTERS. No ordinary name should be in all capital letters. Don’t depend on oth-
ers to follow this sound advice. For example, we have found a macro called max
in an otherwise reputable header file.

See also §27.8.

Stroustrup_book.indb 1130Stroustrup_book.indb 1130 4/22/14 9:43 AM4/22/14 9:43 AM

1131

B

Standard Library Summary

“All complexities should,
if possible,

be buried out of sight.”

—David J. Wheeler

This appendix summarizes key C++ standard library facil-

ities. The summary is selective and geared to novices who

want to get an overview of the standard library facilities and

explore a bit beyond the sequence of topics in the book.

Stroustrup_book.indb 1131Stroustrup_book.indb 1131 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1132

B.1 Overview
This appendix is a reference. It is not intended to be read from beginning to
end like a chapter. It (more or less) systematically describes key elements of the
C++ standard library. It is not a complete reference, though; it is just a summary
with a few key examples. Often, you will need to look at the chapters for a more
complete explanation. Note also that this summary does not attempt to equal the
precision and terminology of the standard. For more information, see Stroustrup,
The C++ Programming Language. The complete definition is the ISO C++ standard,

 B.1 Overview
 B.1.1 Header fi les
 B.1.2 Namespace std
 B.1.3 Description style

 B.2 Error handling
 B.2.1 Exceptions

 B.3 Iterators
 B.3.1 Iterator model
 B.3.2 Iterator categories

 B.4 Containers
 B.4.1 Overview
 B.4.2 Member types
 B.4.3 Constructors, destructors,

and assignments
 B.4.4 Iterators
 B.4.5 Element access
 B.4.6 Stack and queue operations
 B.4.7 List operations
 B.4.8 Size and capacity
 B.4.9 Other operations
 B.4.10 Associative container operations

 B.5 Algorithms
 B.5.1 Nonmodifying sequence

algorithms
 B.5.2 Modifying sequence algorithms
 B.5.3 Utility algorithms
 B.5.4 Sorting and searching
 B.5.5 Set algorithms
 B.5.6 Heaps
 B.5.7 Permutations
 B.5.8 min and max

 B.6 STL utilities
 B.6.1 Inserters
 B.6.2 Function objects
 B.6.3 pair and tuple
 B.6.4 initializer_list
 B.6.5 Resource management pointers

 B.7 I/O streams
 B.7.1 I/O streams hierarchy
 B.7.2 Error handling
 B.7.3 Input operations
 B.7.4 Output operations
 B.7.5 Formatting
 B.7.6 Standard manipulators

 B.8 String manipulation
 B.8.1 Character classifi cation
 B.8.2 String
 B.8.3 Regular expression matching

 B.9 Numerics
 B.9.1 Numerical limits
 B.9.2 Standard mathematical functions
 B.9.3 Complex
 B.9.4 valarray
 B.9.5 Generalized numerical algorithms
 B.9.6 Random numbers

 B.10 Time

 B.11 C standard library functions
 B.11.1 Files
 B.11.2 The printf() family
 B.11.3 C-style strings
 B.11.4 Memory
 B.11.5 Date and time
 B.11.6 Etc.

 B.12 Other libraries

Stroustrup_book.indb 1132Stroustrup_book.indb 1132 4/22/14 9:43 AM4/22/14 9:43 AM

B.1 OVERVIEW 1133

but that document is not intended for or suitable for novices. Don’t forget to use
your online documentation.

What use is a selective (and therefore incomplete) summary? You can quickly
look for a known operation or quickly scan a section to see what common op-
erations are available. You may very well have to look elsewhere for a detailed
explanation, but that’s fine: now you have a clue as to what to look for. Also,
this summary contains cross-references to tutorial material in the chapters. This
appendix provides a compact overview of standard library facilities. Please do not
try to memorize the information here; that’s not what it is for. On the contrary,
this appendix is a tool that can save you from spurious memorization.

This is a place to look for useful facilities — instead of trying to invent them
yourself. Everything in the standard library (and especially everything featured
in this appendix) has been useful to large groups of people. A standard library fa-
cility is almost certainly better designed, better implemented, better documented,
and more portable than anything you could design and implement in a hurry. So
when you can, prefer a standard library facility over “home brew.” Doing so will
also make your code easier for others to understand.

If you are a sensible person, you’ll find the sheer mass of facilities intimidat-
ing. Don’t worry; ignore what you don’t need. If you are a “details person,” you’ll
find much missing. However, completeness is what the expert-level guides and
your online documentation offer. In either case, you’ll find much that will seem
mysterious, and possibly interesting. Explore some of it!

B.1.1 Header fi les
The interfaces to standard library facilities are defined in headers. Use this section
to gain an overview of what is available and to help guess where a facility might be
defined and described:

The STL (containers, iterators, and algorithms)

<algorithm> algorithms; sort(), find(), etc. (§B.5, §21.1)

<array> fixed-size array (§20.9)

<bitset> array of bool (§25.5.2)

<deque> double-ended queue

<functional> function objects (§B.6.2)

<iterator> iterators (§B.4.4)

<list> doubly-linked list (§B.4, §20.4)

<forward_list> singly-linked list

<map> (key,value) map and multimap (§B.4, §21.6.1–3)

Stroustrup_book.indb 1133Stroustrup_book.indb 1133 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1134

The STL (containers, iterators, and algorithms) (continued)

<memory> allocators for containers

<queue> queue and priority_queue

<set> set and multiset (§B.4, §21.6.5)

<stack> stack

<unordered_map> hash maps (§21.6.4)

<unordered_set> hash sets

<utility> operators and pair (§B.6.3)

<vector> vector (dynamically expandable) (§B.4, §20.8)

I/O streams

<iostream> I/O stream objects (§B.7)

<fstream> file streams (§B.7.1)

<sstream> string streams (§B.7.1)

<iosfwd> declare (but don’t define) I/O stream facilities

<ios> I/O stream base classes

<streambuf> stream buffers

<istream> input streams (§B.7)

<ostream> output streams (§B.7)

<iomanip> formatting and manipulators (§B.7.6)

String manipulation

<string> string (§B.8.2)

<regex> regular expressions (Chapter 23)

Numerics

<complex> complex numbers and arithmetic (§B.9.3)

<random> random number generation (§B.9.6)

Stroustrup_book.indb 1134Stroustrup_book.indb 1134 4/22/14 9:43 AM4/22/14 9:43 AM

B.1 OVERVIEW 1135

Numerics (continued)

<valarray> numeric arrays

<numeric> generalized numeric algorithms, e.g., accumulate() (§B.9.5)

<limits> numerical limits (§B.9.1)

Utility and language support

<exception> exception types (§B.2.1)

<stdexcept> exception hierarchy (§B.2.1)

<locale> culture-specific formatting

<typeinfo> standard type information (from typeid)

<new> allocation and deallocation functions

<memory> resource management pointers, e.g. unique_ptr (§B.6.5)

Concurrency support

<thread> threads (beyond the scope of this book)

<future> inter-thread communication (beyond the scope of this book)

<mutex> mutual exclusion facilities (beyond the scope of this book)

C standard libraries

<cstring> C-style string manipulation (§B.11.3)

<cstdio> C-style I/O (§B.11.2)

<ctime> clock(), time(), etc. (§B.11.5)

<cmath> standard floating-point math functions (§B.9.2)

<cstdlib> etc. functions: abort(), abs(), malloc(), qsort(), etc. (Chapter 27)

<cerrno> C-style error handling (§24.8)

<cassert> assert macro (§27.9)

<clocale> culture-specific formatting

<climits> C-style numerical limits (§B.9.1)

<cfloat> C-style floating-point limits (§B.9.1)

Stroustrup_book.indb 1135Stroustrup_book.indb 1135 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1136

C standard libraries (continued)

<cstddef> C language support; size_t, etc.

<cstdarg> macros for variable argument processing

<csetjmp> setjmp() and longjmp() (never use those)

<csignal> signal handling

<cwchar> wide characters

<cctype> character type classification (§B.8.1)

<cwctype> wide character type classification

For each of the C standard library headers, there is also a version without the
initial c in its name and with a trailing .h, such as <time.h> for <ctime>. The .h
versions define global names rather than names in namespace std.

Some — but not all — of the facilities defined in these headers are described in
the sections below and in the chapters. If you need more information, look at your
online documentation or an expert-level C++ book.

B.1.2 Namespace std
The standard library facilities are defined in namespace std, so to use them, you
need an explicit qualification, a using declaration, or a using directive:

std::string s; // explicit qualification

using std::vector; // using declaration
vector<int>v(7);

using namespace std; // using directive
map<string,double> m;

In this book, we have used the using directive for std. Be very frugal with using
directives; see §A.15.

B.1.3 Description style
A full description of even a simple standard library operation, such as a construc-
tor or an algorithm, can take pages. Consequently, we use an extremely abbrevi-
ated style of presentation. For example:

Stroustrup_book.indb 1136Stroustrup_book.indb 1136 4/22/14 9:43 AM4/22/14 9:43 AM

B.2 ERROR HANDLING 1137

Examples of notation

p=op(b,e,x) op does something to the range [b:e) and x, returning p.

foo(x) foo does something to x, but returns no result.

bar(b,e,x) Does x have something to do with [b:e)?

We try to be mnemonic in our choice of identifiers, so b,e will be iterators specify-
ing a range, p a pointer or an iterator, and x some value, all depending on context.
In this notation, only the commentary distinguishes no result from a Boolean re-
sult, so you can confuse those if you try hard enough. For an operation returning
bool, the explanation usually ends with a question mark.

Where an algorithm follows the usual pattern of returning the end of an in-
put sequence to indicate “failure,” “not found,” etc. (§B.3.1), we do not mention
that explicitly.

B.2 Error handling
The standard library consists of components developed over a period of over 40
years. Thus, their style and approaches to error handling are not consistent.

• C-style libraries consist of functions, many of which set errno to indicate
that an error happened; see §24.8.

• Many algorithms operating on a sequence of elements return an iterator
to the one-past-the-last element to indicate “not found” or “failure.”

• The I/O streams library relies on a state in each stream to refl ect errors
and may (if the user requests it) throw exceptions to indicate errors; see
§10.6, §B.7.2.

• Some standard library components, such as vector, string, and bitset,
throw exceptions to indicate errors.

The standard library is designed so that all facilities obey “the basic guarantee”
(see §19.5.3); that is, even if an exception is thrown, no resource (such as mem-
ory) is leaked and no invariant for a standard library class is broken.

Stroustrup_book.indb 1137Stroustrup_book.indb 1137 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1138

B.2.1 Exceptions
Some standard library facilities report errors by throwing exceptions:

Standard library exceptions

bitset throws invalid_argument, out_of_range, overflow_error

dynamic_cast throws bad_cast if it cannot perform a conversion

iostream throws ios_base::failure if exceptions are enabled

new throws bad_alloc if it cannot allocate memory

regex throws regex_error

string throws length_error, out_of_range

typeid throws bad_typeid if it cannot deliver a type_info

vector throws out_of_range

These exceptions may be encountered in any code that directly or indirectly uses
these facilities. Unless you know that no facility is used in a way that could throw
an exception, it is a good idea to always catch one of the root classes of the stan-
dard library exception hierarchy (such as exception) somewhere (e.g., in main()).

We strongly recommend that you do not throw built-in types, such as ints
and C-style strings. Instead, throw objects of types specifically defined to be used
as exceptions. A class derived from the standard library class exception can be
used for that:

class exception {
public:
 exception();
 exception(const exception&);
 exception& operator=(const exception&);
 virtual ~exception();
 virtual const char* what() const;
};

The what() function can be used to obtain a string that is supposed to indicate
something about the error that caused the exception.

This hierarchy of standard exception classes may help by providing a classi-
fication of exceptions:

Stroustrup_book.indb 1138Stroustrup_book.indb 1138 4/22/14 9:43 AM4/22/14 9:43 AM

B.3 ITERATORS 1139

exception

logic_error runtime_error

invalid_argument out_of_range overflow_error

length_error underflow_error

domain_error range_error

You can define an exception by deriving from a standard library exception like
this:

struct My_error : runtime_error {
 My_error(int x) : interesting_value{x} { }
 int interesting_value;
 const char* what() const override { return "My_error"; }
};

B.3 Iterators
Iterators are the glue that ties standard library algorithms to their data. Con-
versely, you can say that iterators are the mechanism used to minimize an algo-
rithm’s dependence on the data structures on which it operates (§20.3):

Iterators

sort, find, search, copy, …, my_very_own_algorithm, your_code, …

 vector, list, map, array, …, my_container, your_container,…

Stroustrup_book.indb 1139Stroustrup_book.indb 1139 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1140

B.3.1 Iterator model
An iterator is akin to a pointer in that it provides operations for indirect access
(e.g., * for dereferencing) and for moving to a new element (e.g., ++ for moving to
the next element). A sequence of elements is defined by a pair of iterators defining
a half-open range [begin:end):

begin:

. . .

end:

That is, begin points to the first element of the sequence and end points to one
beyond the last element of the sequence. Never read from or write to *end. Note
that the empty sequence has begin==end; that is, [p:p) is the empty sequence for
any iterator p.

To read a sequence, an algorithm usually takes a pair of iterators (b,e) and
iterates using ++ until the end is reached:

while (b!=e) { // use != rather than <
 // do something
 ++b; // go to next element
}

Algorithms that search for something in a sequence usually return the end of the
sequence to indicate “not found”; for example:

p = find(v.begin(),v.end(),x); // look for x in v
if (p!=v.end()) {
 // x found at p
}
else {
 // x not found in [v.begin():v.end())
}

See §20.3.
Algorithms that write to a sequence often are given only an iterator to its first

element. In that case, it is the programmer’s responsibility not to write beyond the
end of that sequence. For example:

template<class Iter> void f(Iter p, int n)
{
 while (n>0) *p++ = ––n;
}

Stroustrup_book.indb 1140Stroustrup_book.indb 1140 4/22/14 9:43 AM4/22/14 9:43 AM

B.3 ITERATORS 1141

vector<int> v(10);
f(v.begin(),v.size()); // OK
f(v.begin(),1000); // big trouble

Some standard library implementations range check — that is, throw an excep-
tion — for that last call of f(), but you can’t rely on that for portable code; many
implementations don’t check.

The operations on iterators are:

Iterator operations

++p Pre-increment: make p refer to the next element in the sequence or to
one beyond the last element (“advance one element”); the resulting
value is p+1.

p++ Post-increment: make p refer to the next element in the sequence or
to one beyond the last element (“advance one element”); the resulting
value is p (before the increment).

––p Pre-decrement: make p point to the previous element (“go back one
element”); the resulting value is p–1.

p–– Post-decrement: make p point to the previous element (“go back one
element”); the resulting value is p (before the decrement).

*p Access (dereference): *p refers to the element pointed to by p.

p[n] Access (subscripting): p[n] refers to the element pointed to by p+n;
equivalent to *(p+n).

p–>m Access (member access); equivalent to (*p).m.

p==q Equality: true if p and q point to the same element or both point to
one beyond the last element.

p!=q Inequality: !(p==q).

p<q Does p point to an element before what q points to?

p<=q p<q || p==q.

p>q Does p point to an element after what q points to?

p>=q p>q || p==q.

p+=n Advance n: make p point to the nth element after the one it points to.

p–=n Advance –n: make p point to the nth element before the one it
points to.

q=p+n q points to the nth element after the one pointed to by p.

Stroustrup_book.indb 1141Stroustrup_book.indb 1141 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1142

Iterator operations (continued)

q=p–n q points to the nth element before the one pointed to by p;
afterward, we have q+n==p.

advance(p,n) Like p+=n, but advance() can be used even if p is not a
random-access iterator; it may take n steps (through a list).

x=distance(p,q) Like q–p, but distance() can be used even if p is not a
random-access iterator; it may take n steps (through a list).

Note that not every kind of iterator (§B.3.2) supports every iterator operation.

B.3.2 Iterator categories
The standard library provides five kinds of iterators (five “iterator categories”):

Iterator categories

input iterator We can iterate forward using ++ and read each element once only
using *. We can compare iterators using == and !=. This is the kind
of iterator that istream offers; see §21.7.2.

output iterator We can iterate forward using ++ and write each element once only
using *. This is the kind of iterator that ostream offers; see §21.7.2.

forward iterator We can iterate forward repeatedly using ++ and read and write
(unless the elements are const) elements using *. If it points to a
class object, it can use –> to access a member.

bidirectional
iterator

We can iterate forward (using ++) and backward (using ––) and read
and write (unless the elements are const) elements using *. This is
the kind of iterator that list, map, and set offer.

random-access
iterator

We can iterate forward (using ++ or +=) and backward (using
–– or –=) and read and write (unless the elements are const)
elements using * or []. We can subscript, add an integer to a
random-access iterator using +, and subtract an integer using – . We
can find the distance between two random-access iterators to the
same sequence by subtracting one from the other. We can compare
iterators using <, <=, >, and >=. This is the kind of iterator that
vector offers.

Stroustrup_book.indb 1142Stroustrup_book.indb 1142 4/22/14 9:43 AM4/22/14 9:43 AM

B.3 ITERATORS 1143

Logically, these iterators are organized in a hierarchy (§20.8):

random-access iterator

bidirectional iterator

forward iterator

input iterator output iterator

Note that since the iterator categories are not classes, this hierarchy is not a class
hierarchy implemented using derivation. If you need to do something advanced
with iterator categories, look for iterator_traits in an advanced reference.

Each container supplies iterators of a specified category:

• vector — random access
• list — bidirectional
• forward_list — forward
• deque — random access
• bitset — none
• set — bidirectional
• multiset — bidirectional
• map — bidirectional
• multimap — bidirectional
• unordered_set — forward
• unordered_multiset — forward
• unordered_map — forward
• unordered_multimap — forward

Stroustrup_book.indb 1143Stroustrup_book.indb 1143 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1144

B.4 Containers
A container holds a sequence of objects. The elements of the sequence are of the
member type called value_type. The most commonly useful containers are:

Sequence containers

array<T,N> fixed-size array of N elements of type T

deque<T> double-ended queue

list<T> doubly-linked list

forward_list<T> singly-linked list

vector<T> dynamic array of elements of type T

Associative containers

map<K,V> map from K to V; a sequence of (K,V) pairs

multimap<K,V> map from K to V; duplicate keys allowed

set<K> set of K

multiset<K> set of K (duplicate keys allowed)

unordered_map<K,V> map from K to V using a hash function

unordered_multimap<K,V> map from K to V using a hash function; duplicate
keys allowed

unordered_set<K> set of K using a hash function

unordered_multiset<K> set of K using a hash function; duplicate keys allowed

The ordered associative containers (map, set, etc.) have an optional addi-
tional template argument specifying the type used for the comparator; for exam-
ple, set<K,C> uses a C to compare K values.

Container adaptors

priority_queue<T> priority queue

queue<T> queue with push() and pop()

stack<T> stack with push() and pop()

Stroustrup_book.indb 1144Stroustrup_book.indb 1144 4/22/14 9:43 AM4/22/14 9:43 AM

B.4 CONTAINERS 1145

These containers are defined in <vector>, <list>, etc. (see §B.1.1). The se-
quence containers are contiguously allocated or linked lists of elements of their
value_type (T in the notation used above). The associative containers are linked
structures (trees) with nodes of their value_type (pair(K,V) in the notation used
above). The sequence of a set, map, or multimap is ordered by its key val-
ues (K). The sequence of an unordered_* does not have a guaranteed order.
A multimap differs from a map in that a key value may occur many times.
Container adaptors are containers with specialized operations constructed from
other containers.

If in doubt, use vector. Unless you have a solid reason not to, use vector.
A container uses an “allocator” to allocate and deallocate memory (§19.3.7).

We do not cover allocators here; if necessary, see an expert-level reference. By
default, an allocator uses new and delete when it needs to acquire or release
memory for its elements.

Where meaningful, an access operation exists in two versions: one for const
and one for non-const objects (§18.5).

This section lists the common and almost common members of the standard
containers. For more details, see Chapter 20. Members that are peculiar to a spe-
cific container, such as list’s splice(), are not listed; see an expert-level reference.

Some data types provide much of what is required from a standard container,
but not all. We sometimes refer to those as “almost containers.” The most inter-
esting of those are:

“Almost containers”

T[n]
built-in array

No size() or other member functions; prefer a container, such as
vector, string, or array, over array when you have a choice.

string Holds only characters but provides operations useful for text
manipulation, such as concatenation (+ and +=); prefer the standard
string to other strings.

valarray A numerical vector with vector operations, but with many
restrictions to encourage high-performance implementations; use
only if you do a lot of vector arithmetic.

Stroustrup_book.indb 1145Stroustrup_book.indb 1145 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1146

B.4.1 Overview
The operations provided by the standard containers can be summarized like this:

Container:
constructor, Copy constructor,
default constructor, begin(), end(),
rbegin(), rend(), ==, !=, <, <=, >, >=,
=, swap(), size(), max_size(), empty(),
insert(), erase(), clear()

Sequential container:
assign(), front(), back(),
push_back(), pop_back(),
resize()

list:
push_front(),
pop_front(),
splice(),
remove(),
remove_if(),
unique(),
merge(),
sort(),
reverse()

vector:
operator[],
at(),
capacity(),
reserve()

deque:
operator[],
at(),
push_front(),
pop_front()

Associative containers:
key_comp(),
value_comp(), find(),
count(), lower_bound(),
equal_range()

set,
multiset,
and
multimap

map:
operator[]

Stroustrup_book.indb 1146Stroustrup_book.indb 1146 4/22/14 9:43 AM4/22/14 9:43 AM

B.4 CONTAINERS 1147

We left out array and forward_list because they are imperfect fits to the standard
library ideal of interchangeability:

• array is not a handle, cannot have its number of elements changed after
initialization, and must be initialized by an initializer list, rather than by a
constructor.

• forward_list doesn’t support back operations. In particular, it has no
size(). It is best seen as a container optimized for empty and near-empty
sequences.

B.4.2 Member types
A container defines a set of member types:

Member types

value_type type of element

size_type type of subscripts, element counts, etc.

difference_type type of difference between iterators

iterator behaves like value_type*

const_iterator behaves like const value_type*

reverse_iterator behaves like value_type*

const_reverse_iterator behaves like const value_type*

reference value_type&

const_reference const value_type&

pointer behaves like value_type*

const_pointer behaves like const value_type*

key_type type of key (associative containers only)

mapped_type type of mapped value (associative containers only)

key_compare type of comparison criterion (associative containers only)

allocator_type type of memory manager

Stroustrup_book.indb 1147Stroustrup_book.indb 1147 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1148

B.4.3 Constructors, destructors, and assignments
Containers provide a variety of constructors and assignment operations. For a
container called C (e.g., vector<double> or map<string,int>) we have:

Constructors, destructors, and assignment

C c; c is an empty container.

C{} Make an empty container.

C c(n); c initialized with n elements with default element value (not for
associative containers).

C c(n,x); c initialized with n copies of x (not for associative containers).

C c {b,e}; c initialized with elements from [b:e).

C c {elems}; c initialized with elements from the initializer_list holding elems.

C c {c2}; c is a copy of c2.

~C() Destroy a C and all of its elements (usually invoked implicitly).

c1=c2 Copy assignment; copy all elements from c2 to c1; after the
assignment c1==c2.

c.assign(n,x) Assign n copies of x (not for associative containers).

c.assign(b,e) Assign from [b:e).

Note that for some containers and some element types, a constructor or an ele-
ment copy may throw an exception.

B.4.4 Iterators
A container can be viewed as a sequence either in the order defined by the con-
tainer’s iterator or in reverse order. For an associative container, the order is based
on the container’s comparison criterion (by default <):

Iterators

p=c.begin() p points to the first element of c.

p=c.end() p points to one past the last element of c.

p=c.rbegin() p points to the first element of the reverse sequence of c.

p=c.rend() p points to one past the last element of the reverse sequence of c.

Stroustrup_book.indb 1148Stroustrup_book.indb 1148 4/22/14 9:43 AM4/22/14 9:43 AM

B.4 CONTAINERS 1149

B.4.5 Element access
Some elements can be accessed directly:

Element access

c.front() reference to the first element of c

c.back() reference to the last element of c

c[i] reference to element i of c; unchecked access (not for list)

c.at(i) reference to element i of c; checked access (vector and deque only)

Some implementations — especially debug versions — always do range checking,
but you cannot portably rely on that for correctness or on the absence of checking
for performance. Where such issues are important, examine your implementations.

B.4.6 Stack and queue operations
The standard vector and deque provide efficient operations at the end (back) of
their sequence of elements. In addition, list and deque provide the equivalent
operations on the start (front) of their sequences:

Stack and queue operations

c.push_back(x) Add x to the end of c.

c.pop_back() Remove the last element from c.

c.amplace_back(args) Add T{args} to the end of c; T is the value type of c.

c.push_front(x) Add x to c before the first element (list and deque only).

c.pop_front() Remove the first element from c (list and deque only).

c.emplace_front(args) Add T{args} to c before the first element; T is the value type
of c.

Note that push_front() and push_back() copy an element into a container. This
implies that the size of the container increases (by one). If the copy constructor of
the element type can throw an exception, a push can fail.

The push_front() and push_back() operations copy their argument object
into the container. For example:

vector<pair<string,int>> v;
v.push_back(make_pair("Cambridge",1209));

Stroustrup_book.indb 1149Stroustrup_book.indb 1149 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1150

If first creating the object and then copying it seems awkward or potentially in-
efficient, we can construct the object directly in a newly allocated element slot of
the sequence:

v.emplace_back("Cambridge",1209);

Emplace means “put in place” or “put in position.”
Note that pop operations do not return a value. Had they done so, a copy

constructor throwing an exception could have seriously complicated the imple-
mentation. Use front() and back() (§B.4.5) to access stack and queue elements.
We have not recorded the complete set of requirements here; feel free to guess
(your compiler will usually tell you if you guessed wrong) and to consult more
detailed documentation.

B.4.7 List operations
Containers provide list operations:

List operations

q=c.insert(p,x) Add x before p.

q=c.insert(p,n,x) Add n copies of x before p.

q=c.insert(p,first,last) Add elements from [first:last) before p.

q=c.emplace(p,args) Add T{args} before p; T is the value type of c.

q=c.erase(p) Remove element at p from c.

q=c.erase(first,last) Erase [first:last) of c.

c.clear() Erase all elements of c.

For insert() functions, the result, q, points to the last element inserted. For erase()
functions, q points to the element that followed the last element erased.

B.4.8 Size and capacity
The size is the number of elements in the container; the capacity is the number of
elements that a container can hold before allocating more memory:

Size and capacity

x=c.size() x is the number of elements of c.

c.empty() Is c empty?

Stroustrup_book.indb 1150Stroustrup_book.indb 1150 4/22/14 9:43 AM4/22/14 9:43 AM

B.4 CONTAINERS 1151

Size and capacity (continued)

x=c.max_size() x is the largest possible number of elements of c.

x=c.capacity() x is the space allocated for c (vector and string only).

c.reserve(n) Reserve space for n elements for c (vector and string only).

c.resize(n) Change the size of c to n (vector, string, list, and deque only).

When changing the size or the capacity, the elements may be moved to new stor-
age locations. That implies that iterators (and pointers and references) to elements
may become invalid (e.g., point to the old element locations).

B.4.9 Other operations
Containers can be copied (see §B.4.3), compared, and swapped:

Comparisons and swap

c1==c2 Do all corresponding elements of c1 and c2 compare equal?

c1!=c2 Do any corresponding elements of c1 and c2 compare not equal?

c1<c2 Is c1 lexicographically before c2?

c1<=c2 Is c1 lexicographically before or equal to c2?

c1>c2 Is c1 lexicographically after c2?

c1>=c2 Is c1 lexicographically after or equal to c2?

swap(c1,c2) Swap elements of c1 and c2.

c1.swap(c2) Swap elements of c1 and c2.

When comparing containers with an operator (e.g., <), their elements are com-
pared using the equivalent element operator (i.e., <).

B.4.10 Associative container operations
Associative containers provide lookup based on keys:

Associative container operations

c[k] Refers to the element with key k (containers with unique keys).

p=c.find(k) p points to the first element with key k.

p=c.lower_bound(k) p points to the first element with key k.

Stroustrup_book.indb 1151Stroustrup_book.indb 1151 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1152

Associative container operations (continued)

p=c.upper_bound(k) p points to the first element with key greater than k.

pair(p1,p2)=c.equal_range(k) [p1:2) are the elements with key k.

r=c.key_comp() r is a copy of the key-comparison object.

r=c.value_comp() r is a copy of the mapped_value-comparison object.
If a key is not found, c.end() is returned.

The first iterator of the pair returned by equal_range is lower_bound and the
second is upper_bound. You can print the value of all elements with the key
"Marian" in a multimap<string,int> like this:

string k = "Marian";
auto pp = m.equal_range(k);
if (pp.first!=pp.second)
 cout << "elements with value '" << k << "':\n";
else
 cout << "no element with value '" << k << "'\n";
for (auto p = pp.first; p!=pp.second; ++p)
 cout << p–>second << '\n';

We could equivalently have used

auto pp = make_pair(m.lower_bound(k),m.upper_bound(k));

However, that would take about twice as long to execute. The equal_range,
lower_bound, and upper_bound algorithms are also provided for sorted se-
quences (§B.5.4). The definition of pair is in §B.6.3.

B.5 Algorithms
There are about 60 standard algorithms defined in <algorithm>. They all op-
erate on sequences defined by a pair of iterators (for inputs) or a single iterator
(for outputs).

When copying, comparing, etc. two sequences, the first is represented by a
pair of iterators [b:e) but the second by just a single iterator, b2, which is con-
sidered the start of a sequence holding sufficient elements for the algorithm, for
example, as many elements as the first sequence: [b2:b2+(e–b)).

Some algorithms, such as sort, require random-access iterators, whereas
many, such as find, only read their elements in order so that they can make do
with a forward iterator.

Stroustrup_book.indb 1152Stroustrup_book.indb 1152 4/22/14 9:43 AM4/22/14 9:43 AM

B.5 ALGORITHMS 1153

Many algorithms follow the usual convention of returning the end of a se-
quence to represent “not found.” We don’t mention that for each algorithm.

B.5.1 Nonmodifying sequence algorithms
A nonmodifying algorithm just reads the elements of a sequence; it does not rear-
range the sequence and does not change the value of the elements:

Nonmodifying sequence algorithms

f=for_each(b,e,f) Do f for each element in [b:e); return f.

p=find(b,e,v) p points to the first occurrence of v in [b:e).

p=find_if(b,e,f) p points to the first element in [b:e) so that f(*p).

p=find_first_of(b,e,b2,e2) p points to the first element in [b:e) so that
*p==*q for some q in [b2:e2).

p=find_first_of(b,e,b2,e2,f) p points to the first element in [b:e) so that
f(*p,*q) for some q in [b2:e2).

p=adjacent_find(b,e) p points to the first p in [b:e) such that
p==(p+1).

p=adjacent_find(b,e,f) p points to the first p in [b:e) such that
f(*p,*(p+1)).

equal(b,e,b2) Do all elements of [b:e) and [b2:b2+(e–b))
compare equal?

equal(b,e,b2,f) Do all elements of [b:e) and [b2:b2+(e–b))
compare equal using f(*p,*q) as the test?

pair(p1,p2)=mismatch(b,e,b2) (p1,p2) points to the first pair of elements in [b:e)
and [b2:b2+(e–b)) for which !(*p1==*p2).

pair(p1,p2)=mismatch(b,e,b2,f) (p1,p2) points to the first pair of elements in [b:e)
and [b2:b2+(e–b)) for which !f(*p1,*p2).

p=search(b,e,b2,e2) p points to the first *p in [b:e) such that *p equals
an element in [b2:e2).

p=search(b.e,b2,e2,f) p points to the first *p in [b:e) such that f(*p,*q)
for an element *q in [b2:e2).

p=find_end(b,e,b2,e2) p points to the last *p in [b:e) such that *p equals
an element in [b2:e2).

p=find_end(b,e,b2,e2,f) p points to the last *p in [b:e) such that f(*p,*q)
for an element *q in [b2:e2).

Stroustrup_book.indb 1153Stroustrup_book.indb 1153 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1154

Nonmodifying sequence algorithms (continued)

p=search_n(b,e,n,v) p points to the first element of [b:e) such that
each element in [p:p+n) has the value v.

p=search_n(b,e,n,v,f) p points to the first element of [b:e) such that for
each element *q in [p:p+n) we have f(*q,v).

x=count(b,e,v) x is the number of occurrences of v in [b:e).

x=count_if(b,e,v,f) x is the number of elements in [b:e) so that
f(*p,v).

Note that nothing stops the operation passed to for_each from modifying ele-
ments; that’s considered acceptable. Passing an operation that changes the ele-
ments it examines to some other algorithm (e.g., count or ==) is not acceptable.

An example (of proper use):

bool odd(int x) { return x&1; }

int n_even(const vector<int>& v) // count the number of even values in v
{
 return v.size()–count_if(v.begin(),v.end(),odd);
}

B.5.2 Modifying sequence algorithms
The modifying algorithms (also called mutating sequence algorithms) can (and often
do) modify the elements of their argument sequences.

Modifying sequence algorithms

p=transform(b,e,out,f) Apply *p2=f(*p1) to every *p1 in [b:e), writing
to the corresponding *p2 in [out:out+(e–b));
p=out+(e–b).

p=transform(b,e,b2,out,f) Apply *p3=f(*p1,*p2) to every element in *p1
in [b:e) and the corresponding element *p2 in
[b2:b2+(e–b)), writing to *p3 in [out:out+(e–b));
p=out+(e–b).

p=copy(b,e,out) Copy [b:e) to [out:p).

p=copy_backward(b,e,out) Copy [b:e) to [out:p) starting with its last element.

Stroustrup_book.indb 1154Stroustrup_book.indb 1154 4/22/14 9:43 AM4/22/14 9:43 AM

B.5 ALGORITHMS 1155

Modifying sequence algorithms (continued)

p=unique(b,e) Move elements in [b:e) so that [b:p) has adjacent
duplicates removed (== defines “duplicate”).

p=unique(b,e,f) Move elements in [b:e) so that [b:p) has adjacent
duplicates removed (f defines “duplicate”).

p=unique_copy(b,e,out) Copy [b:e) to [out:p); don’t copy adjacent
duplicates.

p=unique_copy(b,e,out,f) Copy [b:e) to [out:p); don’t copy adjacent
duplicates (f defines “duplicate”).

replace(b,e,v,v2) Replace elements *q in [b:e) for which *q==v
with v2.

replace(b,e,f,v2) Replace elements *q in [b:e) for which f(*q)
with v2.

p=replace_copy(b,e,out,v,v2) Copy [b:e) to [out:p), replacing elements *q in [b:e)
for which *q==v with v2.

p=replace_copy(b,e,out,f,v2) Copy [b:e) to [out:p), replacing elements *q in [b:e)
for which f(*q) with v2.

p=remove(b,e,v) Move elements *q in [b:e) so that [b:p) becomes the
elements for which !(*q==v).

p=remove(b,e,v,f) Move elements *q in [b:e) so that [b:p) becomes the
elements for which !f(*q).

p=remove_copy(b,e,out,v) Copy elements from [b:e) for which !(*q==v)
to [out:p).

p=remove_copy_if(b,e,out,f) Copy elements from [b:e) for which !f(*q,v)
to [out:p).

reverse(b,e) Reverse the order of elements in [b:e).

p=reverse_copy(b,e,out) Copy [b:e) into [out:p) in reverse order.

rotate(b,m,e) Rotate elements: treat [b:e) as a circle with the first
element right after the last. Move *b to *m and in
general move *(b+i) to *((b+(i+(e–m))%(e–b)).

p=rotate_copy(b,m,e,out) Copy [b:e) into a rotated sequence [out:p).

random_shuffle(b,e) Shuffle elements of [b:e) into a distribution using the
default uniform random number generator.

random_shuffle(b,e,f) Shuffle elements of [b:e) into a distribution using f
as a random number generator.

Stroustrup_book.indb 1155Stroustrup_book.indb 1155 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1156

A shuffle algorithm shuffles its sequence much in the way we would shuffle a pack
of cards; that is, after a shuffle, the elements are in a random order, where “ran-
dom” is defined by the distribution produced by the random number generator.

Please note that these algorithms do not know if their argument sequence is
a container, so they do not have the ability to add or remove elements. Thus, an
algorithm such as remove cannot shorten its input sequence by deleting (erasing)
elements; instead, it (re)moves the elements it keeps to the front of the sequence:

template<typename Iter>
void print_digits(const string& s, Iter b, Iter e)
{
 cout << s;
 while (b!=e) { cout << *b; ++b; }
 cout << '\n';
}

void ff()
{
 vector<int> v {1,1,1, 2,2, 3, 4,4,4, 3,3,3, 5,5,5,5, 1,1,1};
 print_digits("all: ",v.begin(), v.end());

 auto pp = unique(v.begin(),v.end());
 print_digits("head: ",v.begin(),pp);
 print_digits("tail: ",pp,v.end());

 pp=remove(v.begin(),pp,4);
 print_digits("head: ",v.begin(),pp);
 print_digits("tail: ",pp,v.end());
}

The resulting output is

all: 1112234443335555111
head: 1234351
tail: 443335555111
head: 123351
tail: 1443335555111

B.5.3 Utility algorithms
Technically, these utility algorithms are also modifying sequence algorithms, but
we thought it a good idea to list them separately, lest they get overlooked.

Stroustrup_book.indb 1156Stroustrup_book.indb 1156 4/22/14 9:43 AM4/22/14 9:43 AM

B.5 ALGORITHMS 1157

Utility algorithms

swap(x,y) Swap x and y.

iter_swap(p,q) Swap *p and *q.

swap_ranges(b,e,b2) Swap the elements of [b:e) and [b2:b2+(e–b)).

fill(b,e,v) Assign v to every element of [b:e).

fill_n(b,n,v) Assign v to every element of [b:b+n).

generate(b,e,f) Assign f() to every element of [b:e).

generate_n(b,n,f) Assign f() to every element of [b:b+n).

uninitialized_fill(b,e,v) Initialize all elements in [b:e) with v.

uninitialized_copy(b,e,out) Initialize all elements of [out:out+(e–b)) with the
corresponding element from [b:e).

Note that uninitialized sequences should occur only at the lowest level of program-
ming, usually inside the implementation of containers. Elements that are targets
of uninitialized_fill or uninitialized_copy must be of built-in type or uninitialized.

B.5.4 Sorting and searching
Sorting and searching are fundamental and the needs of programmers are quite
varied. Comparison is by default done using the < operator, and equivalence of
a pair of values a and b is determined by !(a<b)&&!(b<a) rather than requiring
operator ==.

Sorting and searching

sort(b,e) Sort [b:e).

sort(b,e,f) Sort [b:e) using f(*p,*q) as the sorting criterion.

stable_sort(b,e) Sort [b:e), maintaining the order of equivalent
elements.

stable_sort(b,e,f) Sort [b:e) using f(*p,*q) as the sorting criterion,
maintaining the order of equivalent elements.

partial_sort(b,m,e) Sort [b:e) to get [b:m) into order; [m:e) need not
be sorted.

partial_sort(b,m,e,f) Sort [b:e) using f(*p,*q) as the sorting criterion to get
[b:m) into order; [m:e) need not be sorted.

Stroustrup_book.indb 1157Stroustrup_book.indb 1157 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1158

Sorting and searching (continued)

partial_sort_copy(b,e,b2,e2) Sort enough of [b:e) to copy the e2–b2 first elements
to [b2:e2).

partial_sort_
copy(b,e,b2,e2,f)

Sort enough of [b:e) to copy the e2–b2 first elements
to [b2:e2); use f as the comparison.

nth_element(b,e) Put the nth element of [b:e) in its proper place.

nth_element(b,e,f) Put the nth element of [b:e) in its proper place using
f for comparison.

p=lower_bound(b,e,v) p points to the first occurrence of v in [b:e).

p=lower_bound(b,e,v,f) p points to the first occurrence of v in [b:e) using f
for comparison.

p=upper_bound(b,e,v) p points to the first value larger than v in [b:e).

p=upper_bound(b,e,v,f) p points to the first value larger than v in [b:e) using f
for comparison.

binary_search(b,e,v) Is v in the sorted sequence [b:e)?

binary_search(b,e,v,f) Is v in the sorted sequence [b:e) using f for
comparison?

pair(p1,p2)=equal_
range(b,e,v)

[p1,p2) is the subsequence of [b:e) with the value v;
basically, a binary search for v.

pair(p1,p2)=equal_
range(b,e,v,f)

[p1,p2) is the subsequence of [b:e) with the value
v using f for comparison; basically, a binary search
for v.

p=merge(b,e,b2,e2,out) Merge two sorted sequences [b2:e2) and [b:e) into
[out:p).

p=merge(b,e,b2,e2,out,f) Merge two sorted sequences [b2:e2) and [b:e) into
[out,out+p) using f as the comparison.

inplace_merge(b,m,e) Merge two sorted subsequences [b:m) and [m:e) into
a sorted sequence [b:e).

inplace_merge(b,m,e,f) Merge two sorted subsequences [b:m) and [m:e) into
a sorted sequence [b:e) using f as the comparison.

p=partition(b,e,f) Place elements for which f(*p1) in [b:p) and other
elements in [p:e).

p=stable_partition(b,e,f) Place elements for which f(*p1) in [b:p) and other
elements in [p:e), preserving relative order.

Stroustrup_book.indb 1158Stroustrup_book.indb 1158 4/22/14 9:43 AM4/22/14 9:43 AM

B.5 ALGORITHMS 1159

For example:

vector<int> v {3,1,4,2};
list<double> lst {0.5,1.5,3,2.5}; // lst is in order
sort(v.begin(),v.end()); // put v in order
vector<double> v2;
merge(v.begin(),v.end(),lst.begin(),lst.end(),back_inserter(v2));
for (auto x : v2) cout << x << ", ";

For inserters, see §B.6.1. The output is

0.5, 1, 1.5, 2, 2, 2.5, 3, 4,

The equal_range, lower_bound, and upper_bound algorithms are used just
like their equivalents for associative containers; see §B.4.10.

B.5.5 Set algorithms
These algorithms treat a sequence as a set of elements and provide the basic set
operations. The input sequences are supposed to be sorted and the output se-
quences are also sorted:

Set algorithms

includes(b,e,b2,e2) Are all elements of [b2:e2) also in [b:e)?

includes(b,e,b2,e2,f) Are all elements of [b2:e2) also in [b:e) using
f for comparison?

p=set_union(b,e,b2,e2,out) Construct a sorted sequence [out:p) of
elements that are in either [b:e) or [b2:e2).

p=set_union(b,e,b2,e2,out,f) Construct a sorted sequence [out:p) of
elements that are in either [b:e) or [b2:e2)
using f for comparison.

p=set_intersection(b,e,b2,e2,out) Construct a sorted sequence [out:p) of
elements that are in both [b:e) and [b2:e2).

p=set_intersection(b,e,b2,e2,out,f) Construct a sorted sequence [out:p) of
elements that are in both [b:e) and [b2:e2)
using f for comparison.

p=set_difference(b,e,b2,e2,out) Construct a sorted sequence [out:p) of
elements that are in [b:e) but not in [b2:e2).

Stroustrup_book.indb 1159Stroustrup_book.indb 1159 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1160

Set algorithms (continued)

p=set_difference(b,e,b2,e2,out,f) Construct a sorted sequence [out:p)
of elements that are in [b:e) but not
in [b2:e2) using f for comparison.

p=set_symmetric_difference(b,e,b2,e2,out) Construct a sorted sequence [out:p)
of elements that are in [b:e) or
[b2:e2) but not in both.

p=set_symmetric_difference(b,e,b2,e2,out,f) Construct a sorted sequence [out:p)
of elements that are in [b:e) or
[b2:e2) but not in both using f for
comparison.

B.5.6 Heaps
A heap is a data structure that keeps the element with highest value first. The heap
algorithms allow a programmer to treat a random-access sequence as a heap:

Heap operations

make_heap(b,e) Make the sequence ready to be used as a heap.

make_heap(b,e,f) Make the sequence ready to be used as a heap, using f
for comparison.

push_heap(b,e) Add an element to the heap (in its proper place).

push_heap(b,e,f) Add an element to the heap, using f for comparison.

pop_heap(b,e) Remove the largest (first) element from the heap.

pop_heap(b,e,f) Remove an element from the heap, using f for comparison.

sort_heap(b,e) Sort the heap.

sort_heap(b,e,f) Sort the heap, using f for comparison.

The point of a heap is to provide fast addition of elements and fast access to the
element with the highest value. The main use of heaps is to implement priority
queues.

B.5.7 Permutations
Permutations are used to generate combinations of elements of a sequence. For
example, the permutations of abc are abc, acb, bac, bca, cab, and cba.

Stroustrup_book.indb 1160Stroustrup_book.indb 1160 4/22/14 9:43 AM4/22/14 9:43 AM

B.5 ALGORITHMS 1161

Permutations

x=next_permutation(b,e) Make [b:e) the next permutation in lexicographical
order.

x=next_permutation(b,e,f) Make [b:e) the next permutation in lexicographical
order, using f for comparison.

x=prev_permutation(b,e) Make [b:e) the previous permutation in
lexicographical order.

x=prev_permutation(b,e,f) Make [b:e) the previous permutation in
lexicographical order, using f for comparison.

The return value (x) for next_permutation is false if [b:e) already contains the
last permutation (cba in the example); in that case, it returns the first permutation
(abc in the example). The return value for prev_permutation is false if [b:e) al-
ready contains the first permutation (abc in the example); in that case, it returns
the last permutation (cba in the example).

B.5.8 min and max
Value comparisons are useful in many contexts:

min and max

x=max(a,b) x is the larger of a and b.

x=max(a,b,f) x is the larger of a and b using f for comparison.

x=max({elems}) x is the largest element in {elems}.

x=max({elems},f) x is the largest element in {elems} using f for
comparison.

x=min(a,b) x is the smaller of a and b.

x=min(a,b,f) x is the smaller of a and b using f for comparison.

x=min({elems}) x is the smallest element in {elems}.

x=min({elems},f) x is the smallest element in {elems} using f for
comparison.

pair(x,y)=minmax(a,b) x is max(a,b) and y is min(a,b).

pair(x,y)=minmax(a,b,f) x is max(a,b,f) and y is min(a,b,f).

pair(x,y)=minmax({elems}) x is max({elems}) and y is min({elems}).

pair(x,y)=minmax({elems},f) x is max({elems},f) and y is min({elems},f).

Stroustrup_book.indb 1161Stroustrup_book.indb 1161 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1162

min and max (continued)

p= max_element(b,e) p points to the largest element of [b:e).

p=max_element(b,e,f) p points to the largest element of [b:e) using
f for the element comparison.

p=min_element(b,e) p points to the smallest element of [b:e).

p=min_element(b,e,f) p points to the smallest element of [b:e)
using f for the element comparison.

lexicographical_compare(b,e,b2,e2) Is [b:e)<[b2:e2)?

lexicographical_compare(b,e,b2,e2,f) Is [b:e)<[b2:e2), using f for the element
comparison?

B.6 STL utilities
The standard library provides a few facilities for making it easier to use standard
library algorithms.

B.6.1 Inserters
Producing output through an iterator into a container implies that elements
pointed to by the iterator and following it can be overwritten. This also implies
the possibility of overflow and consequent memory corruption. For example:

void f(vector<int>& vi)
{
 fill_n(vi.begin(), 200,7); // assign 7 to vi[0]..[199]
}

If vi has fewer than 200 elements, we are in trouble.
In <iterator>, the standard library provides three iterators to deal with this

problem by adding (inserting) elements to a container rather than overwriting old
elements. Three functions are provided for generating those inserting iterators:

Inserters

r=back_inserter(c) *r=x causes a c.push_back(x).

r=front_inserter(c) *r=x causes a c.push_front(x).

r=inserter(c,p) *r=x causes a c.insert(p,x).

Stroustrup_book.indb 1162Stroustrup_book.indb 1162 4/22/14 9:43 AM4/22/14 9:43 AM

B.6 STL UTILITIES 1163

For inserter(c,p), p must be a valid iterator for the container c. Naturally, a con-
tainer grows by one element each time a value is written to it through an insert
iterator. When written to, an inserter inserts a new element into a sequence using
push_back(x), c.push_front(), or insert() rather than overwriting an existing ele-
ment. For example:

void g(vector<int>& vi)
{
 fill_n(back_inserter(vi), 200,7); // add 200 7s to the end of vi
}

B.6.2 Function objects
Many of the standard algorithms take function objects (or functions) as argu-
ments to control the way they work. Common uses are comparison criteria, pred-
icates (functions returning bool), and arithmetic operations. In <functional>, the
standard library supplies a few common function objects.

Predicates

p=equal_to<T>{} p(x,y) means x==y when x and y are of type T.

p=not_equal_to<T>{} p(x,y) means x!=y when x and y are of type T.

p=greater<T>{} p(x,y) means x>y when x and y are of type T.

p=less<T>{} p(x,y) means x<y when x and y are of type T.

p=greater_equal<T>{} p(x,y) means x>=y when x and y are of type T.

p=less_equal<T>{} p(x,y) means x<=y when x and y are of type T.

p=logical_and<T>{} p(x,y) means x&&y when x and y are of type T.

p=logical_or<T>{} p(x,y) means x||y when x and y are of type T.

p=logical_not<T>{} p(x) means !x when x is of type T.

For example:

vector<int> v;
// . . .
sort(v.begin(),v.end(),greater<int>{}); // sort v in decreasing order

Note that logical_and and logical_or always evaluate both their arguments
(whereas && and || do not).

Stroustrup_book.indb 1163Stroustrup_book.indb 1163 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1164

Also, a lambda expression (§15.3.3) is often an alternative to a simple func-
tion object:

sort(v.begin(),v.end(),[](int x, int y) { return x>y;}); // sort v in decreasing order

Arithmetic operations

f=plus<T>{} f(x,y) means x+y when x and y are of type T.

f=minus<T>{} f(x,y) means x–y when x and y are of type T.

f=multiplies<T>{} f(x,y) means x*y when x and y are of type T.

f=divides<T>{} f(x,y) means x/y when x and y are of type T.

f=modulus<T>{} f(x,y) means x%y when x and y are of type T.

f=negate<T>{} f(x) means –x when x is of type T.

Adaptors

f=bind(g,args) f(x) means g(x,args) where args can be one or more
arguments.

f=mem_fn(mf) f(p,args) means p–>mf(args) where args can be one or
more arguments.

Function<F> f {g} f(args) means g(args) where args can be one or more
arguments. F is the type of g.

f=not1(g) f(x) means !g(x).

f=not2(g) f(x,y) means !g(x,y).

Note that function is a template, so that you can define variables of type
 function<T> and assign callable objects to such variables. For example:

int f1(double);
function<int(double)> fct {f1}; // initialize to f1
int x = fct(2.3); // call f1(2.3)
function<int(double)> fun; // fun can hold any int(double)
fun = f1;

Stroustrup_book.indb 1164Stroustrup_book.indb 1164 4/22/14 9:43 AM4/22/14 9:43 AM

B.6 STL UTILITIES 1165

B.6.3 pair and tuple
In <utility>, the standard library provides a few “utility components,” including
pair:

template <class T1, class T2>
 struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;

 // . . . copy and move operations . . .
 };

template <class T1, class T2>
constexpr pair<T1,T2> make_pair(T1 x, T2 y) { return pair<T1,T2>{x,y}; }

The make_pair() function makes the use of pairs simple. For example, here is the
outline of a function that returns a value and an error indicator:

pair<double,error_indicator> my_fct(double d)
{
 errno = 0; // clear C-style global error indicator
 // . . . do a lot of computation involving d computing x . . .
 error_indicator ee = errno;
 errno = 0; // clear C-style global error indicator
 return make_pair(x,ee);
}

This example of a useful idiom can be used like this:

pair<int,error_indicator> res = my_fct(123.456);
if (res.second==0) {
 // . . . use res.first . . .
}
else {
 // oops: error
}

Stroustrup_book.indb 1165Stroustrup_book.indb 1165 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1166

We use pair when we need exactly two elements and don’t care to define a specific
type. If we need zero or more elements, we can use a tuple from <tuple>:

template <typename… Types>
struct tuple {
 explicit constexpr tuple(const Types& …); // construct from N values
 template<typename… Atypes>
 explicit constexpr tuple(const Atypes&& …); // construct from N values

 // . . . copy and move operations . . .
};

template <class… Types>
constexpr tuple<Types…> make_tuple(Types&&…); // construct tuple
 // from N values

The tuple implementation uses a feature beyond the scope of this book, variadic
templates. This is what those ellipses (. . .) refer to. However, we can use tuples
much as we do pairs. For example:

auto t0 = make_tuple(); // no elements
auto t1 = make_tuple(123.456); // one element of type double
auto t2 = make_tuple(123.456, 'a'); // two elements of types double and char
auto t3 = make_tuple(12,'a',string{"How?"}); // three elements of types int,
 // char, and string

A tuple can have many elements, so we can’t just use first and second to access
them. Instead, a function get is used:

auto d = get<0>(t1); // the double
auto n = get<0>(t3); // the int
auto c = get<1>(t3); // the char
auto s = get<2>(t3); // the string

The subscript for get is provided as a template argument. As can be seen from the
example, tuple subscripting is zero-based.

Tuples are mostly used in generic programming.

B.6.4 initializer_list
In <initializer_list>, we find the definition of initializer_list:

template<typename T>
class initializer_list {

Stroustrup_book.indb 1166Stroustrup_book.indb 1166 4/22/14 9:43 AM4/22/14 9:43 AM

B.6 STL UTILITIES 1167

public:
 initializer_list() noexcept;

 size_t size() const noexcept; // number of elements
 const T* begin() const noexcept; // first element
 const T* end() const noexcept; // one-past-last element

 // . . .
};

When the compiler sees a { } initializer list with elements of type X, that list is used
to construct an initializer_list<X> (§14.2.1, §18.2). Unfortunately, initializer_list
does not support the subscript operator ([]).

B.6.5 Resource management pointers
A built-in pointer does not indicate whether it represents ownership of the object
it points to. That can seriously complicate programming (§19.5). The resource
management pointers unique_ptr and shared_ptr are defined in <memory> to
deal with that problem:

• unique_ptr (§19.5.4) represents exclusive ownership; there can be only
one unique_ptr to an object and the object is deleted when its unique_ptr
is destroyed.

• shared_ptr represents shared ownership; there can be many shared_ptrs
to an object, and the object is deleted when its last shared_ptr is destroyed.

unique_ptr<p> (simplifi ed)

unique_ptr up {}; Default constructor: up holds the nullptr.

unique_ptr up {p}; up holds p.

unique_ptr up {up2}; Move constructor: up holds up2’s p; up2 holds
the nullptr.

up.~unique_ptr() Delete the pointer up holds.

p=up.get() p is the pointer held by up.

p=up.release() p is the pointer held by up; up holds the nullptr.

up.reset(p) Delete the pointer held by up; up holds p.

up=make_unique<X>(args) up holds new<X>(args) (C++14).

Stroustrup_book.indb 1167Stroustrup_book.indb 1167 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1168

The usual pointer operations, such as *, ->, ==, and <, can be used for unique_
ptrs. Additionally, a unique_ptr can be defined to use a delete action different
from plain delete.

shared_ptr<p> (simplifi ed)

shared_ptr sp {}; Default constructor: sp holds the nullptr.

shared_ptr sp {p}; sp holds p.

shared_ptr sp {sp2}; Copy constructor: sp and sp2 both hold sp2’s p.

shared_ptr sp {move(sp2)}; Move constructor: sp holds sp2’s p; sp2 holds
the nullptr.

sp.~shared_ptr() Delete the pointer sp holds if sp is the last shared_ptr
for that pointer.

sp = sp2 Copy assignment: if sp is the last shared pointer to refer
to its pointer, delete that pointer; sp and sp2 both hold
sp2’s p.

sp = move(sp2) Move assignment: if sp is the last shared pointer to refer
to its pointer, delete that pointer; sp holds sp2’s p; sp2
holds the nullptr.

p=sp.get() p is the pointer held by sp.

n=sp.use_count() How many shared_ptrs refer to the pointer held by sp?

sp.reset(p) If sp is the last shared pointer to refer to its pointer,
delete that pointer; sp holds p.

sp=make_shared<X>(args) sp holds new<X>(args).

The usual pointer operations, such as *, ->, ==, and <, can be used for shared_
ptrs. Additionally, a shared_ptr can be defined to use a delete action different
from plain delete.

There is also a weak_ptr for breaking loops of shared_ptrs.

B.7 I/O streams
The I/O stream library provides formatted and unformatted buffered I/O of
text and numeric values. The definitions for I/O stream facilities are found in
 <istream>, <ostream>, etc.; see §B.1.1.

Stroustrup_book.indb 1168Stroustrup_book.indb 1168 4/22/14 9:43 AM4/22/14 9:43 AM

B.7 I /O STREAMS 1169

An ostream converts typed objects to a stream of characters (bytes):

Values of various types Character sequences

“Somewhere”

'c'

(12,34)

123

ostream

Buffer

An istream converts a stream of characters (bytes) to typed objects:

Values of various types Character sequences

“Somewhere”

'c'

(12,34)

123

istream

Buffer

An iostream is a stream that can act as both an istream and an ostream. The
buffers in the diagrams are “stream buffers” (streambufs). Look them up in an
expert-level textbook if you ever need to define a mapping from an iostream to a
new kind of device, file, or memory.

There are three standard streams:

Standard I/O streams

cout the standard character output (often by default a screen)

cin the standard character input (often by default a keyboard)

cerr the standard character error output (unbuffered)

Stroustrup_book.indb 1169Stroustrup_book.indb 1169 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1170

B.7.1 I/O streams hierarchy
An istream can be connected to an input device (e.g., a keyboard), a file, or a
string. Similarly, an ostream can be connected to an output device (e.g., a text win-
dow), a file, or a string. The I/O stream facilities are organized in a class hierarchy:

istream

iostream ostringstream ofstream

fstreamstringstream

istringstream ifstream

ostream

A stream can be opened either by a constructor or by an open() call:

Stream types

stringstream(m) Make an empty string stream with mode m.

stringstream(s,m) Make a string stream containing string s with mode m.

fstream() Make a file stream for later opening.

fstream(s,m) Open a file called s with mode m and make a file stream
to refer to it.

fs.open(s,m) Open a file called s with mode m and have fs refer to it.

fs.is_open() Is fs open?

For file streams, the file name is a C-style string.
You can open a file in one of several modes:

Stream modes

ios_base::app append (i.e., add to the end of the file)

ios_base::ate “at end” (open and seek to the end)

ios_base::binary binary mode — beware of system-specific behavior

ios_base::in for reading

ios_base::out for writing

ios_base::trunc truncate the file to 0 length

Stroustrup_book.indb 1170Stroustrup_book.indb 1170 4/22/14 9:43 AM4/22/14 9:43 AM

B.7 I /O STREAMS 1171

In each case, the exact effect of opening a file may depend on the operating sys-
tem, and if an operating system cannot honor a request to open a file in a certain
way, the result will be a stream that is not in the good() state.

An example:

void my_code(ostream& os); // my code can use any ostream

ostringstream os; // o for “output”
ofstream of("my_file");
if (!of) error("couldn't open 'my_file' for writing");
my_code(os); // use a string
my_code(of); // use a file

See §11.3.

B.7.2 Error handling
An iostream can be in one of four states:

Stream states

good() The operations succeeded.

eof() We hit end of input (“end of file”).

fail() Something unexpected happened (e.g., we looked for a digit and
found 'x').

bad() Something unexpected and serious happened (e.g., a disk read error).

By using s.exceptions(), a programmer can request an iostream to throw an ex-
ception if it turns from good() into another state (see §10.6).

Any operation attempted on a stream that is not in the good() state has no
effect; it is a “no op.”

An iostream can be used as a condition. In that case, the condition is true
(succeeds) if the state of the iostream is good(). That is the basis for the common
idiom for reading a stream of values:

for (X buf; cin>>buf;) { // buf is an “input buffer” for holding one value of type X
 // . . . do something with buf . . .
}
// we get here when >> couldn’t read another X from cin

Stroustrup_book.indb 1171Stroustrup_book.indb 1171 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1172

B.7.3 Input operations
Input operations are found in <istream> except for the ones reading into a string;
those are found in <string>:

Formatted input

in >> x Read from in into x according to x’s type.

getline(in,s) Read a line from in into the string s.

Unless otherwise stated, an istream operation returns a reference to its istream, so
that we can “chain” operations, for example, cin>>x>>y;.

Unformatted input

x=in.get() Read one character from in and return its integer value.

in.get(c) Read a character from in into c.

in.get(p,n) Read at most n characters from in into the array starting at p.

in.get(p,n,t) Read at most n characters from in into the array starting at p;
consider t a terminator.

in.getline(p,n) Read at most n characters from in into the array starting at p;
remove the terminator from in.

in.getline(p,n,t) Read at most n characters from in into the array starting at p;
consider t a terminator; remove the terminator from in.

in.read(p,n) Read at most n characters from in into the array starting at p.

x=in.gcount() x is the number of characters read by the most recent
unformatted input operation on in.

in.unget() Back up the stream so that the next character read is the
same as the previous read.

in.putback(x) Put x “back” into the stream so that it will be the next
character read.

The get() and getline() functions place a 0 at the end of the characters (if any)
written to p[0] . . . ; getline() removes the terminator (t) from the input, if found,
whereas get() does not. A read(p,n) does not write a 0 to the array after the char-
acters read. Obviously, the formatted input operators are simpler to use and less
error-prone than the unformatted ones.

Stroustrup_book.indb 1172Stroustrup_book.indb 1172 4/22/14 9:43 AM4/22/14 9:43 AM

B.7 I /O STREAMS 1173

B.7.4 Output operations
Output operations are found in <ostream> except for the ones writing out a
string; those are found in <string>:

Output operations

out << x Write x to out according to x’s type.

out.put(c) Write the character c to out.

out.write(p,n) Write the characters p[0]..p[n–1] to out.

Unless otherwise stated, an ostream operation returns a reference to its ostream,
so that we can “chain” operations, for example, cout << x<<y;.

B.7.5 Formatting
The format of stream I/O is controlled by a combination of object type, stream
state, locale information (see <locale>), and explicit operations. Chapters 10 and
11 explain much of this. Here, we just list the standard manipulators (operations
modifying the state of a stream) because they provide the most straightforward
way of modifying formatting.

Locales are beyond the scope of this book.

B.7.6 Standard manipulators
The standard library provides manipulators corresponding to the various for-
mat states and state changes. The standard manipulators are defined in <ios>,
<istream>, <ostream>, <iostream>, and <iomanip> (for manipulators that take
arguments):

I/O manipulators

s<<boolalpha Use symbolic representation of true and false (input and output).

s<<noboolalpha s.unsetf(ios_base::boolalpha).

s<<showbase On output prefix oct by 0 and hex by 0x.

s<<noshowbase s.unsetf(ios_base::showbase).

s<<showpoint Always show the decimal point.

s<<noshowpoint s.unsetf(ios_base::showpoint).

s<<showpos Show + for positive numbers.

Stroustrup_book.indb 1173Stroustrup_book.indb 1173 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1174

I/O manipulators (continued)

s<<noshowpos s.unsetf(ios_base::showpos).

s>>skipws Skip whitespace.

s>>noskipws s.unsetf(ios_base::skipws).

s<<uppercase Use upper case in numeric output, e.g., 1.2E10 and 0X1A2
rather than 1.2e10 and 0x1a2.

s<<nouppercase x and e rather than X and E.

s<<internal Pad where marked in the formatting pattern.

s<<left Pad after the value.

s<<right Pad before the value.

s<<dec Integer base is 10.

s<<hex Integer base is 16.

s<<oct Integer base is 8.

s<<fixed Floating-point format dddd.dd.

s<<scientific Scientific format d.ddddEdd.

s<<defaultfloat Whatever format gives the most precise floating-point output.

s<<endl Put '\n' and flush.

s<<ends Put '\0'.

s<<flush Flush the stream.

s>>ws Eat whitespace.

s<<resetiosflags(f) Clear flags f.

s<<setiosflags(f) Set flags f.

s<<setbase(b) Output integers in base b.

s<<setfill(c) Make c the fill character.

s<<setprecision(n) Precision is n digits.

s<<setw(n) Next field width is n characters.

Each of these operations returns a reference to its first (stream) operand, s. For
example:

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << endl;

produces

1234,4d2,2322

Stroustrup_book.indb 1174Stroustrup_book.indb 1174 4/22/14 9:43 AM4/22/14 9:43 AM

B.8 STRING MANIPULATION 1175

and

cout << '(' << setw(4) << setfill('#') << 12 << ") (" << 12 << ")\n";

produces

(##12) (12)

To explicitly set the general output format for floating-point numbers use

b.setf(ios_base::fmtflags(0), ios_base::floatfield)

See Chapter 11.

B.8 String manipulation
The standard library offers character classification operations in <cctype>, strings
with associated operations in <string>, regular expression matching in <regex>,
and support for C-style strings in <cstring>.

B.8.1 Character classifi cation
The characters from the basic execution character set can be classified like this:

Character classifi cation

isspace(c) Is c whitespace (' ', '\t', '\n', etc.)?

isalpha(c) Is c a letter ('a'.. 'z', 'A'.. 'Z')? (Note: not '_'.)

isdigit(c) Is c a decimal digit ('0'.. '9')?

isxdigit(c) Is c a hexadecimal digit (decimal digit or 'a'.. 'f' or 'A'.. 'F')?

isupper(c) Is c an uppercase letter?

islower(c) Is c a lowercase letter?

isalnum(c) Is c a letter or a decimal digit?

iscntrl(c) Is c a control character (ASCII 0..31 and 127)?

ispunct(c) Is c not a letter, digit, whitespace, or invisible control character?

isprint(c) Is c printable (ASCII ‘ ’..‘~’)?

isgraph(c) Is isalpha(c) or isdigit(c) or ispunct(c)? (Note: not space.)

Stroustrup_book.indb 1175Stroustrup_book.indb 1175 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1176

In addition, the standard library provides two useful functions for getting rid of
case differences:

Upper and lower case

toupper(c) c or c’s uppercase equivalent

tolower(c) c or c’s lowercase equivalent

Extended character sets, such as Unicode, are supported but are beyond the scope
of this book.

B.8.2 String
The standard library string class, string, is a specialization of a general string tem-
plate basic_string for the character type char; that is, string is a sequence of chars:

String operations

s=s2 Assign s2 to s; s2 can be a string or a C-style string.

s+=x Append x at end of s; x can be a character, a string, or a
C-style string.

s[i] Subscripting.

s+s2 Concatenation; the result is a new string with the characters from
s followed by the characters from s2.

s==s2 Comparison of string values; s or s2, but not both, can be a
C-style string.

s!=s2 Comparison of string values; s or s2, but not both, can be a
C-style string.

s<s2 Lexicographical comparison of string values; s or s2, but not both,
can be a C-style string.

s<=s2 Lexicographical comparison of string values; s or s2, but not both,
can be a C-style string.

s>s2 Lexicographical comparison of string values; s or s2, but not both,
can be a C-style string.

s>=s2 Lexicographical comparison of string values; s or s2, but not both,
can be a C-style string.

s.size() Number of characters in s.

s.length() Number of characters in s.

Stroustrup_book.indb 1176Stroustrup_book.indb 1176 4/22/14 9:43 AM4/22/14 9:43 AM

B.8 STRING MANIPULATION 1177

String operations (continued)

s.c_str() C-style string version (zero terminated) of characters in s.

s.begin() Iterator to the first character.

s.end() Iterator to one beyond the end of s.

s.insert(pos,x) Insert x before s[pos]; x can be a string or a C-style string.

s.append(x) Insert x after the last character of s; x can be a string or a
C-style string.

s.erase(pos) Remove trailing characters from s starting with s[pos]. s’s size
becomes pos.

s.erase(pos,n) Remove n characters from s starting at s[pos]. s’s size becomes
max(pos,size–n).

s.push_back(c) Append the character c.

pos=s.find(x) Find x in s; x can be a character, a string, or a C-style string;
pos is the index of the first character found, or string::npos (a
position off the end of s).

in>>s Read a word into s from in.

B.8.3 Regular expression matching
The regular expression facilities are found in <regex>. The main functions are

• Searching for a string that matches a regular expression in an (arbitrarily
long) stream of data — supported by regex_search()

• Matching a regular expression against a string (of known size) — supported
by regex_match()

• Replacement of matches — supported by regex_replace(); not described in
this book; see an expert-level text or manual

The result of a regex_search() or a regex_match() is a collection of matches, typi-
cally represented as an smatch:

regex row("^[\\w]+(\\d+)(\\d+)(\\d+)$"); // data line

while (getline(in,line)) { // check data line
 smatch matches;
 if (!regex_match(line, matches, row))
 error("bad line", lineno);

Stroustrup_book.indb 1177Stroustrup_book.indb 1177 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1178

 // check row:
 int field1 = from_string<int>(matches[1]);
 int field2 = from_string<int>(matches[2]);
 int field3 = from_string<int>(matches[3]);
 // . . .
}

The syntax of regular expressions is based on characters with special meaning
(Chapter 23):

Regular expression special characters

. any single character (a “wildcard”)

[character class

{ count

(begin grouping

) end grouping

\ next character has a special meaning

* zero or more

+ one or more

? optional (zero or one)

| alternative (or)

^ start of line; negation

$ end of line

Repetition

{ n } exactly n times

{ n, } n or more times

{n,m} at least n and at most m times

* zero or more, that is, {0,}

+ one or more, that is, {1,}

? optional (zero or one), that is {0,1}

Stroustrup_book.indb 1178Stroustrup_book.indb 1178 4/22/14 9:43 AM4/22/14 9:43 AM

B.8 STRING MANIPULATION 1179

Character classes

alnum any alphanumeric character or the underscore

alpha any alphabetic character

blank any whitespace character that is not a line separator

cntrl any control character

d any decimal digit

digit any decimal digit

graph any graphical character

lower any lowercase character

print any printable character

punct any punctuation character

s any whitespace character

space any whitespace character

upper any uppercase character

w any word character (alphanumeric characters)

xdigit any hexadecimal digit character

Several character classes are supported by shorthand notation:

Character class abbreviations

\d a decimal digit [[:digit:]]

\l a lowercase character [[:lower:]]

\s a space (space, tab, etc.) [[:space:]]

\u an uppercase character [[:upper:]]

\w a letter, a decimal digit, or an underscore (_) [[:alnum:]]

\D not \d [^[:digit:]]

\L not \l [^[:lower:]]

\S not \s [^[:space:]]

\U not \u [^[:upper:]]

\W not \w [^[:alnum:]]

Stroustrup_book.indb 1179Stroustrup_book.indb 1179 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1180

B.9 Numerics
The C++ standard library provides the most basic building blocks for mathemat-
ical (scientific, engineering, etc.) calculations.

B.9.1 Numerical limits
Each C++ implementation specifies properties of the built-in types, so that pro-
grammers can use those properties to check against limits, set sentinels, etc.

From <limits>, we get numeric_limits<T> for each built-in or library type T.
In addition, a programmer can define numeric_limits<X> for a user-defined nu-
meric type X. For example:

class numeric_limits<float> {
public:
 static const bool is_specialized = true;

 static constexpr int radix = 2; // base of exponent (in this case, binary)
 static constexpr int digits = 24; // number of radix digits in mantissa
 static constexpr int digits10 = 6; // number of base-10 digits in mantissa

 static constexpr bool is_signed = true;
 static constexpr bool is_integer = false;
 static constexpr bool is_exact = false;

 static constexpr float min() { return 1.17549435E–38F; } // example value
 static constexpr float max() { return 3.40282347E+38F; } // example value
 static constexpr float lowest() { return -3.40282347E+38F; } // example value

 static constexpr float epsilon() { return 1.19209290E–07F; } // example value
 static constexpr float round_error() { return 0.5F; } // example value

 static constexpr float infinity() { return /* some value */; }
 static constexpr float quiet_NaN() { return /* some value */; }
 static constexpr float signaling_NaN() { return /* some value */; }
 static constexpr float denorm_min() { return min(); }

 static constexpr int min_exponent = –125; // example value
 static constexpr int min_exponent10 = –37; // example value
 static constexpr int max_exponent = +128; // example value
 static constexpr int max_exponent10 = +38; // example value

Stroustrup_book.indb 1180Stroustrup_book.indb 1180 4/22/14 9:43 AM4/22/14 9:43 AM

B.9 NUMERICS 1181

 static constexpr bool has_infinity = true;
 static constexpr bool has_quiet_NaN = true;
 static constexpr bool has_signaling_NaN = true;
 static constexpr float_denorm_style has_denorm = denorm_absent;
 static constexpr bool has_denorm_loss = false;

 static constexpr bool is_iec559 = true; // conforms to IEC-559
 static constexpr bool is_bounded = true;
 static constexpr bool is_modulo = false;
 static constexpr bool traps = true;
 static constexpr bool tinyness_before = true;

 static constexpr float_round_style round_style = round_to_nearest;
};

From <limits.h> and <float.h>, we get macros specifying key properties of inte-
gers and floating-point numbers, including:

Limit macros

CHAR_BIT number of bits in a char (usually 8)

CHAR_MIN minimum char value

CHAR_MAX maximum char value (usually 127 if char is signed and 255 if
char is unsigned)

B.9.2 Standard mathematical functions
The standard library provides the most common mathematical functions (defined
in <cmath> and <complex>):

Standard mathematical functions

abs(x) absolute value

ceil(x) smallest integer >= x

floor(x) largest integer <= x

round(x) round to the nearest integer (.5 rounds away from zero)

sqrt(x) square root; x must be nonnegative

cos(x) cosine

Stroustrup_book.indb 1181Stroustrup_book.indb 1181 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1182

Standard mathematical functions (continued)

sin(x) sine

tan(x) tangent

acos(x) arccosine; the result is nonnegative

asin(x) arcsine; the result nearest to 0 is returned

atan(x) arctangent

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh(x) hyperbolic tangent

exp(x) base-e exponential

log(x) natural logarithm, base-e; x must be positive

log10(x) base-10 logarithm

There are versions taking float, double, long double, and complex arguments.
For each function, the return type is the same as the argument type.

If a standard mathematical function cannot produce a mathematically valid
result, it sets the variable errno.

B.9.3 Complex
The standard library provides complex number types complex<float>, complex-
<double>, and complex<long double>. A complex<Scalar> where Scalar is some
other type supporting the usual arithmetic operations usually works but is not
guaranteed to be portable.

template<class Scalar> class complex {
 // a complex is a pair of scalar values, basically a coordinate pair
 Scalar re, im;
public:
 constexpr complex(const Scalar & r, const Scalar & i) :re{r}, im{i} { }
 constexpr complex(const Scalar & r) :re{r}, im(Scalar{}} { }
 constexpr complex() :re{Scalar{}}, im{Scalar{}} { }

 Scalar real() { return re; } // real part
 Scalar imag() { return im; } // imaginary part

 // operators: = += –= *= /=
};

Stroustrup_book.indb 1182Stroustrup_book.indb 1182 4/22/14 9:43 AM4/22/14 9:43 AM

B.9 NUMERICS 1183

In addition to the members of complex, <complex> offers a host of useful operations:

Complex operators

z1+z2 addition

z1–z2 subtraction

z1*z2 multiplication

z1/z2 division

z1==z2 equality

z1!=z2 inequality

norm(z) the square of abs(z)

conj(z) conjugate: if z is {re,im} then conj(z) is {re,– im}

polar(x,y) make a complex given polar coordinates (rho,theta)

real(z) real part

imag(z) imaginary part

abs(z) also known as rho

arg(z) also known as theta

out << z complex output

in >> z complex input

The standard mathematical functions (see §B.9.2) are also available for complex
numbers. Note: complex does not provide < or %; see also §24.9.

B.9.4 valarray
The standard valarray is a single-dimensional numerical array; that is, it provides
arithmetic operations for an array type (much like Matrix in Chapter 24) plus
support for slices and strides.

B.9.5 Generalized numerical algorithms
These algorithms from <numeric> provide general versions of common opera-
tions on sequences of numerical values:

Numerical algorithms

x = accumulate(b,e,i) x is the sum of i and the elements of [b:e).

x = accumulate(b,e,i,f) Accumulate, but with f instead of +.

Stroustrup_book.indb 1183Stroustrup_book.indb 1183 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1184

Numerical algorithms (continued)

x = inner_product(b,e,b2,i) x is the inner product of [b:e) and [b2:b2+(e–b)),
that is, the sum of i and (*p1)*(*p2) for all p1 in
[b:e) and all corresponding p2 in [b2:b2+(e–b)).

x = inner_product(b,e,b2,i,f,f2) inner_product, but with f and f2 instead of +
and *, respectively.

p=partial_sum(b,e,out) Element i of [out:p) is the sum of elements 0..i
of [b:e).

p=partial_sum(b,e,out,f) partial_sum, using f instead of +.

p=adjacent_difference(b,e,out) Element i of [out:p) is *(b+i)–* (b+i–1) for i>0;
if e–b>0 then *out is *b.

p=adjacent_difference(b,e,out,f) adjacent_difference, using f instead of – .

iota(b,e,v) For each element of [b:e) assign ++v.

For example:

vector<int> v(100);
iota(v.begin(),v.end(),0); // v=={1, 2,3,4,5 . . . 100}

B.9.6 Random numbers
In <random>, the standard library provides random number engines and distri-
butions (§24.7). By default use the default_random_engine, which is chosen for
wide applicability and low cost.

Distributions include:

Distributions

uniform_int_distribution<int> {low, high} value in [low:high]

uniform_real_distribution<int>{low,high} value in [low:high)

exponential_distribution<double>{lambda} value in [0:∞)

bernoulli_distribution{p} value in [true:false]

normal_distribution<double>{median,spread} value in (-∞:∞)

Stroustrup_book.indb 1184Stroustrup_book.indb 1184 4/22/14 9:43 AM4/22/14 9:43 AM

B.11 C STANDARD LIBRARY FUNCTIONS 1185

A distribution can be called with an engine as its argument. For example:

uniform_real_distribution<> dist;
default_random_engine engn;
for (int i = 0; i<10; ++i)
 cout << dist(engn) << ' ';

B.10 Time
In <chrono>, the standard library provides facilities for timing. A clock counts
time in number of clock ticks and reports the current point in time as the result of
a call of now(). Three clocks are defined:

• system_clock: the default system clock
• steady_clock: a clock, c, for which c.now()<=c.now() for consecutive calls

of now() and the time between clock ticks is constant
• high_resolution_clock: the highest-resolution clock available on a system

A number of clock ticks for a given clock is converted into a conventional unit
of time, such as seconds, milliseconds, and nanoseconds, by the function dura-
tion_cast<>(). For example:

auto t = steady_clock::now();
// . . . do something . . .
auto d = steady_clock::now()-t; // something took d time units

cout << "something took "
 << duration_cast<milliseconds>(d).count() << "ms";

This will print the time that “something” took in milliseconds. See also §26.6.1.

B.11 C standard library functions
The standard library for the C language is with very minor modifications incor-
porated into the C++ standard library. The C standard library provides quite
a few functions that have proved useful over the years in a wide variety of con-
texts — especially for relatively low-level programming. Here, we have organized
them into a few conventional categories:

• C-style I/O
• C-style strings

Stroustrup_book.indb 1185Stroustrup_book.indb 1185 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1186

• Memory
• Date and time
• Etc.

There are more C standard library functions than we present here; see a good C
textbook, such as Kernighan and Ritchie, The C Programming Language (K&R), if
you need to know more.

B.11.1 Files
The <stdio> I/O system is based on “files.” A file (a FILE*) can refer to a file or
to one of the standard input and output streams, stdin, stdout, and stderr. The
standard streams are available by default; other files need to be opened:

File open and close

f=fopen(s,m) Open a file stream for a file named s with the mode m.

x=fclose(f) Close file stream f; return 0 if successful.

A “mode” is a string containing one or more directives specifying how a file is to
be opened:

File modes

"r" reading

"w" writing (discard previous contents)

"a" append (add at end)

"r+" reading and writing

"w+" reading and writing (discard previous contents)

"b" binary; use together with one or more other modes

There may be (and usually are) more options on a specific system. Some options
can be combined; for example, fopen("foo","rb") tries to open a file called foo for
binary reading. The I/O modes should be the same for stdio and iostreams (§B.7.1).

B.11.2 The printf() family
The most popular C standard library functions are the I/O functions. However,
we recommend iostreams because that library is type-safe and extensible. The

Stroustrup_book.indb 1186Stroustrup_book.indb 1186 4/22/14 9:43 AM4/22/14 9:43 AM

B.11 C STANDARD LIBRARY FUNCTIONS 1187

formatted output function, printf(), is widely used (also in C++ programs) and
widely imitated in other programming languages:

printf

n=printf(fmt,args) Print the “format string” fmt to stdout, inserting the
arguments args as appropriate.

n=fprintf(f,fmt,args) Print the “format string” fmt to file f, inserting the arguments
args as appropriate.

n=sprintf(s,fmt,args) Print the “format string” fmt to the C-style string s, inserting
the arguments args as appropriate.

For each version, n is the number of characters written or a negative number if the
output failed. The return value from printf() is essentially always ignored.

The declaration of printf() is

int printf(const char* format . . .);

In other words, it takes a C-style string (typically a string literal) followed by an
arbitrary number of arguments of arbitrary type. The meaning of those “extra
arguments” is controlled by conversion specifications, such as %c (print as charac-
ter) and %d (print as decimal integer), in the format string. For example:

int x = 5;
const char* p = "asdf";
printf("the value of x is '%d' and the value of p is '%s'\n",x,p);

A character following a % controls the handling of an argument. The first %
applies to the first “extra argument” (here, %d applies to x), the second % to the
second “extra argument” (here, %s applies to p), and so on. In particular, the
output of that call to printf() is

the value of x is '5' and the value of p is 'asdf'

followed by a newline.
In general, the correspondence between a % conversion directive and the type

to which it is applied cannot be checked, and when it can, it usually is not. For
example:

printf("the value of x is '%s' and the value of p is '%d'\n",x,p); // oops

Stroustrup_book.indb 1187Stroustrup_book.indb 1187 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1188

The set of conversion specifications is quite large and provides a great degree of
flexibility (and possibilities for confusion). Following the %, there may be:

– an optional minus sign that specifi es left adjustment of the converted
value in the fi eld.

+ an optional plus sign that specifi es that a value of a signed type will al-
ways begin with a + or — sign.

0 an optional zero that specifi es that leading zeros are used for padding of a
numeric value. If — or a precision is specifi ed, this 0 is ignored.

an optional # that specifi es that fl oating-point values will be printed with
a decimal point even if no nonzero digits follow, that trailing zeros will be
printed, that octal values will be printed with an initial 0, and that hexa-
decimal values will be printed with an initial 0x or 0X.

d an optional digit string specifying a fi eld width; if the converted value
has fewer characters than the fi eld width, it will be blank-padded on the
left (or right, if the left-adjustment indicator has been given) to make up
the fi eld width; if the fi eld width begins with a zero, zero padding will be
done instead of blank padding.

. an optional period that serves to separate the fi eld width from the next
digit string.

dd an optional digit string specifying a precision that specifi es the number
of digits to appear after the decimal point, for e- and f-conversion, or the
maximum number of characters to be printed from a string.

* a fi eld width or precision may be * instead of a digit string. In this case,
an integer argument supplies the fi eld width or precision.

h an optional character h, specifying that a following d, o, x, or u corre-
sponds to a short integer argument.

l an optional character l (the letter l), specifying that a following d, o, x, or
u corresponds to a long integer argument.

L an optional character L, specifying that a following e, E, g, G, or f corre-
sponds to a long double argument.

% indicating that the character % is to be printed; no argument is used.
c a character that indicates the type of conversion to be applied. The con-

version characters and their meanings are:
d The integer argument is converted to decimal notation.
i The integer argument is converted to decimal notation.
o The integer argument is converted to octal notation.
x The integer argument is converted to hexadecimal notation.

Stroustrup_book.indb 1188Stroustrup_book.indb 1188 4/22/14 9:43 AM4/22/14 9:43 AM

B.11 C STANDARD LIBRARY FUNCTIONS 1189

X The integer argument is converted to hexadecimal notation.
f The fl oat or double argument is converted to decimal notation in the

style [–]ddd.ddd. The number of ds after the decimal point is equal to
the precision for the argument. If necessary, the number is rounded.
If the precision is missing, six digits are given; if the precision is ex-
plicitly 0 and # isn’t specifi ed, no decimal point is printed.

e The fl oat or double argument is converted to decimal notation in the
scientifi c style [–]d.ddde+dd or [–]d.ddde–dd, where there is one digit
before the decimal point and the number of digits after the decimal
point is equal to the precision specifi cation for the argument. If neces-
sary, the number is rounded. If the precision is missing, six digits are
given; if the precision is explicitly 0 and # isn’t specifi ed, no digits and
no decimal point are printed.

E Like e, but with an uppercase E used to identify the exponent.
g The fl oat or double argument is printed in style d, in style f, or in

style e, whichever gives the greatest precision in minimum space.
G Like g, but with an uppercase E used to identify the exponent.
c The character argument is printed. Null characters are ignored.
s The argument is taken to be a string (character pointer), and charac-

ters from the string are printed until a null character or until the num-
ber of characters indicated by the precision specifi cation is reached;
however, if the precision is 0 or missing, all characters up to a null are
printed.

p The argument is taken to be a pointer. The representation printed is
implementation dependent.

u The unsigned integer argument is converted to decimal notation.
n The number of characters written so far by the call of printf(),

fprintf(), or sprintf() is written to the int pointed to by the pointer-to-
int argument.

In no case does a nonexistent or small fi eld width cause truncation of
a fi eld; padding takes place only if the specifi ed fi eld width exceeds the
actual width.

Because C does not have user-defined types in the sense that C++ has, there are
no provisions for defining output formats for user-defined types, such as complex,
vector, or string.

The C standard output, stdout, corresponds to cout. The C standard input,
stdin, corresponds to cin. The C standard error output, stderr, corresponds to
cerr. This correspondence between C standard I/O and C++ I/O streams is so

Stroustrup_book.indb 1189Stroustrup_book.indb 1189 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1190

close that C-style I/O and I/O streams can share a buffer. For example, a mix of
cout and stdout operations can be used to produce a single output stream (that’s
not uncommon in mixed C and C++ code). This flexibility carries a cost. For
better performance, don’t mix stdio and iostream operations for a single stream
and call ios_base::sync_with_stdio(false) before the first I/O operation.

The stdio library provides a function, scanf(), that is an input operation with
a style that mimics printf(). For example:

int x;
char s[buf_size];
int i = scanf("the value of x is '%d' and the value of s is '%s'\n",&x,s);

Here, scanf() tries to read an integer into x and a sequence of non-whitespace char-
acters into s. Non-format characters specify that the input should contain that
character. For example,

the value of x is '123' and the value of s is 'string '\n"

will read 123 into x and string followed by a 0 into s. If the call of scanf() succeeds,
the result value (i in the call above) will be the number of argument pointers
assigned to (hopefully 2 in the example); otherwise, EOF. This way of specifying
input is error-prone (e.g., what would happen if you forgot the space after string
on that input line?). All arguments to scanf() must be pointers. We strongly rec-
ommend against the use of scanf().

So what can we do for input if we are obliged to use stdio? One popular an-
swer is, “Use the standard library function gets()”:

// very dangerous code:
char s[buf_size];
char* p = gets(s); // read a line into s

The call p=gets(s) reads characters into s until a newline or an end of file is
encountered and a 0 character is placed after the last character written to s. If
an end of file is encountered or if an error occurred, p is set to NULL (that is, 0);
otherwise it is set to s. Never use gets(s) or its rough equivalent (scanf("%s",s))!
For years, they were the favorites of virus writers: by providing an input that
overflows the input buffer (s in the example), a program can be corrupted and
a computer potentially taken over by an attacker. The sprintf() function suffers
similar buffer-overflow problems.

The stdio library also provides simple and useful character read and write
functions:

Stroustrup_book.indb 1190Stroustrup_book.indb 1190 4/22/14 9:43 AM4/22/14 9:43 AM

B.11 C STANDARD LIBRARY FUNCTIONS 1191

stdio character functions

x=getc(st) Read a character from input stream st; return the character’s
integer value; x==EOF if end of file or an error occurred.

x=putc(c,st) Write the character c to the output stream st; return the integer
value of the character written; x==EOF if an error occurred.

x=getchar() Read a character from stdin; return the character’s integer value;
x==EOF if end of file or an error occurred.

x=putchar(c) Write the character c to stdout; return the integer value of the
character written; x==EOF if an error occurred.

x=ungetc(c,st) Put c back onto the input stream st; return the integer value of the
character pushed; x==EOF if an error occurred.

Note that the result of these functions is an int (not a char, or EOF couldn’t be
returned). For example, this is a typical C-style input loop:

int ch; /* not char ch; */
while ((ch=getchar())!=EOF) { /* do something */ }

Don’t do two consecutive ungetc()s on a stream. The result of that is undefined
and (therefore) non-portable.

There are more stdio functions; see a good C textbook, such as K&R, if you
need to know more.

B.11.3 C-style strings
A C-style string is a zero-terminated array of chars. This notion of a string is sup-
ported by a set of functions defined in <cstring> (or <string.h>; note: not <string>)
and <cstdlib>. These functions operate on C-style strings through char* pointers
(const char* pointers for memory that’s only read):

C-style string operations

x=strlen(s) Count the characters (excluding the terminating 0).

p=strcpy(s,s2) Copy s2 into s; [s:s+n) and [s2:s2+n) may not overlap; p=s; the
terminating 0 is copied.

p=strcat(s,s2) Copy s2 onto the end of s; p=s; the terminating 0 is copied.

x=strcmp(s,s2) Compare lexicographically: if s<s2 then x is negative; if s==s2
then x==0; if s>s2 then x is positive.

Stroustrup_book.indb 1191Stroustrup_book.indb 1191 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1192

C-style string operations (continued)

p=strncpy(s,s2,n) strcpy; max n characters; may fail to copy terminating 0; p=s.

p=strncat(s,s2,n) strcat; max n characters; may fail to copy terminating 0; p=s.

x=strncmp(s,s2,n) strcmp; max n characters.

p=strchr(s,c) Make p point to the first c in s.

p=strrchr(s,c) Make p point to the last c in s.

p=strstr(s,s2) Make p point to the first character of s that starts a substring equal
to s2.

p=strpbrk(s,s2) Make p point to the first character of s also found in s2.

x=atof(s) Extract a double from s.

x=atoi(s) Extract an int from s.

x=atol(s) Extract a long int from s.

x=strtod(s,p) Extract a double from s; set p to the first character after the double.

x=strtol(s,p) Extract a long int from s; set p to the first character after the long.

x=strtoul(s,p) Extract an unsigned long int from s; set p to the first character
after the long.

Note that in C++, strchr() and strstr() are duplicated to make them type-safe (they
can’t turn a const char* into a char* the way the C equivalents can); see also §27.5.

An extraction function looks into its C-style string argument for a convention-
ally formatted representation of a number, such as "124" and " 1.4". If no such
representation is found, the extraction function returns 0. For example:

int x = atoi("fortytwo"); /* x becomes 0 */

B.11.4 Memory
The memory manipulation functions operate on “raw memory” (no type known)
through void* pointers (const void* pointers for memory that’s only read):

C-style memory operations

q=memcpy(p, p2, n) Copy n bytes from p2 to p (like strcpy); [p:p+n) and
[p2:p2+n) may not overlap; q=p.

q=memmove(p,p2,n) Copy n bytes from p2 to p; q=p.

x=memcmp(p,p2,n) Compare n bytes from p2 to the equivalent n bytes
from p (like strcmp).

Stroustrup_book.indb 1192Stroustrup_book.indb 1192 4/22/14 9:43 AM4/22/14 9:43 AM

B.11 C STANDARD LIBRARY FUNCTIONS 1193

C-style memory operations (continued)

q=memchr(p,c,n) Find c (converted to an unsigned char) in p[0]..p[n–1]
and let q point to that element; q=0 if c is not found.

q=memset(p,c,n) Copy c (converted to an unsigned char) into each of
p[0]..[n–1]; q=p.

p=calloc(n,s) Allocate n*s bytes initialized to 0 on the free store; p=0
if n*s bytes could not be allocated.

p=malloc(s) Allocate s uninitialized bytes on the free store; p=0 if s
bytes could not be allocated.

q=realloc(p,s) Allocate s bytes on the free store; p must be a pointer
returned by malloc() or calloc(); if possible reuse the
space pointed to by p; if that is not possible copy all
bytes in the area pointed to by p to a new area; q=0 if s
bytes could not be allocated.

free(p) Deallocate the memory pointed to by p; p must be a
pointer returned by malloc(), calloc(), or realloc().

Note that malloc(), etc. do not invoke constructors and free() doesn’t invoke de-
structors. Do not use these functions for types with constructors or destructors.
Also, memset() should never be used for any type with a constructor.

The mem* functions are found in <cstring> and the allocation functions in
<cstdlib>.

See also §27.5.2.

B.11.5 Date and time
In <ctime>, you can find several types and functions related to date and time:

Date and time types

clock_t an arithmetic type for holding short time intervals (maybe just intervals of
a few minutes)

time_t an arithmetic type for holding long time intervals (maybe centuries)

tm a struct for holding date and time (since year 1900)

struct tm is defined like this:

struct tm {
 int tm_sec; // second of minute [0:61]; 60 and 61 represent leap seconds
 int tm_min; // minute of hour [0,59]

Stroustrup_book.indb 1193Stroustrup_book.indb 1193 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX B • STANDARD LIBRARY SUMMARY1194

 int tm_hour; // hour of day [0,23]
 int tm_mday; // day of month [1,31]
 int tm_mon; // month of year [0,11]; 0 means January (note: not [1:12])
 int tm_year; // year since 1900; 0 means year 1900, and 102 means 2002
 int tm_wday; // days since Sunday [0,6]; 0 means Sunday
 int tm_yday; // days since January 1 [0,365]; 0 means January 1
 int tm_isdst; // hours of Daylight Savings Time
};

Date and time functions:

clock_t clock(); // number of clock ticks since the start of the program

time_t time(time_t* pt); // current calendar time
double difftime(time_t t2, time_t t1); // t2–t1 in seconds

tm* localtime(const time_t* pt); // local time for the *pt
tm* gmtime(const time_t* pt); // Greenwich Mean Time (GMT) tm for *pt, or 0

time_t mktime(tm* ptm); // time_t for *ptm, or time_t(–1)

char* asctime(const tm* ptm); // C-style string representation for *ptm
char* ctime(const time_t* t) { return asctime(localtime(t)); }

An example of the result of a call of asctime() is "Sun Sep 16 01:03:52 1973\n".
An amazing zoo of formatting options for tm is provided by a function called

strftime(). Look it up if you need it.

B.10.6 Etc.
In <cstdlib> we find:

Etc. stdlib functions

abort() Terminate the program “abnormally.”

exit(n) Terminate the program with value n; n==0 means successful
termination.

system(s) Execute the C-style string as a command (system dependent).

qsort(b,n,s,cmp) Sort the array starting at b with n elements of size s using the
comparison function cmp.

bsearch(k,b,n,s,cmp) Search for k in the sorted array starting at b with n elements
of size s using the comparison function cmp.

Stroustrup_book.indb 1194Stroustrup_book.indb 1194 4/22/14 9:43 AM4/22/14 9:43 AM

B.12 OTHER LIBRARIES 1195

The comparison function (cmp) used by qsort() and bsearch() must have the type

int (*cmp)(const void* p, const void* q);

That is, no type information is known to the sort function that simply “sees” its
array as a sequence of bytes. The integer returned is

• Negative if *p is considered less than *q

• Zero if *p is considered equal to *q

• Positive if *p is considered greater than *q

Note that exit() and abort() do not invoke destructors. If you want destructors
called for constructed automatic and static objects (§A.4.2), throw an exception.

For more standard library functions see K&R or some other reputable C lan-
guage reference.

B.12 Other libraries
Looking through the standard library facilities, you’ll undoubtedly have failed to
find something you could use. Compared to the challenges faced by programmers
and the number of libraries available in the world, the C++ standard library is
minute. There are many libraries for

• Graphical user interfaces
• Advanced math
• Database access
• Networking
• XML
• Date and time
• File system manipulation
• 3D graphics
• Animation
• Etc.

However, such libraries are not part of the standard. You can find them by search-
ing the web or by asking friends and colleagues. Please don’t get the idea that the
only useful libraries are those that are part of the standard library.

Stroustrup_book.indb 1195Stroustrup_book.indb 1195 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1196Stroustrup_book.indb 1196 4/22/14 9:43 AM4/22/14 9:43 AM

1197

C

Getting Started with
Visual Studio

“The universe is not only queerer
 than we imagine,

it’s queerer than we can imagine.”

—J. B. S. Haldane

This appendix explains the steps you have to go through to

enter a program, compile it, and have it run using Micro-

soft Visual Studio.

Stroustrup_book.indb 1197Stroustrup_book.indb 1197 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX C • GETTING STARTED WITH VISUAL STUDIO1198

C.1 Getting a program to run
To get a program to run, you need to somehow place the files together (so that
when a file refers to another — e.g., your source file refers to a header file — it
finds it). You then need to invoke the compiler and the linker (if nothing else,
then to link to the C++ standard library), and finally you need to run (execute)
the program. There are several ways of doing that, and different systems (e.g.,
Windows and Linux) have different conventions and tool sets. However, you
can run all of the examples from this book on all major systems using any of
the major tool sets. This appendix explains how to do it for one popular system,
Microsoft’s Visual Studio.

Personally, we find few exercises as frustrating as getting a first program to
work on a new and strange system. This is a task for which it makes sense to ask
for help. However, if you do get help, be sure that the helper teaches you how to
do it, rather than just doing it for you.

C.2 Installing Visual Studio
Visual Studio is an interactive development environment (IDE) for Windows. If
Visual Studio is not installed on your computer, you may purchase a copy and
follow the instructions that come with it, or download and install the free Visual
C++ Express from www.microsoft.com/express/download. The description here
is based on Visual Studio 2005. Other versions may differ slightly.

C.1 Getting a program to run

C.2 Installing Visual Studio

C.3 Creating and running a program
 C.3.1 Create a new project
 C.3.2 Use the std_lib_facilities.h

header fi le
 C.3.3 Add a C++ source fi le to the project
 C.3.4 Enter your source code
 C.3.5 Build an executable program
 C.3.6 Execute the program
 C.3.7 Save the program

C.4 Later

Stroustrup_book.indb 1198Stroustrup_book.indb 1198 4/22/14 9:43 AM4/22/14 9:43 AM

C.3 CREATING AND RUNNING A PROGRAM 1199

C.3 Creating and running a program
The steps are:

 1. Create a new project.
 2. Add a C++ source file to the project.
 3. Enter your source code.
 4. Build an executable file.
 5. Execute the program.
 6. Save the program.

C.3.1 Create a new project
In Visual Studio, a “project” is a collection of files that together provide what it
takes to create and run a program (also called an application) under Windows.

 1. Open the Visual C++ IDE by clicking the Microsoft Visual Studio 2005
icon, or select it from Start > Programs > Microsoft Visual Studio
2005 > Microsoft Visual Studio 2005.

 2. Open the File menu, point to New, and click Project.
 3. Under Project Types, select Visual C++.
 4. In the Templates section, select Win32 Console Application.
 5. In the Name text box type the name of your project, for example,

Hello,World!.
 6. Choose a directory for your project. The default, C:\Documents and

Settings\Your Name\My Documents\Visual Studio 2005\Projects, is
usually a good choice.

 7. Click OK.
 8. The WIN32 Application Wizard should appear.
 9. Select Application Settings on the left side of the dialog box.
 10. Under Additional Options select Empty Project.
 11. Click Finish. All compiler settings should now be initialized for your

console project.

C.3.2 Use the std_lib_facilities.h header fi le
For your first programs, we strongly suggest that you use the custom header file
std_lib_facilities.h from www.stroustrup.com/Programming/std_lib_facilities.h.

Stroustrup_book.indb 1199Stroustrup_book.indb 1199 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX C • GETTING STARTED WITH VISUAL STUDIO1200

Place a copy of it in the directory you chose in §C.3.1, step 6. (Note: Save as text,
not HTML.) To use it, you need the line

#include "../../std_lib_facilities.h"

in your program. The “../../” tells the compiler that you placed the header in
C:\Documents and Settings\Your Name\My Documents\Visual Studio 2005\
Projects where it can be used by all of your projects, rather than right next to your
source file in a project where you would have to copy it for each project.

C.3.3 Add a C++ source fi le to the project
You need at least one source file in your program (and often many):

 1. Click the Add New Item icon on the menu bar (usually the second icon
from the left). That will open the Add New Item dialog box. Select Code
under the Visual C++ category.

 2. Select the C++ File (.cpp) icon in the template window. Type the name of
your program file (Hello,World!) in the Name text box and click Add.

You have created an empty source code file. You are now ready to type your
source code program.

C.3.4 Enter your source code
At this point you can either enter the source code by typing it directly into the
IDE, or you can copy and paste it from another source.

C.3.5 Build an executable program
When you believe you have properly entered the source code for your program,
go to the Build menu and select Build Solution or hit the triangular icon pointing
to the right on the list of icons near the top of the IDE window. The IDE will try
to compile and link your program. If it is successful, the message

Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped

should appear in the Output window. Otherwise a number of error messages will
appear. Debug the program to correct the errors and Build Solution again.

If you used the triangular icon, the program will automatically start running
(executing) if there were no errors. If you used the Build Solution menu item,
you have to explicitly start the program, as described in §C.3.6.

Stroustrup_book.indb 1200Stroustrup_book.indb 1200 4/22/14 9:43 AM4/22/14 9:43 AM

C.4 LATER 1201

C.3.6 Execute the program
Once all errors have been eliminated, execute the program by going to the Debug
menu and selecting Start Without Debugging.

C.3.7 Save the program
Under the File menu, click Save All. If you forget and try to close the IDE, the
IDE will remind you.

C.4 Later
The IDE has an apparent infinity of features and options. Don’t worry about
those early on — or you’ll get completely lost. If you manage to mess up a project
so that it “behaves oddly,” ask an experienced friend for help or build a new proj-
ect from scratch. Over time, slowly experiment with new features and options.

Stroustrup_book.indb 1201Stroustrup_book.indb 1201 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1202Stroustrup_book.indb 1202 4/22/14 9:43 AM4/22/14 9:43 AM

1203

D

Installing FLTK

 “If the code and the comments disagree,
then both are probably wrong.”

—Norm Schryer

This appendix describes how to download, install, and link

to the FLTK graphics and GUI toolkit.

Stroustrup_book.indb 1203Stroustrup_book.indb 1203 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX D • INSTALLING FLTK1204

D.1 Introduction
We chose FLTK, the Fast Light Tool Kit (pronounced “full tick”), as the base
for our presentation of graphics and GUI issues because it is portable, relatively
simple, relatively conventional, and relatively easy to install. We explain how to
install FLTK under Microsoft Visual Studio because that’s what most of our stu-
dents use and because it is the hardest. If you use some other system (as some of
our students also do), just look in the main folder (directory) of the downloaded
files (§D.3) for directions for your favorite system.

Whenever you use a library that is not part of the ISO C++ standard, you
(or someone else) have to download it, install it, and correctly use it from your
own code. That’s rarely completely trivial, and installing FLTK is probably a good
exercise — because downloading and installing even the best library can be quite
frustrating when you haven’t tried before. Don’t be too reluctant to ask advice from
people who have tried before, but don’t just let them do it for you: learn from them.

Note that there might be slight differences in files and procedures from what
we describe here. For example, there may be a new version of FLTK or you may
be using a different version of Visual Studio from what we describe in §D.4 or a
completely different C++ implementation.

D.2 Downloading FLTK
Before doing anything, first see if FLTK is already installed on your machine; see
§D.5. If it is not there, the first thing to do is to get the files onto your computer:

 1. Go to http://fltk.org. (In an emergency, instead download a copy from
our book support website: www.stroustrup.com/Programming/FLTK.)

 2. Click Download in the navigation menu.
 3. Choose FLTK 1.1.x in the drop-down and click Show Download

Locations.
 4. Choose a download location and download the .zip file.

The file you get will be in .zip format. That is a compressed format suitable for
transmitting lots of files across the net. You’ll need a program on your machine
to “unzip” it into normal files; on Windows, WinZip and 7-Zip are examples of
such programs.

D.1 Introduction

D.2 Downloading FLTK

D.3 Installing FLTK

D.4 Using FLTK in Visual Studio

D.5 Test ing if it all worked

Stroustrup_book.indb 1204Stroustrup_book.indb 1204 4/22/14 9:43 AM4/22/14 9:43 AM

D.4 USING FLTK IN VISUAL STUDIO 1205

D.3 Installing FLTK
Your main problem in following our instructions is likely to be one of two: some-
thing has changed since we wrote and tested them (it happens), or the terminol-
ogy is alien to you (we can’t help with that; sorry). In the latter case, find a friend
to translate.

 1. Unzip the downloaded file and open the main folder, fltk-1.1.?. In a Vi-
sual C++ folder (e.g., vc2005 or vcnet), open fltk.dsw. If asked about
updating old project files, choose Yes to All.

 2. From the Build menu, choose Build Solution. This may take a few min-
utes. The source code is being compiled into static link libraries so that
you do not have to recompile the FLTK source code any time you make
a new project. When the process has finished, close Visual Studio.

 3. From the main FLTK directory open the lib folder. Copy (not just move/
drag) all the .lib files except README.lib (there should be seven) into
C:\Program Files\Microsoft Visual Studio\Vc\lib.

 4. Go back to the FLTK main directory and copy the FL folder into C:\
Program Files\Microsoft Visual Studio\Vc\include.

Experts will tell you that there are better ways to install than copying into
C:\Program Files\Microsoft Visual Studio\Vc\lib and C:\Program Files\
Microsoft Visual Studio\Vc\include. They are right, but we are not trying to
make you VS experts. If the experts insist, let them be responsible for showing
you the better alternative.

D.4 Using FLTK in Visual Studio
 1. Create a new project in Visual Studio with one change to the usual pro-

cedure: create a “Win32 project” instead of a “console application” when
choosing your project type. Be sure to create an “empty project”; other-
wise, some “software wizard” will add a lot of stuff to your project that
you are unlikely to need or understand.

 2. In Visual Studio, choose Project from the main (top) menu, and from the
drop-down menu choose Properties.

 3. In the Properties dialog box, in the left menu, click the Linker folder.
This expands a sub-menu. In this sub-menu, click Input. In the Addi-
tional Dependencies text field on the right, enter the following text:

fltkd.lib wsock32.lib comctl32.lib fltkjpegd.lib fltkimagesd.lib

 [The following step may be unnecessary because it is now the default.] In
the Ignore Specifi c Library text fi eld, enter the following text:

libcd.lib

Stroustrup_book.indb 1205Stroustrup_book.indb 1205 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX D • INSTALLING FLTK1206

 4. [This step may be unnecessary because /MDd is now the default.] In the
left menu of the same Properties window, click C/C++ to expand a dif-
ferent sub-menu. Click the Code Generation sub-menu item. In the right
menu, change the Runtime Library drop-down to Multi-threaded De-
bug DLL (/MDd). Click OK to close the Properties window.

D.5 Testing if it all worked
Create a single new .cpp file in your newly created project and enter the following
code. It should compile without problems.

#include <FL/Fl.h>
#include <FL/Fl_Box.h>
#include <FL/Fl_Window.h>

int main()
{
 Fl_Window window(200, 200, "Window title");
 Fl_Box box(0,0,200,200, "Hey, I mean, Hello, World!");
 window.show();
 return Fl::run();
}

If it did not work:

• “Compiler error stating a .lib fi le could not be found”: Your problem is
most likely in the installation section. Pay attention to step 3, which in-
volves putting the link libraries (.lib) fi les where your compiler can easily
fi nd them.

• “Compiler error stating a .h fi le could not be opened”: Your problem
is most likely in the installation section. Pay attention to step 4, which
involves putting the header (.h) fi les where your compiler can easily fi nd
them.

• “Linker error involving unresolved external symbols”: Your problem is
most likely in the project section.

If that didn’t help, find a friend to ask.

Stroustrup_book.indb 1206Stroustrup_book.indb 1206 4/22/14 9:43 AM4/22/14 9:43 AM

1207

E

GUI Implementation

 “When you fi nally understand
 what you are doing,

things will go right.”

—Bill Fairbank

This appendix presents implementation details of callbacks,

Window, Widget, and Vector_ref. In Chapter 16, we

couldn’t assume the knowledge of pointers and casts needed for

a more complete explanation, so we banished that explanation to

this appendix.

Stroustrup_book.indb 1207Stroustrup_book.indb 1207 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX E • GUI IMPLEMENTATION1208

E.1 Callback implementation
We implemented callbacks like this:

void Simple_window::cb_next(Address, Address addr)
 // call Simple_window::next() for the window located at addr
{
 reference_to<Simple_window>(addr).next();
}

Once you have understood Chapter 17, it is pretty obvious that an Address must
be a void*. And, of course, reference_to<Simple_window>(addr) must somehow
create a reference to a Simple_window from the void* called addr. However, un-
less you had previous programming experience, there was nothing “pretty obvi-
ous” or “of course” about that before you read Chapter 17, so let’s look at the use
of addresses in detail.

As described in §A.17, C++ offers a way of giving a name to a type. For
example:

typedef void* Address; // Address is a synonym for void*

This means that the name Address can now be used instead of void*. Here, we
used Address to emphasize that an address was passed, and also to hide the fact
that void* is the name of the type of pointer to an object for which we don’t know
the type.

So cb_next() receives a void* called addr as an argument and — somehow —
promptly converts it to a Simple_window&:

reference_to<Simple_window>(addr)

The reference_to is a template function (§A.13):

template<class W> W& reference_to(Address pw)
 // treat an address as a reference to a W

E.1 Callback implementation

E.2 Widget implementation

E.3 Window implementation

E.4 Vector_ref

E.5 An example: manipulating Widgets

Stroustrup_book.indb 1208Stroustrup_book.indb 1208 4/22/14 9:43 AM4/22/14 9:43 AM

E.2 WIDGET IMPLEMENTATION 1209

{
 return *static_cast<W*>(pw);
}

Here, we used a template function to write ourselves an operation that acts as
a cast from a void* to a Simple_window&. The type conversion, static_cast, is
described in §17.8.

The compiler has no way of verifying our assertion that addr points to a Sim-
ple_window, but the language rule requires the compiler to trust the programmer
here. Fortunately, we are right. The way we know that we are right is that FLTK
is handing us back a pointer that we gave to it. Since we knew the type of the
pointer when we gave it to FLTK, we can use reference_to to “get it back.” This
is messy, unchecked, and not all that uncommon at the lower levels of a system.

Once we have a reference to a Simple_window, we can use it to call a member
function of Simple_window. For example (§16.3):

void Simple_window::cb_next(Address, Address pw)
 // call Simple_window::next() for the window located at pw
{
 reference_to<Simple_window>(pw).next();
}

We use the messy callback function cb_next() simply to adjust the types as needed
to call a perfectly ordinary member function next().

E.2 Widget implementation
Our Widget interface class looks like this:

class Widget {
 // Widget is a handle to a Fl_widget — it is *not* a Fl_widget
 // we try to keep our interface classes at arm’s length from FLTK
public:
 Widget(Point xy, int w, int h, const string& s, Callback cb)
 :loc(xy), width(w), height(h), label(s), do_it(cb)
{ }

 virtual ~Widget() { } // destructor

 virtual void move(int dx,int dy)
 { hide(); pw–>position(loc.x+=dx, loc.y+=dy); show(); }

Stroustrup_book.indb 1209Stroustrup_book.indb 1209 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX E • GUI IMPLEMENTATION1210

 virtual void hide() { pw–>hide(); }
 virtual void show() { pw–>show(); }

 virtual void attach(Window&) = 0; // each Widget defines at least
 // one action for a window

 Point loc;
 int width;
 int height;
 string label;
 Callback do_it;

protected:
 Window* own; // every Widget belongs to a Window
 Fl_Widget* pw; // a Widget “knows” its Fl_Widget
};

Note that our Widget keeps track of its FLTK widget and the Window with which
it is associated. Note that we need pointers for that because a Widget can be
associated with different Windows during its life. A reference or a named object
wouldn’t suffice. (Why not?)

It has a location (loc), a rectangular shape (width and height), and a label.
Where it gets interesting is that it also has a callback function (do_it) — it connects
a Widget’s image on the screen to a piece of our code. The meaning of the opera-
tions (move(), show(), hide(), and attach()) should be obvious.

Widget has a “half-finished” look to it. It was designed as an implementation
class that users should not have to see very often. It is a good candidate for a re-
design. We are suspicious about all of those public data members, and “obvious”
operations typically need to be reexamined for unplanned subtleties.

Widget has virtual functions and can be used as a base class, so it has a virtual
destructor (§17.5.2).

E.3 Window implementation
When do we use pointers and when do we use references instead? We examine
that general question in §8.5.6. Here, we’ll just observe that some programmers
like pointers and that we need pointers when we want to point to different objects
at different times in a program.

So far, we have not shown one of the central classes in our graphics and GUI
library, Window. The most significant reasons are that it uses a pointer and that

Stroustrup_book.indb 1210Stroustrup_book.indb 1210 4/22/14 9:43 AM4/22/14 9:43 AM

E.3 WINDOW IMPLEMENTATION 1211

its implementation using FLTK requires free store. As found in Window.h, here
it is:

class Window : public Fl_Window {
public:
 // let the system pick the location:
 Window(int w, int h, const string& title);
 // top left corner in xy:
 Window(Point xy, int w, int h, const string& title);

 virtual ~Window() { }

 int x_max() const { return w; }
 int y_max() const { return h; }

 void resize(int ww, int hh) { w=ww, h=hh; size(ww,hh); }

 void set_label(const string& s) { label(s.c_str()); }

 void attach(Shape& s) { shapes.push_back(&s); }
 void attach(Widget&);

 void detach(Shape& s); // remove w from shapes
 void detach(Widget& w); // remove w from window
 // (deactivates callbacks)

 void put_on_top(Shape& p); // put p on top of other shapes
protected:
 void draw();
private:
 vector<Shape*> shapes; // shapes attached to window
 int w,h; // window size

 void init();
};

So, when we attach() a Shape we store a pointer in shapes so that the Window
can draw it. Since we can later detach() that shape, we need a pointer. Basically,
an attach()ed shape is still owned by our code; we just give the Window a refer-
ence to it. Window::attach() converts its argument to a pointer so that it can store

Stroustrup_book.indb 1211Stroustrup_book.indb 1211 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX E • GUI IMPLEMENTATION1212

it. As shown above, attach() is trivial; detach() is slightly less simple. Looking in
Window.cpp, we find:

void Window::detach(Shape& s)
 // guess that the last attached will be first released
{
 for (vector<Shape*>::size_type i = shapes.size(); 0<i; ––i)
 if (shapes[i–1]==&s)
 shapes.erase(shapes.begin()+(i–1));
}

The erase() member function removes (“erases”) a value from a vector, decreas-
ing the vector’s size by one (§20.7.1).

Window is meant to be used as a base class, so it has a virtual destructor
(§17.5.2).

E.4 Vector_ref
Basically, Vector_ref simulates a vector of references. You can initialize it with
references or with pointers:

• If an object is passed to Vector_ref as a reference, it is assumed to be
owned by the caller who is responsible for its lifetime (e.g., the object is a
scoped variable).

• If an object is passed to Vector_ref as a pointer, it is assumed to be allo-
cated by new and it is Vector_ref’s responsibility to delete it.

An element is stored as a pointer — not as a copy of the object — into the Vec-
tor_ref and has reference semantics. For example, you can put a Circle into a
Vector_ref<Shape> without suffering slicing.

template<class T> class Vector_ref {
 vector<T*> v;
 vector<T*> owned;
public:
 Vector_ref() {}
 Vector_ref(T* a, T* b = 0, T* c = 0, T* d = 0);

 ~Vector_ref() { for (int i=0; i<owned.size(); ++i) delete owned[i]; }

 void push_back(T& s) { v.push_back(&s); }
 void push_back(T* p) { v.push_back(p); owned.push_back(p); }

Stroustrup_book.indb 1212Stroustrup_book.indb 1212 4/22/14 9:43 AM4/22/14 9:43 AM

E.5 AN EXAMPLE: MANIPULATING WIDGETS 1213

 T& operator[](int i) { return *v[i]; }
 const T& operator[](int i) const { return *v[i]; }

 int size() const { return v.size(); }
};

Vector_ref’s destructor deletes every object passed to the Vector_ref as a pointer.

E.5 An example: manipulating Widgets
Here is a complete program. It exercises many of the Widget/Window features. It
is only minimally commented. Unfortunately, such insufficient commenting is not
uncommon. It is an exercise to get this program to run and to explain it.

Basically, when you run it, it appears to define four buttons:

#include "../GUI.h"
using namespace Graph_lib;

class W7 : public Window {
 // four ways to make it appear that a button moves around:
 // show/hide, change location, create new one, and attach/detach
public:
 W7(int w, int h, const string& t);

 Button* p1; // show/hide
 Button* p2;
 bool sh_left;

 Button* mvp; // move
 bool mv_left;

 Button* cdp; // create/destroy
 bool cd_left;

 Button* adp1; // activate/deactivate
 Button* adp2;
 bool ad_left;

 void sh(); // actions
 void mv();
 void cd();
 void ad();

Stroustrup_book.indb 1213Stroustrup_book.indb 1213 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX E • GUI IMPLEMENTATION1214

 static void cb_sh(Address, Address addr) // callbacks
 { reference_to<W7>(addr).sh(); }
 static void cb_mv(Address, Address addr)
 { reference_to<W7>(addr).mv(); }
 static void cb_cd(Address, Address addr)
 { reference_to<W7>(addr).cd(); }
 static void cb_ad(Address, Address addr)
 { reference_to<W7>(addr).ad(); }
};

However, a W7 (Window experiment number 7) really has six buttons; it just
keeps two hidden:

W7::W7(int w, int h, const string& t)
 :Window{w,h,t},
 sh_left{true}, mv_left{true}, cd_left{true}, ad_left{true}
{
 p1 = new Button{Point{100,100},50,20,"show",cb_sh};
 p2 = new Button{Point{200,100},50,20, "hide",cb_sh};

 mvp = new Button{Point{100,200},50,20,"move",cb_mv};

 cdp = new Button{Point{100,300},50,20,"create",cb_cd};

 adp1 = new Button{Point{100,400},50,20,"activate",cb_ad};
 adp2 = new Button{Point{200,400},80,20,"deactivate",cb_ad};

 attach(*p1);
 attach(*p2);
 attach(*mvp);
 attach(*cdp);
 p2–>hide();
 attach(*adp1);
}

There are four callbacks. Each makes it appear that the button you press disap-
pears and a new one appears. However, this is achieved in four different ways:

void W7::sh() // hide a button, show another
{
 if (sh_left) {
 p1–>hide();
 p2–>show();
 }

Stroustrup_book.indb 1214Stroustrup_book.indb 1214 4/22/14 9:43 AM4/22/14 9:43 AM

E.5 AN EXAMPLE: MANIPULATING WIDGETS 1215

 else {
 p1–>show();
 p2–>hide();
 }
 sh_left = !sh_left;
}

void W7::mv() // move the button
{
 if (mv_left) {
 mvp–>move(100,0);
 }
 else {
 mvp–>move(–100,0);
 }
 mv_left = !mv_left;
}

void W7::cd() // delete the button and create a new one
{
 cdp–>hide();
 delete cdp;
 string lab = "create";
 int x = 100;
 if (cd_left) {
 lab = "delete";
 x = 200;
 }
 cdp = new Button{Point{x,300}, 50, 20, lab, cb_cd};
 attach(*cdp);
 cd_left = !cd_left;
}

void W7::ad() // detach the button from the window and attach its replacement
{
 if (ad_left) {
 detach(*adp1);
 attach(*adp2);
 }
 else {
 detach(*adp2);
 attach(*adp1);
 }

Stroustrup_book.indb 1215Stroustrup_book.indb 1215 4/22/14 9:43 AM4/22/14 9:43 AM

APPENDIX E • GUI IMPLEMENTATION1216

 ad_left = !ad_left;
}

int main()
{
 W7 w{400,500,"move"};
 return gui_main();
}

This program demonstrates the fundamental ways of adding and subtracting wid-
gets to/from a window — or just appearing to.

Stroustrup_book.indb 1216Stroustrup_book.indb 1216 4/22/14 9:43 AM4/22/14 9:43 AM

1217

Glossary

“Often, a few well-chosen words
are worth a thousand pictures.”

—Anonymous

A glossary is a brief explanation of words used in a text. This is a rather short
glossary of the terms we thought most essential, especially in the earlier stages
of learning programming. The index and the “Terms” sections of the chapters
might also help. A more extensive glossary, relating specifically to C++, can be
found at www.stroustrup.com/glossary.html, and there is an incredible variety of
specialized glossaries (of greatly varying quality) available on the web. Please note
that a term can have several related meanings (so we occasionally list some) and
that most terms we list have (often weakly) related meanings in other contexts;
for example, we don’t define abstract as it relates to modern painting, legal practice,
or philosophy.

abstract class a class that cannot be directly used to create objects; often used to
define an interface to derived classes. A class is made abstract by having a pure
virtual function or a protected constructor.

abstraction a description of something that selectively and deliberately ignores
(hides) details (e.g., implementation details); selective ignorance.

address a value that allows us to find an object in a computer’s memory.
algorithm a procedure or formula for solving a problem; a finite series of com-

putational steps to produce a result.
alias an alternative way of referring to an object; often a name, pointer, or

reference.

Stroustrup_book.indb 1217Stroustrup_book.indb 1217 4/22/14 9:43 AM4/22/14 9:43 AM

GLOSSARY1218

application a program or a collection of programs that is considered an entity
by its users.

approximation something (e.g., a value or a design) that is close to the perfect or
ideal (value or design). Often an approximation is a result of trade-offs among
ideals.

argument a value passed to a function or a template, in which it is accessed
through a parameter.

array a homogeneous sequence of elements, usually numbered, e.g., [0:max).
assertion a statement inserted into a program to state (assert) that something

must always be true at this point in the program.
base class a class used as the base of a class hierarchy. Typically a base class has

one or more virtual functions.
bit the basic unit of information in a computer. A bit can have the value 0 or the

value 1.
bug an error in a program.
byte the basic unit of addressing in most computers. Typically, a byte holds

8 bits.
class a user-defined type that may contain data members, function members, and

member types.
code a program or a part of a program; ambiguously used for both source code

and object code.
compiler a program that turns source code into object code.
complexity a hard-to-precisely-define notion or measure of the difficulty of con-

structing a solution to a problem or of the solution itself. Sometimes complexity
is used to (simply) mean an estimate of the number of operations needed to
execute an algorithm.

computation the execution of some code, usually taking some input and produc-
ing some output.

concept (1) a notion, an idea; (2) a set of requirements, usually for a template
argument.

concrete class a class for which objects can be created.
constant a value that cannot be changed (in a given scope); not mutable.
constructor an operation that initializes (“constructs”) an object. Typically a con-

structor establishes an invariant and often acquires resources needed for an
object to be used (which are then typically released by a destructor).

container an object that holds elements (other objects).
copy an operation that makes two objects have values that compare equal. See

also move.
correctness a program or a piece of a program is correct if it meets its specifica-

tion. Unfortunately, a specification can be incomplete or inconsistent, or can
fail to meet users’ reasonable expectations. Thus, to produce acceptable code,
we sometimes have to do more than just follow the formal specification.

Stroustrup_book.indb 1218Stroustrup_book.indb 1218 4/22/14 9:43 AM4/22/14 9:43 AM

GLOSSARY 1219

cost the expense (e.g., in programmer time, run time, or space) of producing a
program or of executing it. Ideally, cost should be a function of complexity.

data values used in a computation.
debugging the act of searching for and removing errors from a program; usually

far less systematic than testing.
declaration the specification of a name with its type in a program.
definition a declaration of an entity that supplies all information necessary to

complete a program using the entity. Simplified definition: a declaration that
allocates memory.

derived class a class derived from one or more base classes.
design an overall description of how a piece of software should operate to meet

its specification.
destructor an operation that is implicitly invoked (called) when an object is de-

stroyed (e.g., at the end of a scope). Often, it releases resources.
encapsulation protecting something meant to be private (e.g., implementation

details) from unauthorized access.
error a mismatch between reasonable expectations of program behavior (often

expressed as a requirement or a users’ guide) and what a program actually does.
executable a program ready to be run (executed) on a computer.
feature creep a tendency to add excess functionality to a program “just in case.”
file a container of permanent information in a computer.
floating-point number a computer’s approximation of a real number, such as

7.93 and 10.78e–3.
function a named unit of code that can be invoked (called) from different parts

of a program; a logical unit of computation.
generic programming a style of programming focused on the design and effi-

cient implementation of algorithms. A generic algorithm will work for all argu-
ment types that meet its requirements. In C++, generic programming typically
uses templates.

handle a class that allows access to another through a member pointer or refer-
ence. See also copy, move, resource.

header a file containing declarations used to share interfaces between parts of a
program.

hiding the act of preventing a piece of information from being directly seen or
accessed. For example, a name from a nested (inner) scope can prevent that
same name from an outer (enclosing) scope from being directly used.

ideal the perfect version of something we are striving for. Usually we have to
make trade-offs and settle for an approximation.

implementation (1) the act of writing and testing code; (2) the code that imple-
ments a program.

infinite loop a loop where the termination condition never becomes true. See
iteration.

Stroustrup_book.indb 1219Stroustrup_book.indb 1219 4/22/14 9:43 AM4/22/14 9:43 AM

GLOSSARY1220

infinite recursion a recursion that doesn’t end until the machine runs out of
memory to hold the calls. In reality, such recursion is never infinite but is ter-
minated by some hardware error.

information hiding the act of separating interface and implementation, thus hid-
ing implementation details not meant for the user’s attention and providing an
abstraction.

initialize giving an object its first (initial) value.
input values used by a computation (e.g., function arguments and characters

typed on a keyboard).
integer a whole number, such as 42 and –99.
interface a declaration or a set of declarations specifying how a piece of code

(such as a function or a class) can be called.
invariant something that must be always true at a given point (or points) of a

program; typically used to describe the state (set of values) of an object or the
state of a loop before entry into the repeated statement.

iteration the act of repeatedly executing a piece of code; see recursion.
iterator an object that identifies an element of a sequence.
library a collection of types, functions, classes, etc. implementing a set of facilities

(abstractions) meant to be potentially used as part of more than one program.
lifetime the time from the initialization of an object until it becomes unusable

(goes out of scope, is deleted, or the program terminates).
linker a program that combines object code files and libraries into an executable

program.
literal a notation that directly specifies a value, such as 12 specifying the integer

value “twelve.”
loop a piece of code executed repeatedly; in C++, typically a for-statement or a

while-statement.
move an operation that transfers a value from one object to another, leaving

behind a value representing “empty.” See also copy.
mutable changeable; the opposite of immutable, constant, and variable.
object (1) an initialized region of memory of a known type which holds a value

of that type; (2) a region of memory.
object code output from a compiler intended as input for a linker (for the linker

to produce executable code).
object file a file containing object code.
object-oriented programming a style of programming focused on the design

and use of classes and class hierarchies.
operation something that can perform some action, such as a function and an

operator.
output values produced by a computation (e.g., a function result or lines of char-

acters written on a screen).
overflow producing a value that cannot be stored in its intended target.

Stroustrup_book.indb 1220Stroustrup_book.indb 1220 4/22/14 9:43 AM4/22/14 9:43 AM

GLOSSARY 1221

overload defining two functions or operators with the same name but different
argument (operand) types.

override defining a function in a derived class with the same name and argument
types as a virtual function in the base class, thus making the function callable
through the interface defined by the base class.

owner an object responsible for releasing a resource.
paradigm a somewhat pretentious term for design or programming style; often

used with the (erroneous) implication that there exists a paradigm that is supe-
rior to all others.

parameter a declaration of an explicit input to a function or a template. When
called, a function can access the arguments passed through the names of its
parameters.

pointer (1) a value used to identify a typed object in memory; (2) a variable
holding such a value.

post-condition a condition that must hold upon exit from a piece of code, such
as a function or a loop.

pre-condition a condition that must hold upon entry into a piece of code, such
as a function or a loop.

program code (possibly with associated data) that is sufficiently complete to be
executed by a computer.

programming the art of expressing solutions to problems as code.
programming language a language for expressing programs.
pseudo code a description of a computation written in an informal notation

rather than a programming language.
pure virtual function a virtual function that must be overridden in a derived class.
RAII (“Resource Acquisition Is Initialization”) a basic technique for resource

management based on scopes.
range a sequence of values that can be described by a start point and an end

point. For example, [0:5) means the values 0, 1, 2, 3, and 4.
recursion the act of a function calling itself; see also iteration.
reference (1) a value describing the location of a typed value in memory; (2) a

variable holding such a value.
regular expression a notation for patterns in character strings.
requirement (1) a description of the desired behavior of a program or part of a

program; (2) a description of the assumptions a function or template makes of
its arguments.

resource something that is acquired and must later be released, such as a file
handle, a lock, or memory. See a lso handle, owner.

rounding conversion of a value to the mathematically nearest value of a less
precise type.

scope the region of program text (source code) in which a name can be referred to.
sequence elements that can be visited in a linear order.

Stroustrup_book.indb 1221Stroustrup_book.indb 1221 4/22/14 9:43 AM4/22/14 9:43 AM

GLOSSARY1222

software a collection of pieces of code and associated data; often used inter-
changeably with program.

source code code as produced by a programmer and (in principle) readable by
other programmers.

source file a file containing source code.
specification a description of what a piece of code should do.
standard an officially agreed-upon definition of something, such as a program-

ming language.
state a set of values.
string a sequence of characters.
style a set of techniques for programming leading to a consistent use of language

features; sometimes used in a very restricted sense to refer just to low-level rules
for naming and appearance of code.

subtype derived type; a type that has all the properties of a type and possibly
more.

supertype base type; a type that has a subset of the properties of a type.
system (1) a program or a set of programs for performing a task on a computer;

(2) a shorthand for “operating system,” that is, the fundamental execution envi-
ronment and tools for a computer.

template a class or a function parameterized by one or more types or
(compile-time) values; the basic C++ language construct supporting generic
programming.

testing a systematic search for errors in a program.
trade-off the result of balancing several design and implementation criteria.
truncation loss of information in a conversion from a type into another that

cannot exactly represent the value to be converted.
type something that defines a set of possible values and a set of operations for

an object.
uninitialized the (undefined) state of an object before it is initialized.
unit (1) a standard measure that gives meaning to a value (e.g., km for a dis-

tance); (2) a distinguished (e.g., named) part of a larger whole.
use case a specific (typically simple) use of a program meant to test its function-

ality and demonstrate its purpose.
value a set of bits in memory interpreted according to a type.
variable a named object of a given type; contains a value unless uninitialized.
virtual function a member function that can be overridden in a derived class.
word a basic unit of memory in a computer, usually the unit used to hold an

integer.

Stroustrup_book.indb 1222Stroustrup_book.indb 1222 4/22/14 9:43 AM4/22/14 9:43 AM

1223

Bibliography

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools, Second Edition (usually called “The Dragon Book”). Addison-
Wesley, 2006. ISBN 0321486811.

Andrews, Mike, and James A. Whittaker. How to Break Software: Functional and Security Testing
of Web Applications and Web Services. Addison-Wesley, 2006. ISBN 0321369440.

Bergin, Thomas J., and Richard G. Gibson, eds. History of Programming Languages, Volume 2.
Addison-Wesley, 1996. ISBN 0201895021.

Blanchette, Jasmin, and Mark Summerfi eld. C++ GUI Programming with Qt 4. Prentice Hall,
2006. ISBN 0131872494.

Boost.org. “A Repository for Libraries Meant to Work Well with the C++ Standard Li-
brary.” www.boost.org.

Cox, Russ. “Regular Expression Matching Can Be Simple and Fast (but Is Slow in Java,
Perl, PHP, Python, Ruby, . . .).” http://swtch.com/~rsc/regexp/regexp1.html.

dmoz.org. http://dmoz.org/Computers/Programming/Languages.
Freeman, T. L., and C. Phillips. Parallel Numerical Algorithms. Prentice Hall, 1992. ISBN

0136515975.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 0201633612.
Goldthwaite, Lois, ed. Technical Report on C++ Performance. ISO/IEC PDTR 18015. www

.stroustrup.com/performanceTR.pdf.
Gullberg, Jan. Mathematics — From the Birth of Numbers. W. W. Norton, 1996. ISBN 039304002X.
Hailpern, Brent, and Barbara G. Ryder, eds. Proceedings of the Third ACM SIGPLAN Confer-

ence on the History of Programming Languages (HOPL-III). San Diego, CA, 2007. http://portal
.acm.org/toc.cfm?id=1238844.

ISO/IEC 9899:2011. Programming Languages — C. The C standard.
ISO/IEC 14882:2011. Programming Languages — C++. The C++ standard.
Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, Second Edition.

Prentice Hall, 1988. ISBN 0131103628.

Stroustrup_book.indb 1223Stroustrup_book.indb 1223 4/22/14 9:43 AM4/22/14 9:43 AM

BIBLIOGRAPHY1224

Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third
Edition. Addison-Wesley, 1997. ISBN 0201896842.

Koenig, Andrew, and Barbara E. Moo. Accelerated C++: Practical Programming by Example.
Addison-Wesley, 2000. ISBN 020170353X.

Langer, Angelika, and Klaus Kreft. Standard C++ IOStreams and Locales: Advanced Program-
mer’s Guide and Reference. Addison-Wesley, 2000. ISBN 0321585585.

Lippman, Stanley B., José Lajoie, and Barbara E. Moo. The C++ Primer, Fifth Edition.
 Addison-Wesley, 2005. ISBN 0321714113. (Use only the 5th edition.)

Lockheed Martin Corporation. “Joint Strike Fighter Air Vehicle Coding Standards for the
System Development and Demonstration Program.” Document Number 2RDU00001
Rev C. December 2005. Colloquially known as “JSF++.” www.stroustrup.com/JSF-AV
-rules.pdf.

Lohr, Steve. Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wizards, Mav-
erick Scientists and Iconoclasts — The Programmers Who Created the Software Revolution. Basic
Books, 2002. ISBN 978-0465042265.

Meyers, Scott. Effective STL: 50 Specifi c Ways to Improve Your Use of the Standard Template Library.
Addison-Wesley, 2001. ISBN 0201749629.

Meyers, Scott. Effective C++: 55 Specifi c Ways to Improve Your Programs and Designs, Third Edi-
tion. Addison-Wesley, 2005. ISBN 0321334876.

Programming Research. High-Integrity C++ Coding Standard Manual Version 2.4. www
.programmingresearch.com.

Richards, Martin. BCPL — The Language and Its Compiler. Cambridge University Press,
1980. ISBN 0521219655.

Ritchie, Dennis. “The Development of the C Programming Language.” Proceedings of the
ACM History of Programming Languages Conference (HOPL-2). ACM SIGPLAN Notices, Vol.
28 No. 3, 1993.

Salus, Peter H. A Quarter Century of UNIX. Addison-Wesley, 1994. ISBN 0201547775.
Sammet, Jean E. Programming Languages: History and Fundamentals. Prentice Hall, 1969. ISBN

0137299885.
Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Volume 1: Master-

ing Complexity with ACE and Patterns. Addison-Wesley, 2002. ISBN 0201604647.
Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Volume 2: System-

atic Reuse with ACE and Frameworks. Addison-Wesley, 2003. ISBN 0201795256.
Schwartz, Randal L., Tom Phoenix, and Brian D. Foy. Learning Perl, Fourth Edition.

 O’Reilly, 2005. ISBN 0596101058.
Scott, Michael L. Programming Language Pragmatics. Morgan Kaufmann, 2000. ISBN

1558604421.
Sebesta, Robert W. Concepts of Programming Languages, Sixth Edition. Addison-Wesley, 2003.

ISBN 0321193628.
Shepherd, Simon. “The Tiny Encryption Algorithm (TEA).” www.tayloredge.com/reference

/Mathematics/TEA-XTEA.pdf and http://143.53.36.235:8080/tea.htm.
Stepanov, Alexander. www.stepanovpapers.com.
Stewart, G. W. Matrix Algorithms, Volume I: Basic Decompositions. SIAM, 1998. ISBN

0898714141.
Stone, Debbie, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User Interface De-

sign and Evaluation. Morgan Kaufmann, 2005. ISBN 0120884364.

Stroustrup_book.indb 1224Stroustrup_book.indb 1224 4/22/14 9:43 AM4/22/14 9:43 AM

BIBLIOGRAPHY 1225

Stroustrup, Bjarne. “A History of C++: 1979–1991.” Proceedings of the ACM History of Pro-
gramming Languages Conference (HOPL-2). ACM SIGPLAN Notices, Vol. 28 No. 3, 1993.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users Journal,
May 1999.

Stroustrup, Bjarne. “C and C++: Siblings”; “C and C++: A Case for Compatibility”; and
“C and C++: Case Studies in Compatibility.” The C/C++ Users Journal, July, Aug., and
Sept. 2002.

Stroustrup, Bjarne. “Evolving a Language in and for the Real World: C++ 1991–2006.”
Proceedings of the Third ACM SIGPLAN Conference on the History of Programming Languages
(HOPL-III). San Diego, CA, 2007. http://portal.acm.org/toc.cfm?id=1238844.

Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition. Addison-Wesley, 2013.
ISBN 0321563840.

Stroustrup, Bjarne. A Tour of C++. Addison-Wesley, 2013. ISBN 978-0321958310.
Stroustrup, Bjarne. Author’s home page, www.stroustrup.com.
Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions.

 Addison-Wesley, 2000. ISBN 0201615622.
Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines, and

Best Practices. Addison-Wesley, 2004. ISBN 0321113586.
University of St. Andrews. The MacTutor History of Mathematics archive. http://www-gap

.dcs.st-and.ac.uk/~history.
Wexelblat, Richard L., ed. History of Programming Languages. Academic Press, 1981. ISBN

0127450408.
Whittaker, James A. How to Break Software: A Practical Guide to Testing. Addison-Wesley,

2002. ISBN 0201796198.
Wood, Alastair. Introduction to Numerical Analysis. Addison-Wesley, 2000. ISBN 020134291X.

Stroustrup_book.indb 1225Stroustrup_book.indb 1225 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1226Stroustrup_book.indb 1226 4/22/14 9:43 AM4/22/14 9:43 AM

1227

Index

!. See Not, 1087
!=. See Not equal (inequality), 67, 1088, 1101
"...". See String literal, 62
#. See Preprocessor directives, 1129
$. See End of line, 873, 1178
%. See

Output format specifier, 1187
Remainder (modulo), 68

%=. See Remainder and assign, 1090
&. See

Address of, 588, 1087
Bitwise logical operations (and), 956, 1089, 1094
Reference to (in declarations), 276–279, 1099

&&. See Logical and, 1089, 1094
&=. See Bitwise logical operations (and and

assign), 1090
.'. .'. See Character literals, 161, 1079–1080
(). See

Expression (grouping), 95, 867, 873, 876
Function call, 285, 766
Function of (in declarations), 113–115, 1099
Regular expression (grouping), 1178

*. See

Contents of (dereference), 594
Multiply, 1088
Pointer to (in declarations), 587, 1099
Repetition (in regex), 868, 873–874, 1178

*/ end of block comment, 238
*=. See Multiply and assign (scale), 67
+. See

Add, 66, 1088
Concatenation (of strings), 68–69, 851, 1176
Repetition in regex, 873–875, 1178

++. See Increment, 66, 721
+=. See

Add and assign, 1089
Move forward, 1101
string (add at end), 851, 1176

, (comma). See

Comma operator, 1090
List separator, 1103, 1122–1123

–. See

Minus (substraction), 66, 1088
Regular expression (range), 877

–– . See Decrement, 66, 1087, 1141
–> (arrow). See Member access, 608, 1087, 1109,

1141
–= See

Move backward, 1101, 1142
Subtract and assign, 67, 1090

. (dot). See

Member access, 306, 607–608, 1086–1087
Regular expression, 872, 1178

… (ellipsis). See

Arguments (unchecked), 1105–1106
Catch all exceptions, 152

/. See Divide, 66, 1088
//. See Line comment, 45
/*. . .*/. See Block comment, 238
/=. See Divide and assign, 67, 1090
: (colon). See

Base and member initializers, 315, 477, 555
Conditional expression, 268
Label, 106–108, 306, 511, 1096

::. See Scope (resolution), 295, 314, 1083, 1086
; (semicolon). See Statement (terminator), 50, 100

Stroustrup_book.indb 1227Stroustrup_book.indb 1227 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1228

<. See Less than, 67, 1088
<<. See

Bitwise logical operations (left shift), 956, 1088
Output, 363–365, 1173

<=. See Less than or equal, 67, 1088
<<=. See Bitwise logical operations (shift left and

assign), 1090
<. . .>. See Template (arguments and parameters),

153, 678–679
=. See

Assignment, 66, 1090
Initialization, 69–73, 1219

==. See Equal, 67, 1088
>. See

Greater than, 67, 1088
Input prompt, 223
Template (argument-list terminator), 679

>=. See Greater than or equal, 67, 1088
>>. See

Bitwise logical operations (right shift), 956,
1088

Input, 61, 365
>>=. See Bitwise logical operations (shift right and

assign), 1090
?. See

Conditional expression, 268, 1089
Regular expression, 867–868, 873, 874–875,

1178
[]. See

Array of (in declaration), 649, 1099
Regular expression (character class), 872,

1178
Subscripting, 594, 649, 1101

\ (backslash). See

Character literal, 1079–1080
Escape character, 1178
Regular expression (escape character), 866–867,

873, 877
^. See

Bitwise logical operations (exclusive or), 956,
1089, 1094

Regular expression (not), 873, 1178
^=. See Bitwise logical operations (xor and assign),

1090
_. See Underscore, 75, 76, 1081
{}. See

Block delimiter, 47, 111
Initialization, 83
List, 83
Regular expression (range), 867, 873–875, 1178

|. See

Bitwise logical operations (bitwise or), 956,
1089, 1094

Regular expression (or), 867–868, 873, 876,
1178

|=. See Bitwise logical operations (or and assign),
1090

||. See Logical or, 1089, 1094
~. See

Bitwise logical operations (complement), 956,
1087

Destructors, 601–603
0 (zero). See

Null pointer, 598
Prefix, 382, 384
printf() format specifier, 1188–1189

0x. See Prefix, 382, 384

A
a, append file mode, 1186
\a alert, character literal, 1079
abort(), 1194–1195
abs(), absolute value, 917, 1181

complex, 920, 1183
Abstract classes, 495, 1217

class hierarchies, 512
creating, 495, 512, 1118–1119
Shape example, 495–496

Abstract-first approach to programming, 10
Abstraction, 92–93, 1217

level, ideals, 812–813
Access control, 306, 505, 511

base classes, 511
encapsulation, 505
members, 492–493
private, 505, 511
private by default, 306–307
private: label, 306
private vs. public, 306–308
protected, 505, 511
protected: label, 511
public, 306, 505, 511
public by default, 307–308. See also struct

public: label, 306
Shape example, 496–499

accumulate(), 759, 770–772, 1183
accumulator, 770
generalizing, 772–774

acos(), arccosine, 917, 1182

Stroustrup_book.indb 1228Stroustrup_book.indb 1228 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1229

Action, 47
Activation record, 287. See also Stacks
Ada language, 832–833
Adaptors

bind(), 1164
container, 1144
function objects, 1164
mem_fn(), 1164
not1(), 1164
not2(), 1164
priority_queue, 1144
queue, 1144
stack, 1144

add(), 449–450, 491–492, 615–617
Add (plus) +, 66, 1088
Add and assign +=, 66, 73, 1090
Additive operators, 1088
Address, 588, 1217

unchecked conversions, 943–944
Address of (unary) &, 588, 1087
Ad hoc polymorphism, 682–683
adjacent_difference(), 770, 1184
adjacent_find(), 1153
advance(), 615–617, 739, 1142
Affordability, software, 34
Age distribution example, 538–539
Alert markers, 3
Algol60 language, 827–829
Algol family of languages, 826–829
<algorithm>, 759, 1133
Algorithms, 1217

and containers, 722
header files, 1133–1134
numerical, 1183–1184
passing arguments to. See Function objects

Algorithms, numerical, 770, 1183–1184
accumulate(), 759, 770–774, 1183
adjacent_difference(), 770, 1184
inner_product(), 759, 770, 774–776, 1184
partial_sum(), 770, 1184

Algorithms, STL, 1152–1153
<algorithm>, 759
binary_search(), 796
comparing elements, 759
copy(), 758, 789–790
copy_if(), 789
copying elements, 758
count(), 758
count_if(), 758
equal(), 759

equal_range(), 758, 796
find(), 758, 759–763
find_if(), 758, 763–764
heap, 1160
lower_bound(), 796
max(), 1161
merge(), 758
merging sorted sequences, 758
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
numerical. See Algorithms, numerical
permutations, 1160–1161
search(), 795–796
searching, 1157–1159. See also find_if(); find()

set, 1159–1160
shuffle(), 1155–1156
sort(), 758, 794–796
sorting, 758, 794–796, 1157–1159
summing elements, 759
testing, 1001–1008
unique_copy(), 758, 789, 792–793
upper_bound(), 796
utility, 1157
value comparisons, 1161–1162

Aliases, 1128, 1217. See also References
Allocating memory. See also Deallocating memory;

Memory
allocator_type, 1147
bad_alloc exception, 1094
C++ and C, 1043–1044
calloc(), 1193
embedded systems, 935–936, 940–942
free store, 593–594
malloc(), 1043–1044, 1193
new, 1094–1095
pools, 940–941
realloc(), 1045
stacks, 942–943

allocator_type, 1147
Almost containers, 751, 1145
alnum, regex character class, 878, 1179
alpha, regex character class, 878, 1179
Alternation

patterns, 194
regular expressions, 876

Ambiguous function call, 1104
Analysis, 35, 176, 179
and, synonym for &, 1037, 1038

Stroustrup_book.indb 1229Stroustrup_book.indb 1229 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1230

and_eq, synonym for &=, 1037, 1038
app mode, 389, 1170
append(), 851, 1177
Append

files, 389, 1186
string +=, 851

Application
collection of programs, 1218
operator (), 766

Approximation, 532–537, 1218
Arccosine, acos(), 917
Arcsine, asin(), 918
Arctangent, atan(), 918
arg(), of complex number, theta, 920, 1183
Argument deduction, 689–690
Argument errors

callee responsibility, 143–145
caller responsibility, 142–143
reasons for, 144–145

Arguments, 272, 1218
formal. See Parameters
functions, 1105–1106
passing. See Passing arguments
program input, 91
source of exceptions, 147–148
templates, 1122–1123
types, class interfaces, 324–326
unchecked, 1029–1030, 1105–1106
unexpected, 136

Arithmetic if ?:, 268. See also Conditional
expression ?:

Arithmetic operations. See Numerics
<array>, 1133
Arrays, 648–650, 1218. See also Containers; v

ector

[] declaration, 649
[] dereferencing, 649
accessing elements, 649, 899–901
assignment, 653–654
associative. See Associative containers
built-in, 747–749
copying, 653–654
C-style strings, 654–655
dereferencing, 649
element numbering, 649
initializing, 596–598, 654–656
multidimensional, 895–897, 1102
palindrome example, 660–661
passing pointers to arrays, 944–951
pointers to elements, 650–652

range checking, 649
subscripting [], 649
terminating zero, 654–655
vector alternative, 947–951

Arrays and pointers, 651–658
debugging, 656–659

array standard library class, 747–749, 1144
asin(), arcsine, 918, 1182
asm(), assembler insert, 1037
Assemblers, 820
Assertions

assert(), 1061
<cassert>, 1135
debugging, 163
definition, 1218

assign(), 1148
Assignment =, 69–73

arrays, 653–654
assignment and initialization, 69–73
composite assignment operators, 73–74
containers, 1148
Date example, 309–310
enumerators, 318–319
expressions, 1089–1090
string, 851
vector, resizing, 675–677

Assignment operators (composite), 66
%=, 73, 1090
&=, 1090
*=, 73, 1089
+=, 73, 1090, 1141
–=, 73, 1090, 1142
/=, 73, 1090
<<=, 1090
>>=, 1090
^=, 1090
|=, 1090

Associative arrays. See Associative containers
Associative containers, 776, 1144

email example, 856–860
header files, 776
map, 776
multimap, 776, 860–861
multiset, 776
operations, 1151–1152
set, 776
unordered_map, 776
unordered_multimap, 776
unordered_multiset, 776
unordered_set, 776

Stroustrup_book.indb 1230Stroustrup_book.indb 1230 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1231

Assumptions, testing, 1009–1011
at(), range-checked subscripting, 693–694,

1149
atan(), arctangent, 918, 1182
ate mode, 389, 1170
atof(), string to double, 1192
atoi(), string to int, 1192
atol(), string to long, 1192
AT&T Bell Labs, 838
AT&T Labs, 838
attach() vs. add() example, 491–492
auto, 732–734, 760
Automatic storage, 591–592, 1083. See also

Stack storage
Axis example, 424–426, 443, 529–532,

543–546

B
b, binary file mode, 1186
Babbage, Charles, 832
back(), last element, 737, 1149
back_inserter(), 1162
Backus, John, 823
Backus-Naur (BNF) Form, 823, 828
bad_alloc exception, 1094
bad() stream state, 355, 1171
Base-2 number system (binary), 1078–1079
Base-8 number system (octal), 1077–1078
Base-10

logarithms, 918
number system (decimal), 1077–1078

Base-16 number system (hexadecimal),
1077–1078

Balanced trees, 780–782
Base and member initializers, 315, 477, 555
Base classes, 493–496, 504–507, 1218

abstract classes, 495, 512–513, 1118–1119
access control, 511
derived classes, 1116–1117
description, 504–506
initialization of, 477, 555, 1113, 1117
interface, 513–514
object layout, 506–507
overriding, 508–511
Shape example, 495–496
virtual function calls, 501, 506–507
vptr, 506
vtbl, 506

Base-e exponentials, 918

basic_string, 852
Basic guarantee, 702
BCPL language, 838
begin()

iterator, 1148
string, 851, 1177
vector, 721

Bell Telephone Laboratories (Bell Labs), 836,
838–842, 1022–1023

Bentley, John, 933, 966
Bidirectional iterator, 1142
bidirectional iterators, 752
Big-O notation, complexity, 785
Binary I/O, 390–393
binary mode, 389, 1170
Binary number system, 1078–1079
Binary search, 758, 779, 795–796
binary_search(), 796, 1158
bind() adaptor, 1164
bitand, synonym for &, 1037, 1038
Bitfields, 956–957, 967–969, 1120–1121
bitor, synonym for |, 1038
Bits, 78, 954, 1218

bitfields, 956–957
bool, 955
char, 955
enumerations, 956
integer types, 955
manipulating, 965–967
signed, 961–965
size, 955–956
unsigned, 961–965

<bitset>, 1133
bitset, 959–961

bitwise logical operations, 960
construction, 959
exceptions, 1138
I/O, 960

Bitwise logical operations, 956–959, 1094
and &, 956–957, 1089, 1094
or |, 956, 1089, 1094
or and assign, |=, 966
and and assign &=, 1090
complement ~, 956
exclusive or ^, 956, 1089, 1094
exclusive or and assign ^=, 1089
left shift <<, 956
left shift and assign <<=, 1089
right shift >>, 956
right shift and assign >>=, 1089

Stroustrup_book.indb 1231Stroustrup_book.indb 1231 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1232

Blackboard, 36
Black-box testing, 992–993
blank, character class, regex, 878, 1179
Block, 111

debugging, 161
delimiter, 47, 111
nesting within functions, 271
try block, 146–147

Block comment /*. . .*/, 238
Blue marginal alerts, 3
BNF (Backus-Naur) Form, 823, 828
Body, functions, 114
bool, 63, 66–67, 1099

bits in memory, 78
bit space, 955
C++ and C, 1026, 1038
size, 78

boolalpha, manipulator, 1173
Boolean conversions, 1092
Borland, 831
Bottom-up approach, 9, 811
Bounds error, 149
Branching, testing, 1006–1008. See also

Conditional statements
break, case label termination, 106–108
Broadcast functions, 903
bsearch(), 1194–1195
Buffer, 348

flushing, 240–241
iostream, 406
overflow, 661, 792, 1006. See also gets(), scanf()

Bugs, 158, 1218. See also Debugging; Testing
finding the last, 166–167
first documented, 824–825
regression tests, 993

Built-in types, 304, 1099
arrays, 747–749, 1101–1102
bool, 77, 1100
characters, 77, 891, 1100
default constructors, 328
exceptions, 1126
floating-point, 77, 891–895, 1100
integers, 77, 891–895, 961–965, 1100
pointers, 588–590, 1100–1101
references, 279–280, 1102–1103

Button example, 443, 561–563
attaching to menus, 571
detecting a click, 557

Byte, 78, 1218
operations, C-style strings, 1048–1049

C
.c suffix, 1029
.cpp, suffix, 48, 1200
C# language, 831
C++ language, 839–842. See also Programming;

Programs; Software
coding standards, list of, 983
portability, 11
use for teaching, xxiv, 6–9

C++ and C, 1022–1024
C functions, 1028–1032
C linkage convention, 1033
C missing features, 1025–1027
calling one from the other, 1032–1034
casts, 1040–1041
compatibility, 1024–1025
const, 1054–1055
constants, 1054–1055
container example, 1059–1065
definitions, 1038–1040
enum, 1042
family tree, 1023
free-store, 1043–1045
input/output, 1050–1054
keywords, 1037–1038
layout rules, 1034
macros, 1054–1059
malloc(), 1043–1044
namespaces, 1042–1043
nesting structs, 1037
old-style casts, 1040
opaque types, 1060
performance, 1024
realloc(), 1045
structure tags, 1036–1037
type checking, 1032–1033
void, 1030
void*, 1041–1042

“C first” approach to programming, 9
C language, 836–839. See also C standard

library
C++ compatibility, 1022–1024. See also

C++ and C
K&R, 838, 1022–1023
linkage convention, 1033
missing features, 1025–1027

C standard library
C-style strings, 1191
header files, 1135

Stroustrup_book.indb 1232Stroustrup_book.indb 1232 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1233

input/output. See C-style I/O (stdio)
memory, 1192–1193

C-style casts, 1040–1041, 1087, 1095
C-style I/O (stdio)

%, conversion specification, 1187
conversion specifications, 1188–1189
file modes, 1186
files, opening and closing, 1186
fprintf(), 1051–1052, 1187
getc(), 1052, 1191
getchar(), 1045, 1052–1053, 1191
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdout, 1189
truncation, 1189

C-style strings, 654–655, 1045–1047, 1191
byte operations, 1048–1049
const, 1047–1048
copying, 1046–1047, 1049
executing as a command, system(), 1194
lexicographical comparison, 1046
operations, 1191–1192
pointer declaration, 1049–1050
strcat(), concatenate, 1047
strchr(), find character, 1048
strcmp(), compare, 1046
strcpy(), copy, 1047, 1049
from string, c_str(), 350, 851
strlen(), length of, 1046
strncat(), 1047
strncmp(), 1047
strncpy(), 1047
three-way comparison, 1046

CAD/CAM, 27, 34
Calculator example, 174, 186–188

analysis and design, 176–179
expression(), 197–200
get_token(), 196
grammars and programming, 188–195
parsing, 190–193
primary(), 196, 208
symbol table, 247
term(), 196, 197–202, 206–207
Token, 185–186
Token_stream, 206–214, 240–241

Call stack, 290
Callback functions, 556–559
Callback implementation, 1208–1209
Calling functions. See Function calls
calloc(), 1193
Cambridge University, 839
capacity(), 673–674, 1151
Capital letters. See Case (of characters)
Case (of characters)

formatting, 397–398
identifying, 397
islower(), 397, 1175
map container, 782
in names, 74–77
sensitivity, 397–398
tolower(), changing case, 398, 1176
toupper(), changing case, 398, 1176

case labels, 106–108
<cassert>, 1135
Casting away const, 609–610
Casts. See also Type conversion

C++ and C, 1026, 1038
casting away const, 609
const_cast, 1095
C-style casts, 1040–1041
dynamic_cast, 932, 1095
lexical_cast example, 855
narrow_cast example, 153
reinterpret_cast, 609
static_cast, 609, 944, 1095
unrelated types, 609

CAT scans, 30
catch, 147, 1038
Catch all exceptions ., 152
Catching exceptions, 146–153, 239–241, 1126
cb_next() example, 556–559
<cctype>, 1135, 1175
ceil(), 917, 1181
cerr, 151, 1169, 1189
<cerrno>, 1135
<cfloat>, 1135
Chaining operations, 180–181
Character classes

list of, 1179
in regular expressions, 873–874, 878

Character classification, 397–398, 1175–1176
Character literals, 161, 1079–1080
CHAR_BIT limit macro, 1181
CHAR_MAX limit macro, 1181
CHAR_MIN limit macro, 1181

Stroustrup_book.indb 1233Stroustrup_book.indb 1233 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1234

char type, 63, 66–67, 78
bits, 955
built-in, 1099
properties, 741–742
signed vs. unsigned, 894, 964

cin, 61
C equivalent. See stdin

standard character input, 61, 347, 1169
Circle example, 469–472, 497

vs. Ellipse, 474
Circular reference. See Reference (circular)
class, 183, 1036–1037
Class

abstract, 495, 512–513, 1118–1119. See also
Abstract classes

base, 504–506
coding standards, 981
concrete, 495–496, 1218
const member functions, 1110
constructors, 1112–1114, 1119–1120
copying, 1115, 1119
creating objects. See Concrete classes
default constructors, 327–330
defining, 212, 305, 1108, 1218
derived, 504
destructors, 1114–1115, 1119
encapsulation, 505
friend declaration, 1111
generated operations, 1119–1120
grouping related, 512
hierarchies, 512
history of, 834
implementation, 306–308
inheritance, 504–505, 513–514
interface, 513–514
member access. See Access control
naming. See Namespaces
nesting, 270
object layout, 506–507
organizing. See Namespaces
parameterized, 682–683. See also Template
private, 306–308, 505, 511, 1108–1109
protected, 495, 505, 511
public, 306–308, 505, 511, 1108–1109
run-time polymorphism, 504–505
subclasses, 504. See also Derived classes
superclasses, 504. See also Base classes
templates, 681–683
this pointer, 1110

types as parameters. See Template
union, 1121
unqualified name, 1110
uses for, 305

Class interfaces, 323, 1108
argument types, 324–326
const member functions, 330–332
constants, 330–332. See also const

copying, 326–327
helper functions, 332–334
immutable values, 330–332
initializing objects, 327–330
members, 332–334
mutable values, 332–334
public vs. private, 306–308
symbolic constants, defining, 326
uninitialized variables, 327–330

Class members, 305, 1108
. (dot), 306, 1109
:: (scope resolution), 1109
accessing, 306. See also Access control
allocated at same address, 1121
bitfields, 1120–1121
in-class definition, 1112
class interfaces, 332–334
data, 305
definitions, 1112
function, 314–316
out-of-class definition, 1112
Token_stream example, 212
Token example, 183–184

Class scope, 267, 1083
Class template

parameterized class, 682–683
parameterized type, 682–683
specialization, 681
type generators, 681

classic_elimination() example, 910–911
Cleaning up code

comments, 237–238
functions, 234–235
layout, 235–236
logical separations, 234–235
revision history, 237–238
scaffolding, 234–235
symbolic constants, 232–234

clear(), 355–358, 1150
<climits>, 1135
<clocale>, 1135

Stroustrup_book.indb 1234Stroustrup_book.indb 1234 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1235

clock(), 1015–1016, 1193
clock_t, 1193
clone() example, 504
Closed_polyline example, 456–458

vs. Polygon, 458
close() file, 352
<cmath>, 918, 1135, 1182
cntrl, 878, 1179
COBOL language, 823–825
Code

definition, 1218
layout, cleaning up, 235–236
libraries, uses for, 177
storage, 591–592
structure, ideals, 810–811
test coverage, 1008

Coding standards, 974–975
C++, list of, 983
complexity, sources of, 975
ideals, 976–977
sample rules, 977–983

Color example, 425–426, 450–452
color chat example, 465–467
fill, 431–432, 462–464, 500
transparency, 451

Columns, matrices, 900–901, 906
Command-line, 47
Comments, 45–46

block /*. . .*/, 238, 1076
C++ and C, 1026
cleaning up, 237–238
vs. code, 238
line //, 45–46, 1076
role in debugging, 159–160

Common Lisp language, 825
Communication skills, programmers, 22
Compacting garbage collection, 938–939
Comparison, 67. See also <; ==

C-style strings, 1045–1047
characters, 740
containers, 1151
key_compare, 1147
lexicographical, C-style strings, 1046
lexicographical_compare(), 1162
min/max algorithms, 1161–1162
string, 851
three-way, 1046

Compatibility. See C++ and C
Compile-time errors. See Errors, compile-time

Compiled languages, 47–48
Compilers, 48, 1218

compile-time errors, 51
conditional compilation, 1058–1059
syntax checking, 48–50

compl, synonym for ~, 1037, 1082
complex

*, multiply, 919, 1183
+, add (plus), 919, 1183
<<, output, 1183
!=, not equal (inequality), 919, 1183
==, equal, 919, 1183
>>, input, 920, 1183
/, divide, 919, 1183
<<, output, 920
abs(), absolute value, 920, 1183
conj(), conjugate, 920
Fortran language, 920
imag(), imaginary part, 920
norm(), square of abs(), 919
number types, 1182–1183
polar(), polar coordinate, 920
real(), real part, 920
rho, 920
square of abs(), 919
theta, 920

<complex>, 1134
complex operators, 919–920, 1183
standard math functions, 1181

Complex numbers, 919–920
Complexity, 1218

sources of, 975
Composite assignment operators, 73–74
Compound statements, 111
Computation, 91. See also Programs; Software

correctness, 92–94
data structures, 90–91
efficiency, 92–94
input/output, 91
objectives, 92–94
organizing programs, 92–94
programmer ideals, 92–94
simplicity, 92–94
state, definition, 90–91

Computation vs. data, 717–720
Computer-assisted surgery, 30
Computers

CAT scans, 30
computer-assisted surgery, 30

Stroustrup_book.indb 1235Stroustrup_book.indb 1235 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1236

Computers, continued

in daily life, 19–21
information processing, 32
Mars Rover, 33
medicine, 30
pervasiveness of, 19–21
server farms, 31–32
shipping, 26–28
space exploration, 33
telecommunications, 28–29
timekeeping, 26
world total, 19

Computer science, 12, 24–25
Concatenation of strings, 66

+, 68–69, 851, 1176
+=, 68–69, 851, 1176

Concept-based approach to programming, 6
Concrete classes, 495–496, 1218
Concrete-first approach to programming, 6
Concurrency, 932
Conditional compilation, 1058–1059
Conditional expression ?:, 268, 1089
Conditional statements. See also Branching,

testing
for, 111–113
if, 102–104
switch, 105–109
while, 109–111

Conforming programs, 1075
Confusing variable names, 77
conj(), complex conjugate, 920, 1183
Conjugate, 920
Consistency, ideals, 814–815
Console, as user interface, 552
Console input/output, 552
Console window, displaying, 162
const, 95–97. See also Constant; Static storage,

static const

C++ and C, 1026, 1054–1055
class interfaces, 330–332
C-style strings, 1047–1048
declarations, 262–263
initializing, 262
member functions, 330–332, 1110
overloading on, 647–648
passing arguments by, 276–278, 281–284
type, 1099

*const, immutable pointer, 1099
Constant. See also const, expressions, 1093
const_cast, casting away const, 609, 1095

const_iterator, 1147
constexpr, 96-97, 290-291, 1093, 1104
Constraints, vector range checking, 695
Constructors, 310–312, 1112–1114. See also

Destructors; Initialization
containers, 1148
copy, 633–634, 640–646
Date example, 311
Date example 307, 324–326
debugging, 643–646
default, 327–330, 1119
error handling, 313, 700–702
essential operations, 640–646
exceptions, 700–702
explicit, 642–643
implicit conversions, 642–643
initialization of bases and members, 315, 477,

555
invariant, 313–314, 701–702
move, 637–640
need for default, 641
Token example, 184

Container adaptors, 1144
Containers, 148, 749–751, 1218. See also Arrays;

list; map, associative array; vector

and algorithms, 722
almost containers, 751, 1145
assignments, 1148
associative, 1144, 1151–1152
capacity(), 1150–1151
of characters. See string

comparing, 1151
constructors, 1148
contiguous storage, 741
copying, 1151
destructors, 1148
element access, 1149
embedded systems, 951–954
header files, 1133–1134
information sources about, 750
iterator categories, 752
iterators, 1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size(), 1150
stack operations, 1149
standard library, 1144–1152

Stroustrup_book.indb 1236Stroustrup_book.indb 1236 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1237

swapping, 1151
templates, 686–687

Contents of * (dereference, indirection), 594
Contiguous storage, 741
Control characters, iscntrl(), 397
Control inversion, GUIs, 569–570
Control variables, 110
Controls. See Widget example
Conversion specifications, printf(), 1188–1189
Conversion. See also Type conversion

character case, 398
representation, 374–376
unchecked, 943–944

Coordinates. See also Point example
computer screens, 419–420
graphs, 426–427

copy(), 789–790, 1154
Copy assignments, 634–636, 640–646
Copy constructors, 633–634, 640–646
copy_backward(), 1154
copy_if(), 789
Copying, 631–637

arrays, 653–654
class interfaces, 326–327
containers, 1151
C-style strings, 1046–1047, 1049
I/O streams, 790–793
objects, 503–504
sequences, 758, 789–794
vector, 631–636, 1148

Correctness
definition, 1218
ideals, 92–94, 810
importance of, 929–930
software, 34

cos(), cosine, 527–528, 917, 1181
cosh(), hyperbolic cosine, 1182
Cost, definition, 1219
count(), 758, 1154
count_if(), 758, 1154
cout, 45

C equivalent. See stdout

printing error messages, 151. See also cerr

standard output, 347, 1169
Critical systems, coding standards, 982–983
<cstddef>, 1136
<cstdio>, 1135
<cstdlib>, 1135, 1193, 1194
c_str(), 1177
<cstring>, 1135, 1175, 1193

<ctime>, 1135, 1193
Ctrl D, 124
Ctrl Z, 124
Current object, 317. See also this pointer
Cursor, definition, 45
<cwchar>, 1136
<cwctype>, 1136

D
d, any decimal digit, regex, 878, 1179
\d, decimal digit, regex, 873, 1179
\D, not a decimal digit, regex, 873, 1179
d suffix, 1079
Dahl, Ole-Johan, 833–835
Data. See also Containers; Sequences; list; map,

associative array; vector

abstraction, 816
collections. See Containers
vs. computation, 717–720
generalizing code, 714–716
in memory. See Free store (heap sotrage)
processing, overview, 712–716
separating from algorithms, 722
storing. See Containers
structure. See Containers; class; struct

traversing. See Iteration; Iterators
uniform access and manipulation, 714–716. See

also STL (Standard Template Library)
Data member, 305, 492–493
Data structure. See Data; struct

Data type. See Type
Date and time, 1193–1194
Date example, See Chapters 6–7

Deallocating memory, 598–600, 1094–1095. See

also delete[]; delete

Debugging, 52, 158, 1219. See also Errors; Testing
arrays and pointers, 656–659
assertions, 163
block termination, 161
bugs, 158
character literal termination, 161
commenting code, 159–160
compile-time errors, 161
consistent code layout, 160
constructors, 643–646
declaring names, 161
displaying the console window, 162
expression termination, 161
finding the last bug, 166–167

Stroustrup_book.indb 1237Stroustrup_book.indb 1237 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1238

Debugging, continued

function size, 160
GUIs, 575–577
input data, 166
invariants, 162–163
keeping it simple, 160
logic errors, 154–156
matching parentheses, 161
naming conventions, 160
post-conditions, 165–166
pre-conditions, 163–165
process description, 158–159
reporting errors, 159
stepping through code, 162
string literal termination, 161
systematic approach, 166–167
test cases, 166, 227
testing, 1012
tracing code execution, 162–163
transient bugs, 595
using library facilities, 160
widgets, 576–577

dec manipulator, 382–383, 1174
Decimal digits, isdigit(), 397
Decimal integer literals, 1077
Decimal number system, 381–383, 1077–1078
Deciphering (decryption), example, 969–974
Declaration operators, 1099

& reference to, 276–279, 1099
* pointer to, 587, 1099
[] array of, 649, 1099
() function of, 113–115, 1099

Declarations, 51, 1098–1099
C++ and C, 1026
classes, 306
collections of. See Header files
constants, 262–263
definition, 51, 77, 257, 1098–1099, 1219
vs. definitions, 259–260
entities used for, 261
extern keyword, 259
forward, 261
function, 257–258, 1103
function arguments, 272–273
function return type, 272–273
grouping. See Namespaces
managing. See Header files
need for, 261
order of, 215

parts of, 1098
subdividing programs, 260–261
uses for, 1098
variables, 260, 262–263

Decrementing –– , 97
iterator, 1141–1142
pointer, 652

Deep copy, 636
Default constructors, 328–329

alternatives for, 329–330
for built-in types, 328
initializing objects, 327
need for, identifying, 641
uses for, 328–329

#define, 1129
Definitions, 77, 258–259, 1219. See also

Declarations
C++ and C, 1038–1040
vs. declarations, 259–260
function, 113–115, 272–273

delete

C++ and C, 1026, 1037
deallocating free store, 1094–1095
destructors, 601–605
embedded systems, 932, 936–940
free-store deallocation, 598–600
in unary expressions, 1087

delete[], 599, 1087, 1094–1095
Delphi language, 831
Dependencies, testing, 1002–1003
Depth-first approach to programming, 6
deque, double ended queue, 1144
<deque>, 1133
Dereference/indirection

*, 594. See also Contents of
[], 118. See also Subscripting

Derivation, classes, 505
Derived classes, 505, 1219

access control, 511
base classes, 1116–1117
inheritance, 1116–1117
multiple inheritance, 1117
object layout, 506–507
overview, 504–506, 1116–1117
private bases and members, 511
protected bases and members, 511
public bases and members, 511
specifying, 507–508
virtual functions, 1117–1118

Stroustrup_book.indb 1238Stroustrup_book.indb 1238 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1239

Design, 35, 176, 179, 1219
Design for testing, 1011–1012
Destructors, 601–603, 1114–1115, 1219. See also

Constructors
containers, 1148
debugging, 643–646
default, 1119
essential operations, 640–646
exceptions, 700–702
freeing resources, 323, 700–702
and free store, 604–605
generated, 603
RAII, 700–702
virtual, 604–605
where needed, 641–642

Device drivers, 346
Dictionary examples, 123–125, 788
difference_type, 1147
digit, character class, 878, 1179
Digit, word origin, 1077
Dijkstra, Edsger, 827–828, 992
Dimensions, matrices, 898–901
Direct expression of ideas, ideals, 811–812
Dispatch, 504–505
Display model, 413–414
distance(), 1142
Divide /, 66, 1088
Divide and assign /=, 67, 1090
Divide and conquer, 93
Divide-by-zero error, 201–202
divides(), 1164
Domain knowledge, 934
Dot product. See inner_product()

double floating-point type, 63, 66–67, 78,
1099

Doubly-linked lists, 613, 725. See also list

draw() example
fill color, 500
line visibility, 500
Shape, 500–502

draw_lines() example. See also draw() example
Closed_polyline, 458
Marked_polyline, 475–476
Open_polyline, 456
Polygon, 459
Rectangle, 465
Shape, 500–502

duration…, 1016, 1185
duration_cast, 1016, 1185

Dynamic dispatch, 504–505. See also Virtual
functions

Dynamic memory, 935-936, 1094. See also Free
store (heap storage)

dynamic_cast, type conversion, 1095
exceptions, 1138
predictability, 932

E
Efficiency

ideals, 92–94, 810
vector range checking, 695

Einstein, Albert, 815
Elements. See also vector

numbering, 649
pointers to, 650–652
variable number of, 649

Ellipse example, 472–474
vs. Circle, 474

Ellipsis ...
arguments (unchecked), 1105–1106
catch all exceptions, 152

else, in if-statements, 102–104
Email example, 855–865
Embedded systems

coding standards, 975–977, 983
concurrency, 932
containers, 951–954
correctness, 929–930
delete operator, 932
domain knowledge, 934
dynamic_cast, 932
error handling, 933–935
examples of, 926–928
exceptions, 932
fault tolerance, 930
fragmentation, 936, 937
free-store, 936–940
hard real time, 931
ideals, 932–933
maintenance, 929
memory management, 940–942
new operator, 932
predictability, 931, 932
real-time constraints, 931
real-time response, 928
reliability, 928
resource leaks, 931

Stroustrup_book.indb 1239Stroustrup_book.indb 1239 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1240

Embedded systems, continued

resource limitations, 928
soft real time, 931
special concerns, 928–929

Empty
empty(), is container empty? 1150
lists, 729
sequences, 729
statements, 101

Empty statement, 1035–1036
Encapsulation, 505
Enciphering (Encryption), example, 969–974
end()

iterator, 1148
string, 851, 1177
vector, 722

End of file
eof(), 355, 1171
file streams, 366
I/O error, 355
stringstream, 395

End of input, 124
End of line $ (in regular expressions), 873, 1178
Ending programs. See Termination
endl manipulator, 1174
ends manipulator, 1174
English grammar vs. programming grammar,

193–194
enum, 318–321, 1042. See also Enumerations
Enumerations, 318–321, 1107–1108

enum, 318–321, 1042
enumerators, 318–321, 1107–1108

EOF macro, 1053–1054
eof() stream state, 355, 1171
equal(), 759, 1153
Equal ==, 67, 1088
Equality operators, expressions, 1088
equal_range(), 758, 796
equal_to(), 1163
erase()

list, 742–745, 1150
list operations, 615–617
string, 851, 1177
vector, 745–747

errno, error indicator, 918–919, 1182
error() example, 142–143

passing multiple strings, 152
Error diagnostics, templates, 683
Error handling. See also Errors; Exceptions

% for floating-point numbers, 230–231
catching exceptions, 239–241

files fail to open, 389
GUIs, 576
hardware replication, 934
I/O errors. See I/O errors
I/O streams, 1171
mathematical errors, 918–919
modular systems, 934–935
monitoring subsystems, 935
negative numbers, 229–230
positioning in files, 393–394
predictable errors, 933
recovering from errors, 239–241
regular expressions, 878–880
resource leaks, 934
self-checking, 934
STL (Standard Template Library), 1137–1138
testing for errors, 225–229
transient errors, 934
vector resource exceptions, 702

Error messages. See also Reporting errors; error()
example; runtime_error

exceptions, printing, 150–151
templates, 683
writing your own, 142

Errors, 1219. See also Debugging; Testing
classifying, 134
compile-time, 48–50, 134, 136–137
detection ideal, 135
error(), 142–143
estimating results, 157–158
incomplete programs, 136
input format, 64–65
link-time, 134, 139–140
logic, 134, 154–156
poor specifications, 136
recovering from, 239–241. See also Exceptions
sources of, 136
syntax, 137–138
translation units, 139–140
type mismatch, 138–139
undeclared identifier, 258
unexpected arguments, 136
unexpected input, 136
unexpected state, 136

Errors, run-time, 134, 140–142. See also
Exceptions

callee responsibility, 143–145
caller responsibility, 142–143
hardware violations, 141
reasons for, 144–145
reporting, 145–146

Stroustrup_book.indb 1240Stroustrup_book.indb 1240 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1241

Essential operations, 640–646
Estimating development resources, 177
Estimating results, 157–158
Examples

age distribution, 538–539
calculator. See Calculator example
Date. See Date example
deciphering, 969–974
deleting repeated words, 71–73
dictionary, 123–125, 788
Dow Jones tracking, 782–785
email analysis, 855–865
embedded systems, 926–928
enciphering (encryption), 969–974
exponential function, 527–528
finding largest element, 713–716, 723–724
fruits, 779–782
Gaussian elimination, 910–911
graphics, 414–418, 436
graphing data, 537–539
graphing functions, 527–528
GUI (graphical user interface), 565–569,

573–574, 576–577
Hello, World! 45–46
intrusive containers, 1059–1065
Lines_window, 565–569, 573–574, 576–577
Link, 613–622
list (doubly linked), 613–622
map container, 779–785
Matrix, 908–914
palindromes, 659–662
Pool allocator, 940–941
Punct_stream, 401–405
reading a single value, 359–363
reading a structured file, 367–376
regular expressions, 880–885
school table, 880–885
searching, 864–872
sequences, 723–724
Stack allocator, 942–943
TEA (Tiny Encryption Algorithm),

969–974
text editor, 734–741
vector. See vector example
Widget manipulation, 565–569,

1213–1216
windows, 565–569
word frequency, 777–779
writing a program. See Calculator example
writing files, 352–354
ZIP code detection, 864–872

<exception>, 1135
Exceptions, 146–150, 1125–1126. See also Error

handling; Errors
bounds error, 149
C++ and C, 1026
catch, 147, 239–241, 1125–1126
cerr, 151–152
cout, 151–152
destructors, 1126
embedded systems, 932
error messages, printing, 150–151
exception, 152, 1138–1139
failure to catch, 153
GUIs, 576
input, 150–153
narrow_cast example, 153
off-by-one error, 149
out_of_range, 149–150, 152
overview, 146–147
RAII (Resource Acquisition Is Initialization),

1125
range errors, 148–150
re-throwing, 702, 1126
runtime_error, 142, 151, 153
stack unwinding, 1126
standard library exceptions, 1138–1139
terminating a program, 142
throw, 147, 1125
truncation, 153
type conversion, 153
uncaught exception, 153
user-defined types, 1126
vector range checking, 693–694
vector resources. See vector

Executable code, 48, 1219
Executing a program, 11, 1200–1201
exit(), terminating a program, 1194–1195
explicit constructor, 642–643, 1038
Expression, 94–95, 1086–1090

coding standards, 980–981
constant expressions, 1093
conversions, 1091–1093
debugging, 161
grouping (), 95, 867, 873, 876
lvalue, 94–95, 1090
magic constants, 96, 143, 232–234, 723
memory management, 1094–1095
mixing types, 99
non-obvious literals, 96
operator precedence, 95
operators, 97–99, 1086–1095

Stroustrup_book.indb 1241Stroustrup_book.indb 1241 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1242

Expression, continued

order of operations, 181
precedence, 1090
preserving values, 1091
promotions, 99, 1091
rvalue, 94–95, 1090
scope resolution, 1086
type conversion, 99–100, 1095
usual arithmetic conversions, 1092

Expression statement, 100
extern, 259, 1033
Extracting text from files, 856–861, 864–865

F
f/F suffix, 1079
fail() stream state, 355, 1171
Falling through end of functions, 274
false, 1038
Fault tolerance, 930
fclose(), 1053–1054, 1186
Feature creep, 188, 201, 1219
Feedback, programming, 36
Fields, formatting, 387–388
FILE, 1053–1054
File I/O, 349–350

binary I/O, 391
close(), 352
closing files, 352, 1186
converting representations, 374–376
modes, 1186
open(), 352
opening files. See Opening files
positioning in files, 393–394
reading. See Reading files
writing. See Writing files

Files, 1219. See also File I/O
C++ and C, 1053–1054
opening and closing, C-style I/O, 1186

fill(), 1157
fill_n(), 1157
Fill color example, 462–465, 500
find(), 758–761

associative container operations, 1151
finding links, 615–617
generic use, 761–763
nonmodifying sequence algorithms, 1153
string operations, 851, 1177

find_end(), 1153
find_first_of(), 1153

find_if(), 758, 763–764
Finding. See also Matching; Searching

associative container operations, 1151
elements, 758
links, 615–617
patterns, 864–865, 869–872
strings, 851, 1177

fixed format, 387
fixed manipulator, 385, 1174
<float.h>, 894, 1181
Floating-point, 63, 891, 1219

% remainder (modulo), 201
assigning integers to, 892–893
assigning to integers, 893
conversions, 1092
fixed format, 387
general format, 387
input, 182, 201–202
integral conversions, 1091–1092
literals, 182, 1079
mantissa, 893
output, formatting, 384–385
precision, 386–387
and real numbers, 891
rounding, 386
scientific format, 387
truncation, 893
vector example, 120–123

float type, 1099
floor(), 917, 1181
FLTK (Fast Light Toolkit), 418, 1204

code portability, 418
color, 451, 465–467
current style, obtaining, 500
downloading, 1204
fill, 465
in graphics code, 436
installing, 1205
lines, drawing, 454, 458
outlines, 465
rectangles, drawing, 465
testing, 1206
in Visual Studio, 1205–1206
waiting for user action, 559–560, 569–570

flush manipulator, 1174
Flushing a buffer, 240–241
Fonts for Graphics example, 468–470
fopen(), 1053–1054, 1186
for-statement, 111–113

vs. while, 122

Stroustrup_book.indb 1242Stroustrup_book.indb 1242 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1243

for_each(), 119, 1153
Ford, Henry, 806
Formal arguments. See Parameters
Formatting. See also C-style I/O; I/O streams;

Manipulators
See also C-style I/O, 1050–1054
See also I/O streams, 1172–1173
case, 397–398
See also Manipulators, 1173–1175
fields, 387–388
precision, 386–387
whitespace, 397

Fortran language, 821–823
array indexing, 899
complex, 920
subscripting, 899

Forward declarations, 261
Forward iterators, 752, 1142
fprintf(), 1051–1052, 1187
Fragmentation, embedded systems, 936, 937
free(), deallocate, 1043–1044, 1193
Free store (heap storage)

allocation, 593–594
C++ and C, 1043–1045
deallocation, 598–600
delete, 598–600, 601–605
and destructors. See Destructors
embedded systems, 936–940
garbage collection, 600
leaks, 598–600, 601–605
new, 593–594
object lifetime, 1085

Freeing memory. See Deallocating memory
friend, 1038, 1111
from_string() example, 853–854
front(), first element, 1149
front_inserter(), 1162
fstream(), 1170
<fstream>, 1134
fstream type, 350–352
Fully qualified names, 295–297
Function example, 443, 525–528
Function , 47, 113–117. See also Member functions

accessing class members, 1111
arguments. See Function arguments
in base classes, 504
body, 47, 114
C++ and C, 1028–1032
callback, GUIs, 556–559
calling, 1103

cleaning up, 234–235
coding standards, 980–981
common style, 490–491
debugging, 160
declarations, 117, 1103
definition, 113–115, 272, 1219
in derived classes, 501, 505
falling through, 274
formal arguments. See Function parameter

(formal argument)
friend declaration, 1111
generic code, 491
global variables, modifying, 269
graphing. See Function example
inline, 316, 1026
linkage specifications, 1106
naming. See Namespaces
nesting, 270
organizing. See Namespaces
overloading, 321–323, 526, 1026
overload resolution, 1104–1105
parameter, 115. See also Function parameter

(formal argument)
pointer to, 1034–1036
post-conditions, 165–166
pre-conditions, 163–165
pure virtual, 1221
requirements, 153. See also Pre-conditions
return, 113–115, 272–273, 1103
return type, 47, 272–273
standard mathematical, 528, 1181–1182
types as parameters. See Template
uses for, 115–116
virtual, 1034–1036. See also Virtual functions

Function activation record, 287
Function argument. See also Function parameter

(formal argument); Parameters
checking, 284–285
conversion, 284–285
declaring, 272–273
formal. See Parameters
naming, 273
omitting, 273
passing. See Function call

Function call, 285
call stack, 290
expression() call example, 287–290
function activation record, 287
history of, 820
memory for, 591–592

Stroustrup_book.indb 1243Stroustrup_book.indb 1243 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1244

Function call, continued

() operator, 766
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
recursive, 289
stack growth, 287–290. See also Function

activation record
temporary objects, 282

Function-like macros, 1056–1058
Function member

definition, 305–306
same name as class. See Constructors

Function objects, 765–767
() function call operator, 766
abstract view, 766–767
adaptors, 1164
arithmetic operations, 1164
parameterization, 767
predicates, 767–768, 1163

Function parameter (formal argument)
... ellipsis, unchecked arguments, 1105–1106
pass by const reference, 276–278, 281–284
pass by non-const reference, 281–284
pass by reference, 279–284
pass by value, 276, 281–284
temporary objects, 282
unused, 272

Function template
algorithms, 682–683
argument deduction, 689–690
parameterized functions, 682–683

<functional>, 1133, 1163
Functional cast, 1095
Functional programming, 823
Fused multiply-add, 904

G
Gadgets. See Embedded systems
Garbage collection, 600, 938–939
Gaussian elimination, 910–911
gcount(), 1172
general format, 387
general manipulator, 385
generate(), 1157
generate_n(), 1157
Generic code, 491
Generic programming, 682–683, 816, 1219
Geometric shapes, 427

get(), 1172
getc(), 1052, 1191
getchar(), 1053, 1191
getline(), 395–396, 851, 855, 1172
gets(), 1052

C++ alternative >>, 1053
dangerous, 1052
scanf(), 1190

get_token() example, 196
GIF images, 480–482
Global scope, 267, 270, 1082
Global variables

functions modifying, 269
memory for, 591–592
order of initialization, 292–294

Going out of scope, 268–269, 291
good() stream state, 355, 1171
GP. See Generic programming
Grammar example

alternation, patterns, 194
English grammar, 193–194
Expression example, 197–200, 202–203
parsing, 190–193
repetition, patterns, 194
rules vs. tokens, 194
sequencing rules, 195
terminals. See Tokens
writing, 189, 194–195

Graph example. See also Grids, drawing
Axis, 424–426
coordinates, 426–427
drawing, 426–427
points, labeling, 474–476

Graph.h, 421–422
Graphical user interfaces. See GUIs (graphical

user interfaces)
Graphics, 412. See also Graphics example; Color

example; Shape example
displaying, 479–482
display model, 413–414
drawing on screen, 423–424
encoding, 480
filling shapes, 431
formats, 480
geometric shapes, 427
GIF, 480–482
graphics libraries, 481–482
graphs, 426–427
images from files, 433–434
importance of, 412–413
JPEG, 480–482

Stroustrup_book.indb 1244Stroustrup_book.indb 1244 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1245

line style, 431
loading from files, 433–434
screen coordinates, 419–420
selecting a sub-picture from, 480
user interface. See GUIs (graphical user

interfaces)
Graphics example

Graph.h, 421–422
GUI system, giving control to, 423
header files, 421–422
main(), 421–422
Point.h, 444
points, 426–427
Simple_window.h, 444
wait_for_button(), 423
Window.h, 444

Graphics example, design principles
access control. See Access control
attach() vs. add(), 491–492
class diagram, 505
class size, 489–490
common style, 490–491
data modification access, 492–493
generic code, 491
inheritance, interface, 513–514
inheritances, implementation, 513–514
mutability, 492–493
naming, 491–492
object-oriented programming, benefits of,

513–514
operations, 490–491
private data members, 492–493
protected data, 492–493
public data, 492–493
types, 488–490
width/height, specifying, 490

Graphics example, GUI classes, 442–444. See also
Graphics example, interfaces

Button, 443
In_box, 443
Menu, 443
Out_box, 443
Simple_window, 422–424, 443
Widget, 561–563, 1209–1210
Window, 443, 1210–1212

Graphics example, interfaces, 442–443. See also
Graphics example, GUI classes

Axis, 424–426, 443, 529–532
Circle, 469–472, 497
Closed_polyline, 456–458
Color, 450

Ellipse, 472–474
Function, 443, 524–528
Image, 443, 479–482
Line, 445–448
Line_style, 452–455
Lines, 448–450, 497
Mark, 478–479
Marked_polyline, 474–476
Marks, 476–477, 497
Open_polyline, 455–456, 497
Point, 426–427, 445
Polygon, 427–428, 458–460, 497
Rectangle, 428–431, 460–465, 497
Shape, 444–445, 449, 493–494, 513–514
Text, 431–433, 467–470

Graphing data example, 538–546
Graphing functions example, 520–524,

532–537
Graph_lib namespace, 421–422
greater(), 1163
Greater than >, 67, 1088
Greater than or equal >=, 1088
greater_equal(), 1163
Green marginal alerts, 3
Grids, drawing, 448–449, 452–455
Grouping regular expressions, 867, 873, 876
Guarantees, 701–702
Guidelines. See Ideals
GUIs (graphical user interfaces), 552–553. See also

Graphics example, GUI classes
callback functions, 556–559
callback implementation, 1208–1209
cb_next() example, 556–559
common problems, 575–577
control inversion, 569–570
controls. See Widget example
coordinates, computer screens, 419–420
debugging, 575–577
error handling, 576
examples, 565–569, 573–574, 576–577
exceptions, 576
FLTK (Fast Light Toolkit), 418
layers of code, 557
next() example, 558–559
pixels, 419–420
portability, 418
standard library, 418–419
toolkit, 418
vector_ref example, 1212–1213
vector of references, simulating,

1212–1213

Stroustrup_book.indb 1245Stroustrup_book.indb 1245 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1246

GUIs (graphical user interfaces), continued

wait loops, 559–560
wait_for_button() example, 559–560
waiting for user action, 559–560,

569–570
Widget example, 561–569, 1209–1210,

1213–1216
Window example, 565–569, 1210–1212

GUI system, giving control to, 423

H
.h file suffix, 46
Half open sequences, 119, 721
Hard real-time, 931, 981–982
Hardware replication, error handling, 934
Hardware violations, 141
Hashed container. See unordered_map

Hash function, 785–786
Hashing, 785
Hash tables, 785
Hash values, 785
Header files, 46, 1219

C standard library, 1135–1136
declarations, managing, 264
definitions, managing, 264
graphics example, 421–422
including in source files, 264–266, 1129
multiple inclusion, 1059
standard library, 1133–1134

Headers. See Header files
Heap algorithm, 1160
Heap memory, 592, 935–936, 1084, 1160. See also

Free store (heap storage)
Hejlsberg, Anders, 831
“Hello, World!” program, 45–47
Helper functions

== equality, 333
!= inequality, 333
class interfaces, 332–334
Date example, 309–310, 332–333
namespaces, 333
validity checking date values, 310

hex manipulator, 382–383, 1174
Hexadecimal digits, 397
Hexadecimal number system, 381–383,

1077–1078
Hiding information, 1220
Hopper, Grace Murray, 824–825
Hyperbolic cosine, cosh(), 918

Hyperbolic sine, sinh(), 918, 1182
Hyperbolic tangent, tanh(), 917

I
I/O errors

bad() stream state, 355
clear(), 355–358
end of file, 355
eof() stream state, 355
error handling, 1171
fail() stream state, 355
good() stream state, 355
ios_base, 357
recovering from, 355–358
stream states, 355
unexpected errors, 355
unget(), 355–358

I/O streams, 1168–1169
>> input operator, 855
<< output operator, 855
cerr, standard error output stream, 151–152,

1169, 1189
cin standard input, 347
class hierarchy, 855, 1170–1171
cout standard output, 347
error handling, 1171
formatting, 1172–1173
fstream, 388–390, 393, 1170
get(), 855
getline(), 855
header files, 1134
ifstream, 388–390, 1170
input operations, 1172
input streams, 347–349
iostream library, 347–349, 1168–1169
istream, 347–349, 1169–1170
istringstream, 1170
ofstream, 388–390, 1170
ostream, 347–349, 1168–1169
ostringstream, 388–390, 1170
output operations, 1173
output streams, 347–349
standard manipulators, 382, 1173–1174
standard streams, 1169
states, 1171
stream behavior, changing, 382
stream buffers, streambufs, 1169
stream modes, 1170
string, 855

Stroustrup_book.indb 1246Stroustrup_book.indb 1246 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1247

stringstream, 395, 1170
throwing exceptions, 1171
unformatted input, 1172

IBM, 823
Ichbiah, Jean, 832
IDE (interactive development environment),

52
Ideals

abstraction level, 812–813
bottom-up approach, 811
class interfaces, 323
code structure, 810–811
coding standards, 976–977
consistency, 814–815
correct approaches, 811
correctness, 810
definition, 1219
direct expression of ideas, 811–812
efficiency, 810
embedded systems, 932–933
importance of, 8
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
overview, 808–809
performance, 810
software, 34–37
on-time delivery, 810
top-down approach, 811

Identifiers, 1081. See also Names
reserved, 75–76. See also Keywords

if-statements, 102–104
#ifdef, 1058–1059
#ifndef, 1058–1059
ifstream type, 350–352
imag(), imaginary part, 920, 1183
Image example, 443, 479–482
Images. See Graphics
Imaginary part, 920
Immutable values, class interfaces, 330–332
Implementation, 1219

class, 306–308
inheritance, 513–514
programs, 36

Implementation-defined feature, 1075
Implicit conversions, 642–643
in mode, 389, 1170
In_box example, 443, 563–564
In-class member definition, 1112

#include, 46, 264–266, 1128–1129
Include guard, 1059
includes(), 1159
Including headers, 1129. See also #include

Incrementing ++, 66, 721
iterators, 721, 750, 1140–1141
pointers, 651–652
variables, 73–74, 97–98

Indenting nested code, 271
Inequality != (not equal), 67, 1088, 1101

complex, 919, 1183
containers, 1151
helper function, 333
iterators, 721, 1141
string, 67, 851, 1176

Infinite loop, 1219
Infinite recursion, 198, 1220
Information hiding, 1220
Information processing, 32
Inheritance

class diagram, 505
definition, 504
derived classes, 1116–1117
embedded systems, 951–954
history of, 834
implementation, 513–514
interface, 513–514
multiple, 1117
pointers vs. references, 612–613
templates, 686–687

Initialization, 69–73, 1220
{} initialization notation, 83
arrays, 596–598, 654–656
constants, 262, 329–330, 1099
constructors, 310–312
Date example, 309–312
default, 263, 327, 1085
invariants, 313–314, 701–702
menus, 571
pointers, 596–598, 657
pointer targets, 596–598
Token example, 184

initializer_list, 630
inline, 1037
Inline

functions, 1026
member functions, 316

inner_product(), 759. See also Dot product
description, 774–775
generalizing, 775–776

Stroustrup_book.indb 1247Stroustrup_book.indb 1247 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1248

inner_product(), continued

matrices, 904
multiplying sequences, 1184
standard library, 759, 770

inplace_merge(), 1158
Input, 60–62. See also Input >>; I/O streams

binary I/O, 390–393
C++ and C, 1052–1053
calculator example, 179, 182, 185, 201–202,

206–208
case sensitivity, 64
cin, standard input stream, 61
dividing functions logically, 359–362
files. See File I/O
format errors, 64–65
individual characters, 396–398
integers, 383–384
istringstream, 394
line-oriented input, 395–396
newline character \n, 61–62, 64
potential problems, 358–363
prompting for, 61, 179
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
source of exceptions, 150–153
stringstream, 395
tab character \t, 64
terminating, 61–62
type sensitivity, 64–65
whitespace, 64

Input >>, 61
case sensitivity, 64
complex, 920, 1183
formatted input, 1172
multiple values per statement, 65
strings, 851, 1177
text input, 851, 855
user-defined, 365
whitespace, ignoring, 64

Input devices, 346–347
Input iterators, 752, 1142
Input loops, 365–367
Input/output, 347–349. See also Input; Output

buffering, 348, 406
C++ and C. See stdio
computation overview, 91
device drivers, 346
errors. See I/O errors
files. See File I/O
formatting. See Manipulators; printf()

irregularity, 380
istream, 347–354
natural language differences, 406
ostream, 347–354
regularity, 380
streams. See I/O streams
strings, 855
text in GUIs, 563–564
whitespace, 397, 398–405

Input prompt >, 223
Inputs, testing, 1001
Input streams, 347–349. See also I/O streams
insert()

list, 615–617, 742–745
map container, 782
string, 851, 1150, 1177
vector, 745–747

inserter(), 1162
Inserters, 1162–1163
Inserting

list elements, 742–745
into strings, 851, 1150, 1177
vector elements, 745–747

Installing
FLTK (Fast Light Toolkit), 1205
Visual Studio, 1198

Instantiation, templates, 681, 1123–1124
int, integer type, 66–67, 78, 1099

bits in memory, 78, 955
Integers, 77–78, 890–891, 1220

assigning floating-point numbers to, 893
assigning to floating-point numbers, 892–893
decimal, 381–383
input, formatting, 383–384
largest, finding, 917
literals, 1077
number bases, 381–383
octal, 381–383
output, formatting, 381–383
reading, 383–384
smallest, finding, 917

Integral conversions, 1091–1092
Integral promotion, 1091
Interactive development environment (IDE), 52
Interface classes. See Graphics example, interfaces
Interfaces, 1220

classes. See Class interfaces
inheritance, 513–514
user. See User interfaces

internal manipulator, 1174
Intrusive containers, example, 1059–1065

Stroustrup_book.indb 1248Stroustrup_book.indb 1248 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1249

Invariants, 313–314, 1220. See also Post-conditions;
Pre-conditions

assertions, 163
Date example, 313–314
debugging, 162–163
default constructors, 641
documenting, 815
invention of, 828
Polygon example, 460

Invisible. See Transparency
<iomanip>, 1134, 1173
<ios>, 1134, 1173
<iosfwd>, 1134
iostream

buffers, 406
C++ and C, 1050
exceptions, 1138
library, 347–349

<iostream>, 1134, 1173
Irregularity, 380
is_open(), 1170
isalnum() classify character, 397, 1175
isalpha() classify character, 247, 397, 1175
iscntrl() classify character, 397, 1175
isdigit() classify character, 397, 1175
isgraph() classify character, 397, 1175
islower() classify character, 397, 1175
isprint() classify character, 397, 1175
ispunct() classify character, 397, 1175
isspace() classify character, 397, 1175
istream, 347–349, 1169–1170

>>, text input, 851, 1172
>>, user-defined, 365
binary I/O, 390–393
connecting to input device, 1170
file I/O, fstream, 349–354, 1170
get(), get a single character, 397
getline(), 395–396, 1172
stringstreams, 395
unformatted input, 395–396, 1172
using together with stdio, 1050

<istream>, 1134, 1168–1169, 1173
istream_iterator type, 790–793
istringstream, 394
isupper() classify character, 397, 1175
isxdigit() classify character, 397, 1175
Iteration. See also Iterators

control variables, 110
definition, 1220
example, 737–741
linked lists, 727–729, 737–741

loop variables, 110–111
for-statements, 111–113
strings, 851
through values. See vector

while-statements, 109–111
iterator, 1147
<iterator>, 1133, 1162
Iterators, 721–722, 1139–1140, 1220. See also STL

iterators
bidirectional iterator, 752
category, 752, 1142–1143
containers, 1143–1145, 1148
empty list, 729
example, 737–741
forward iterator, 752
header files, 1133–1134
input iterator, 752
operations, 721, 1141–1142
output iterator, 752
vs. pointers, 1140
random-access iterator, 752
sequence of elements, 1140–1141

iter_swap(), 1157

J
Japanese age distribution example, 538–539
JPEG images, 480–482

K
Kernighan, Brian, 838–839, 1022–1023
key_comp(), 1152
key_compare, 1147
key_type, 1147
Key, value pairs, containers for, 776
Keywords, 1037–1038, 1081–1082
KISS, 815
Knuth, Don, 808
K&R, 838, 1022

L
l/L suffix, 1077
\l, “lowercase character,” regex, 873, 1179
\L, “not lowercase character,” regex, 874, 1179
Label

access control, 306, 511
case, 106–108
graph example, 529–532
of statement, 1096

Stroustrup_book.indb 1249Stroustrup_book.indb 1249 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1250

Lambda expression, 560–561
Largest integer, finding, 917
Laws of optimization, 931
Layers of code, GUIs, 557
Layout rules, 979, 1034
Leaks, memory, 598–600, 601–605, 937
Leap year, 309
left manipulator, 1174
Legal programs, 1075
length(), 851, 1176
Length of strings, finding, 851, 1046, 1176
less(), 1163
Less than <, 1088
Less than or equal <=, 67, 1088
less_equal(), 1163
Letters, identifying, 247, 397
lexical_cast, 855
Lexicographical comparison

<= comparison, 1176
< comparison, 1176
>= comparison, 1176
> comparison, 1176
< comparison, 851
C-style strings, 1046
lexicographical_compare(), 1162

Libraries, 51, 1220. See also Standard library
role in debugging, 160
uses for, 177

Lifetime, objects, 1085–1086, 1220
Limit macros, 1181
<limits>, 894, 1135, 1180
Limits, 894–895
<limits.h>, 894, 1181
Linear equations example, 908–914

back_substitution(), 910–911
classic_elimination(), 910–911
Gaussian elimination, 910–911
pivoting, 911–912
testing, 912–914

Line comment //, 45
Line example, 445–447

vs. Lines, 448
Line-oriented input, 395–396
Lines example, 448–450, 497

vs. Line, 448
Lines (graphic), drawing. See also Graphics;

draw_lines()

on graphs, 529–532
line styles, 452–455
multiple lines, 448–450
single lines, 445–447

styles, 431, 454
visibility, 500

Lines (of text), identifying, 736–737
Line_style example, 452–455
Lines_window example, 565–569, 573–574, 576–577
Link example, 613–622
Link-time errors. See Errors, link-time
Linkage convention, C, 1033
Linkage specifications, 1106
Linked lists, 725. See also Lists
Linkers, 51, 1220
Linking programs, 51
Links, 613–615, 620–622, 725
Lint, consistency checking program, 836
Lisp language, 825–826
list, 727, 1146–1151

{} initialization notation, 83
add(), 615–617
advance(), 615–617
back(), 737
erase(), 615–617, 742–745
find(), 615–617
insert(), 615–617, 742–745
operations, 615–617
properties, 741–742
referencing last element, 737
sequence containers, 1144
subscripting, 727

<list>, 1133
Lists

containers, 1150
doubly linked, 613, 725
empty, 729
erasing elements, 742–745
examples, 613–615, 734–741
finding links, 615–617
getting the nth element, 615–617
inserting elements, 615–617, 742–745
iteration, 727–729, 737–741
link manipulation, 615–617
links, examples, 613–615, 620–622, 726
operations, 726–727
removing elements, 615–617
singly linked, 612–613, 725
this pointer, 618–620

Literals, 62, 1077, 1220
character, 161, 1079–1080
decimal integer, 1077
in expressions, 96
f/F suffix, 1079
floating-point, 1079

Stroustrup_book.indb 1250Stroustrup_book.indb 1250 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1251

hexadecimal integer, 1077
integer, 1077
l/L suffix, 1077
magic constants, 96, 143, 232–234, 723
non-obvious, 96
null pointer, 0, 1081
number systems, 1077–1079
octal integer, 1077
special characters, 1079–1080
string, 161, 1080
termination, debugging, 161
for types, 63
u/U suffix, 1077
unsigned, 1077

Local (automatic) objects, lifetime, 1085
Local classes, nesting, 270
Local functions, nesting, 270
Local scope, 267, 1083
Local variables, array pointers, 658
Locale, 406
<locale>, 1135
log(), 918, 1182
log10(), 918, 1182
Logic errors. See Errors, logic
Logical and &&, 1089, 1094
Logical operations, 1094
Logical or ||, 1089, 1094
logical_and(), 1163
logical_not(), 1163
logical_or(), 1163
Logs, graphing, 528
long integer, 955, 1099
Look-ahead problem, 204–209
Loop, 110–111, 112, 1220

examples, parser, 200
infinite, 198, 1219
testing, 1005–1006
variable, 110–111, 112

Lovelace, Augusta Ada, 832
lower, 878, 1179
lower_bound(), 796, 1152, 1158
Lower case. See Case (of characters)
Lucent Bell Labs, 838
Lvalue, 94–95, 1090

M
Machine code. See Executable code
Macros, 1055–1056

conditional compilation, 1058–1059
#define, 1056–1058, 1129

function-like, 1056–1058
#ifdef, 1058–1059
#ifndef, 1059
#include, 1058, 1128–1129
include guard, 1059
naming conventions, 1055
syntax, 1058
uses for, 1056

Macro substitution, 1129
Maddock, John, 865
Magic constants, 96, 143, 232–234, 723
Magical approach to programming, 10
main(), 46–47

arguments to, 1076
global objects, 1076
return values, 47, 1075–1076
starting a program, 1075–1076

Maintainability, software, 35, 810
Maintenance, 929
make_heap(), 1160
make_pair(), 782, 1165–1166
make_unique(), 1167
make_vec(), 702
malloc(), 1043–1044, 1193
Manipulators, 382, 1173–1174

complete list of, 1173–1174
dec, 1174
endl, 1174
fixed, 1174
hex, 1174
noskipws, 1174
oct, 1174
resetiosflags(), 1174
scientific, 1174
setiosflags(), 1174
setprecision(), 1174
skipws, 1174

Mantissa, 893
map, associative array, 776–782. See also set;

unordered_map

[], subscripting, 777, 1151
balanced trees, 780–782
binary search trees, 779
case sensitivity, No_case example, 795
counting words example, 777–779
Dow Jones example, 782–785
email example, 855–872
erase(), 781, 1150
finding elements in, 776–777, 781,

1151–1152
fruits example, 779–782

Stroustrup_book.indb 1251Stroustrup_book.indb 1251 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1252

map, associative array, continued

insert(), 782, 1150
iterators, 1144
key storage, 776
make_pair(), 782
No_case example, 782, 795
Node example, 779–782
red-black trees, 779
vs. set, 788
standard library, 1146–1152
tree structure, 779–782
without values. See set

<map>, 776, 1133
mapped_type, 1147
Marginal alerts, 3
Mark example, 478–479
Marked_polyline example, 474–476
Marks example, 476–477, 497
Mars Rover, 33
Matching. See also Finding; Searching

regular expressions, regex, 1177–1179
text patterns. See Regular expressions

Math functions, 528, 1181–1182
Mathematics. See Numerics
Mathematical functions, standard

abs(), absolute value, 917
acos(), arccosine, 917
asin(), arcsine, 918
atan(), arctangent, 918
ceil(), 917
<cmath>, 918, 1135
<complex>, 919–920
cos(), cosine, 917
cosh(), hyperbolic cosine, 918
errno, error indicator, 918–919
error handling, 918–919
exp(), natural exponent, 918
floor(), 917
log(), natural logarithm, 918
log10(), base-10 logarithm, 918
sin(), sine, 917
sinh(), hyperbolic sine, 918
sqrt(), square root, 917
tan(), tangent, 917
tanh(), hyperbolic tangent, 917

Matrices, 899–901, 905–906
Matrix library example, 899–901, 905

[], subscripting (C style), 897, 899
(), subscripting (Fortran style), 899
accessing array elements, 899–901

apply(), 903
broadcast functions, 903
clear_row, 906
columns, 900–901, 906
dimensions, 898–901
dot product, 904
fused multiply-add, 904
initializing, 906
inner_product, 904
input/output, 907
linear equations example, 910–914
multidimensional matrices, 898–908
rows, 900–901, 906
scale_and_add(), 904
slice(), 901–902, 905
start_row, 906
subscripting, 899–901, 905
swap_columns(), 906
swap_rows(), 906

max(), 1161
max_element(), 1162
max_size(), 1151
McCarthy, John, 825–826
McIlroy, Doug, 837, 1032
Medicine, computer use, 30
Member, 305–307. See also Class

allocated at same address, 1121
class, nesting, 270
in-class definition, 1112
definition, 1108
definitions, 1112
out-of-class definition, 1112

Member access. See also Access control
. (dot), 1109
:: scope resolution, 315, 1109
notation, 184
operators, 608
this pointer, 1110
by unqualified name, 1110

Member function. See also Class members;
Constructors; Destructors; Date example

calls, 120
nesting, 270
Token example, 184

Member initializer list, 184
Member selection, expressions, 1087
Member types

containers, 1147
templates, 1124

memchr(), 1193

Stroustrup_book.indb 1252Stroustrup_book.indb 1252 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1253

memcmp(), 1192
memcpy(), 1192
mem_fn() adaptor, 1164
memmove(), 1192
Memory, 588–590

addresses, 588
allocating. See Allocating memory
automatic storage, 591–592
bad_alloc exception, 1094
for code, 591–592
C standard library functions, 1192–1193
deallocating, 598–600
embedded systems, 940–942
exhausting, 1094
freeing. See Deallocating memory
free store, 592–594
for function calls, 591–592
for global variables, 591–592
heap. See Free store (heap sotrage)
layout, 591–592
object layout, 506–507
object size, getting, 590–591
pointers to, 588–590
sizeof, 590–591
stack storage, 591–592
static storage, 591–592
text storage, 591–592

<memory>, 1134
memset(), 1193
Menu example, 443, 564–565, 570–575
merge(), 758, 1158
Messages to the user, 564
min(), 1161
min_element(), 1162
Minimalism, ideals, 814–815
minus(), 1164
Missing copies, 645
MIT, 825–826, 838
Modifying sequence algorithms, 1154–1156
Modularity, ideals, 813–814
Modular systems, error handling, 934–935
Modulo (remainder) %, 66. See also Remainder
modulus(), 1164
Monitoring subsystems, error handling, 935
move(), 502, 562
Move assignments, 637–640
Move backward –=, 1101
Move forward +=, 1101
Move constructors, 637–640
Moving, 637–640

Multi-paradigm programming languages, 818
Multidimensional matrices, 898–908
multimap, 776, 860–861, 1144
<multimap>, 776
Multiplicative operators, expressions, 1088
multiplies(), 1164
Multiply *, 66, 1088
Multiply and assign *=, 67
multiset, 776, 1144
<multiset>, 776
Mutability, 492–493, 1220

class interfaces, 332–334
and copying, 503–504

mutable, 1037
Mutating sequence algorithms, 1154–1156

N
\n newline, character literal, 61–62, 64, 1079
Named character classes, in regular expressions,

877–878
Names, 74–77

_ (underscore), 75, 76
capital letters, 76–77
case sensitivity, 75
confusing, 77
conventions, 74–75
declarations, 257–258
descriptive, 76
function, 47
length, 76
overloaded, 140, 508–509, 1104–1105
reserved, 75–76. See also Keywords

namespace, 271, 1037
Namespaces, 294, 1127. See also Scope

:: scope resolution, 295–296
C++ and C, 1042–1043
fully qualified names, 295–297
helper functions, 333
objects, lifetime, 1085
scope, 267, 1082
std, 296–297
for the STL, 1136
using declarations, 296–297
using directives, 296–297, 1127
variables, order of initialization, 292–294

Naming conventions, 74–77
coding standards, 979–980
functions, 491–492
macros, 1055

Stroustrup_book.indb 1253Stroustrup_book.indb 1253 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1254

Naming conventions, continued

role in debugging, 160
scope, 269

narrow_cast example, 153
Narrowing conversions, 80–83
Narrowing errors, 153
Natural language differences, 406
Natural logarithms, 918
Naur, Peter, 827–828
negate(), 1164
Negative numbers, 229–230
Nested blocks, 271
Nested classes, 270
Nested functions, 270
Nesting

blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270
functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 271
member classes, 270
member functions, 270
structs, 1037

new, 592, 596–598
C++ and C, 1026, 1037
and delete, 1094–1095
embedded systems, 932, 936–940
example, 593–594
exceptions, 1138
types, constructing, 1087

<new>, 1135
New-style casts, 1040
next_permutation(), 1161
No-throw guarantee, 702
noboolalpha, 1173
No_case example, 782
Node example, 779–782
Non-algorithms, testing, 1001–1008
Non-errors, 139
Non-intrusive containers, 1059
Nonmodifying sequence algorithm, 1153–1154
Non-narrowing initialization, 83
Nonstandard separators, 398–405
norm(), 919, 1183
Norwegian Computing Center, 833–835
noshowbase, 383, 1173
noshowpoint, 1173

noshowpos, 1173
noskipws, 1174
not, synonym for ! 1037, 1038
Not ! 1087
not1() adaptor, 1164
not2() adaptor, 1164
Notches, graphing data example, 529–532,

543–546
Not-conforming constructs, 1075
Not equal != (inequality), 67, 1088, 1101
not_eq, synonym for !=, 1038
not_equal_to(), 1163
nouppercase manipulator, 1174
now(), 1016, 1185
nth_element(), 1158
Null pointer, 598, 656–657, 1081
nullptr, 598
Number example, 189
Number systems

base-2, binary, 1078–1079
base-8, octal, 381–384, 1077–1078
base-10, decimal, 381–384, 1077–1078
base-16, hexadecimal, 381–384, 1077–1078

<numeric>, 1135, 1183
Numerical algorithms. See Algorithms, numerical
Numerics, 890–891

absolute values, 917
arithmetic function objects, 1164
arrays. See Matrix library example
<cmath>, 918
columns, 895–896
complex, 919–920, 1182–1183
<complex>, 919–920
floating-point rounding errors, 892–893
header files, 1134
integer and floating-point, 892–893
integer overflow, 891–893
largest integer, finding, 917
limit macros, 1181
limits, 894
mantissa, 893
mathematical functions, 917–918
Matrix library example, 897–908
multi-dimensional array, 895–897
numeric_limits, 1180
numerical algorithms, 1183–1184
overflow, 891–895
precision, 891–895
random numbers, 914–917
real numbers, 891. See also Floating-point

Stroustrup_book.indb 1254Stroustrup_book.indb 1254 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1255

results, plausibility checking, 891
rounding errors, 891
rows, 895–896
size, 891–895
sizeof(), 892
smallest integer, finding, 917
standard mathematical functions, 917–918,

1181–1182
truncation, 893
valarray, 1183
whole numbers. See Integers

Nygaard, Kristen, 833–835

O
.obj file suffix, 48
Object, 60, 1220

aliases. See References
behaving like a function. See Function object
constructing, 184
copying, 1115, 1119
current (this), 317
Date example, 334–338
initializing, 327–330. See also Constructors
layout in memory, 308–309, 506–507
lifetime, 1085–1086
named. See Variables
Shape example, 495
sizeof(), 590–591
state, 2, 305
type, 77–78
value. See Values

Object code, 48, 1220. See also Executable code
Object-oriented programming, 1220

“from day one,” 10
vs. generic programming, 682
for graphics, benefits of, 513–514
history of, 816, 834

oct manipulator, 382–383, 1174
Octal number system, 381–383, 1077–1078
Off-by-one error, 149
ofstream, 351–352
Old-style casts, 1040
One-dimensional (1D) matrices, 901–904
On-time delivery, ideals, 810
\ooo octal, character literal, 1080
OOP. See Object-oriented programming
Opaque types, 1060
open(), 352, 1170
Open modes, 389–390

Open shapes, 455–456
Opening files, 350–352. See also File I/O

binary files, 390–393
binary mode, 389
C-style I/O, 1186
failure to open, 389
file streams, 350–352
nonexistent files, 389
open modes, 389–390
testing after opening, 352

Open_polyline example, 455–456, 497
Operations, 66–69, 305, 1220

chaining, 180–181
graphics classes, 490–491

operator, 1038
Operator overloading, 321

C++ standard operators, 322–323
restrictions, 322
user-defined operators, 322
uses for, 321–323

Operator, 97–99
! not, 1087
!= not-equal (inequality), 1088
& (unary) address of, 588, 1087
& (binary) bitwise and, 956, 1089, 1094
&& logical and, 1089, 1094
&= and and assign, 1090
% remainder (modulo), 1088
%= remainder (modulo) and assign, 1090
* (binary) multiply, 1088
* (unary) object contents, pointing to, 1087
*= multiply and assign, 1089
+ add (plus), 1088
++ increment, 1087
+= add and assign, 1090
– substract (minus), 65, 1088
–– decrement, 66, 1087, 1141
–> (arrow) member access, 608, 1087, 1109,

1141
. (dot) member access, 1086–1087
/ divide, 1088
/= divide and assign, 1090
:: scope resolution, 1086
< less than, 1088
<< shift left, 1088. See also ostream

<<= shift left and assign, 1090
<= less than or equal, 1088
= assign, 1089
== equal, 1088
> greater than, 1088

Stroustrup_book.indb 1255Stroustrup_book.indb 1255 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1256

Operator, continued

>= greater than or equal, 1088
>> shift right, 1088. See also istream

>>= shift right and assign, 1090
?: conditional expression (arithmetic if),

1089
[] subscript, 1086
^ bitwise exclusive or, 1089, 1094
^= xor and assign, 1090
| bitwise or, 1089, 1094
|= or and assign, 1090
|| logical or, 1089, 1094
~ complement, 1087
additive operators, 1088
const_cast, 1086, 1095
delete, 1087, 1094–1095
delete[], 1087, 1094–1095
dereference. See Contents of
dynamic_cast, 1086, 1095
expressions, 1086–1095
new, 1087, 1094–1095
reinterpret_cast, 1086, 1095
sizeof, 1087, 1094
static_cast, 1086, 1095
throw, 1090
typeid, 1086

Optimization, laws of, 931
or, synonym for |, 1038
Order of evaluation, 291–292
or_eq, synonym for |=, 1038
ostream, 347–349, 1168–1169

<<, text output, 851, 855
<<, user-defined, 363–365
binary I/O, 390–393
connecting to output device, 1170
file I/O, fstream, 349–354, 1170
stringstreams, 395
using together with stdio, 1050

<ostream>, 1134, 1168–1169, 1173
ostream_iterator type, 790–793
ostringstream, 394–395
out mode, 389, 1170
Out-of-class member definition, 1112
Out-of-range conditions, 595–596
Out_box example, 443, 563–564
out_of_range, 149–150, 152
Output, 1220. See also Input/output; I/O streams

devices, 346–347
to file. See File I/O, writing files
floating-point values, 384–385

format specifier %, 1187
formatting. See Input/output, formatting
integers, 381–383
iterator, 752, 1142
operations, 1173
streams. See I/O streams
to string. See stringstream

testing, 1001
Output <<, 47, 67, 1173

complex, 920, 1183
string, 851
text output, 851, 855
user-defined, 363–365

Overflow, 891–895, 1220
Overloading, 1104–1105, 1221

alternative to, 526
C++ and C, 1026
on const, 647–648
linkage, 140
operators. See Operator overloading
and overriding, 508–511
resolution, 1104–1105

Override, 508–511, 1221

P
Padding, C-style I/O, 1188
pair, 1165–1166

reading sequence elements, 1152–1153
searching, 1158
sorting, 1158

Palindromes, example, 659–660
Paradigm, 815–818, 1221
Parameterization, function objects, 767
Parameterized type, 682–683
Parameters, 1221

functions, 47, 115
list, 115
naming, 273
omitting, 273
templates, 679–681, 687–689

Parametric polymorphism, 682–683
Parsers, 190, 195

Expression example, 190, 197–200, 202–203
functions required, 196
grammar rules, 194–195
rules vs. tokens, 194

Parsing
expressions, 190–193
grammar, English, 193–194

Stroustrup_book.indb 1256Stroustrup_book.indb 1256 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1257

grammar, programming, 190–193
tokens, 190–193

partial_sort(), 1157
partial_sort_copy(), 1158
partial_sum(), 770, 1184
partition(), 1158
Pascal language, 829–831
Passing arguments

by const reference, 276–278, 281–284
copies of, 276
modified arguments, 278
by non-const reference, 281–284
by reference, 279–284
temporary objects, 282
unmodified arguments, 277
by value, 276, 281–284

Patterns. See Regular expressions
Performance

C++ and C, 1024
ideals, 810
testing, 1012–1014
timing, 1015–1016

Permutations, 1160–1161
Petersen, Lawrence, 15
Pictures. See Graphics
Pivoting, 911–912
Pixels, 419–420
plus(), 1164
Point example, 445–447
pointer, 1147
Pointers, 594. See also Arrays; Iterators; Memory

* contents of, 594
* pointer to (in declarations), 587, 1099
[] subscripting, 594
arithmetic, 651–652
array. See Pointers and arrays
casting. See Type conversion
to class objects, 606–608
conversion. See Type conversion
to current object, this, 618–620
debugging, 656–659
declaration, C-style strings, 1049–1050
decrementing, 651–652
definition, 587–588, 1221
deleted, 657–658
explicit type conversion. See Type conversion
to functions, 1034–1036
incrementing, 651–652
initializing, 596–598, 657
vs. iterators, 1140

literal (0), 1081
to local variables, 658
moving around, 651
to nonexistent elements, 657–658
null, 0, 598, 656–657, 1081
NULL macro, 1190
vs. objects pointed to, 593–594
out-of-range conditions, 595–596
palindromes, example, 661–662
ranges, 595–596
reading and writing through, 594–596
semantics, 637
size, getting, 590–591
subscripting [], 594
this, 676–677
unknown, 608–610
void*, 608–610

Pointers and arrays
converting array names to, 653–654
pointers to array elements, 650–652

Pointers and inheritance
polymorphism, 951–954
a problem, 944–948
a solution, 947–951
user-defined interface class, 947–951
vector alternative, 947–951

Pointers and references
differences, 610–611
inheritance, 612–613
list example, 613–622
parameters, 611–612
this pointer, 618–620

polar(), 920, 1183
Polar coordinates, 920, 1183
Polygon example, 427–428, 458–460, 497

vs. Closed_polyline, 458
invariants, 460

Polyline example
closed, 456–458
marked, 474–476
open, 455–456
vs. rectangles, 429–431

Polymorphism
ad hoc, 682–683
embedded systems, 951–954
parametric, 682–683
run-time, 504–505
templates, 682–683

Pools, embedded systems, 940–941
Pop-up menus, 572

Stroustrup_book.indb 1257Stroustrup_book.indb 1257 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1258

pop_back(), 1149
pop_front(), 1149
pop_heap(), 1160
Portability, 11

C++, 1075
FLTK, 418, 1204

Positioning in files, 393–394
Post-conditions, 165–166, 1001–1002, 1221. See

also Invariants
Post-decrement –– , 1086, 1101
Post-increment ++, 1086, 1101
Postfix expressions, 1086
Pre-conditions, 163–165, 1001–1002, 1221. See

also Invariants
Pre-decrement –– , 1087, 1101
Pre-increment ++, 1087, 1101
Precedence, in expressions, 1090
Precision, numeric, 386–387, 891–895
Predicates, 763

on class members, 767–768
function objects, 1163
passing. See Function objects
searching, 763–764

Predictability, 931
error handling, 933–934
features to avoid, 932
memory allocation, 936, 940

Preprocessing, 265
Preprocessor directives

#define, macro substitution, 1129
#ifdef, 1058–1059
#ifndef, 1059
#include, including headers, 1129

Preprocessor, 1128
coding standards, 978–979

prev_permutation(), 1161
Princeton University, 838
print, character class, 878, 1179
Printable characters, identifying, 397
printf() family

%, conversion specification, 1187
conversion specifications, 1188–1189
gets(), 1052, 1190–1191
output formats, user-defined types, 1189–1190
padding, 1188
printf(), 1050–1051, 1187
scanf(), 1052–1053, 1190
stderr, 1189
stdin, 1189
stdio, 1190–1191
stdout, 1189

synchronizing with I/O streams, 1050–1051
truncation, 1189

Printing
error messages, 150–151
variable values, 246

priority_queue container adaptor, 1144
Private, 312

base classes, 511
implementation details, 210, 306–308, 312–313
members, 492–493, 505, 511
private: label, 306, 1037

Problem analysis, 175
development stages, 176
estimating resources, 177
problem statement, 176–177
prototyping, 178
strategy, 176–178

Problem statement, 176–177
Procedural programming languages, 815–816
Programmers. See also Programming

communication skills, 22
computation ideals, 92–94
skills requirements, 22–23
stereotypes of, 21–22
worldwide numbers of, 843

Programming, xxiii, 1221. See also Computation;
Software

abstract-first approach, 10
analysis stage, 35
bottom-up approach, 9
C first approach, 9
concept-based approach, 6
concrete-first approach, 6
depth-first approach, 6
design stage, 35
environments, 52
feedback, 36
generic, 1219
implementation, 36
magical approach, 10
object-oriented, 10, 1220
programming stage, 36
software engineering principles first approach,

10
stages of, 35–36
testing stage, 36
top-down approach, 9–10
writing a program. See Calculator example

Programming languages, 818–819, 821, 843
Ada, 832–833
Algol60, 827–829

Stroustrup_book.indb 1258Stroustrup_book.indb 1258 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1259

Algol family, 826–829
assemblers, 820
auto codes, 820
BCPL, 838–839
C, 836–839
C#, 831
C++, 839–842
COBOL, 823–825
Common Lisp, 825
Delphi, 831
Fortran, 821–823
Lisp, 825–826
Pascal, 829–831
Scheme, 825
Simula, 833–835
Turbo Pascal, 831

Programming philosophy, 807, 1221. See also C++
and C; Programming ideals; Programming
languages

Programming ideals
abstraction level, 812–813
aims, 807–809
bottom-up approach, 811
code structure, 810–811
consistency, 814–815
correct approaches, 811
correctness, 810
data abstraction, 816
desirable properties, 807–808
direct expression of ideas, 811–812
efficiency, 810
generic programming, 816
KISS, 815
maintainability, 810
minimalism, 814–815
modularity, 813–814
multi-paradigm, 818
object-oriented programming, 815–818
overview, 808–809
paradigms, 815–818
performance, 810
philosophies, 807–809
procedural, 815–816
styles, 815–818
on-time delivery, 810
top-down approach, 811

Programming, history, 818–819. See also
Programming languages

BNF (Backus-Naur) Form, 823, 828
classes, 834
CODASYL committee, 824

early languages, 819–821
first documented bug, 824–825
first modern stored program, 819–821
first programming book, 820
functional programming, 823
function calls, 820
inheritance, 834
K&R, 838
lint, 836
object-oriented design, 834
STL (Standard Template Library), 841
virtual functions, 834

Programs, 44, 1221. See also Computation; Software
audiences for, 46
compiling. See Compilers
computing values. See Expression
conforming, 1075
experimental. See Prototyping
flow, tracing, 72
implementation defined, 1075
legal, 1075
linking, 51
not-conforming constructs, 1075
run. See Command line; Visual Studio, 52
starting execution, 46–47, 1075–1076
stored on a computer, 109
subdividing, 177–178
terminating, 208–209, 1075–1076
text of. See Source code
translation units, 51
troubleshooting. See Debugging
unspecified constructs, 1075
valid, 1075
writing, example. See Calculator example
writing your first, 45–47

Program organization. See also Programming ideals
abstraction, 92–93
divide and conquer, 93

Projects, Visual Studio, 1199–1200
Promotions, 99, 1091
Prompting for input, 61

>, input prompt, 223
calculator example, 179
sample code, 223–224

Proofs, testing, 992
protected, 492–493, 505, 511, 1037
Prototyping, 178
Pseudo code, 179, 1221
Public, 306, 1037

base class, 508
interface, 210, 496–499

Stroustrup_book.indb 1259Stroustrup_book.indb 1259 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1260

Public, continued

member, 306
public by default, struct, 307–308
public: label, 306

punct, punctuation character class, 878, 1179
Punct_stream example, 401–405
Pure virtual functions, 495, 1221
push_back()

growing a vector, 119–120
queue operations, 1149
resizing vector, 674–675
stack operations, 1149
string operations, 1177

push_front(), 1149
push_heap(), 1160
put(), 1173
putback()

naming convention, 211
putting tokens back, 206–207
return value, disabling, 211–212

putc(), 1191
putchar(), 1191
Putting back input, 206–208

Q
qsort(), 1194–1195
<queue>, 1134
queue container adaptor, 1144
Queue operations, 1149

R
\r carriage return, character literal, 1079
r, reading file mode, 1186
r+, reading and writing file mode, 1186
RAII (Resource Acquisition Is Initialization)

definition, 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

<random>, 1134
Random numbers, 914–917
Random-access iterators, 752, 1142
Range

definition, 1221
errors, 148–150
pointers, 595–596
regular expressions, 877–878

Range checking
at(), 693–694
[], 650–652, 693–696
arrays, 650–652
compatibility, 695
constraints, 695
design considerations, 694–696
efficiency, 695
exceptions, 693–694
macros, 696–697
optional checking, 695–696
overview, 693–694
pointer, 650–652
vector, 693–696

range-for, 119
rbegin(), 1148
Re-throwing exceptions, 702, 1126
read(), unformatted input, 1172
Readability

expressions, 95
indenting nested code, 271
nested code, 271

Reading
dividing functions logically, 359–362
files. See Reading files
with iterators, 1140–1141
numbers, 214–215
potential problems, 358–363
separating dialog from function, 362–363
a series of values, 356–358
a single value, 358–363
into strings, 851
tokens, 185

Reading files
binary I/O, 391
converting representations, 374–376
to end of file, 366
example, 352–354
fstream type, 350–352
ifstream type, 350–352
input loops, 365–367
istream type, 349–354, 391
in-memory representation, 368–370
ostream type, 391
process steps, 350
structured files, 367–376
structured values, 370–374
symbolic representations, 374–376
terminator character, specifying, 366

Stroustrup_book.indb 1260Stroustrup_book.indb 1260 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1261

real(), 920, 1183
Real numbers, 891
Real part, 920
Real-time constraints, 931
Real-time response, 928
realloc(), 1045, 1193
Recovering from errors, 239–241, 355–358. See

also Error handling; Exceptions
Rectangle example, 428–431, 460–465, 497
Recursion

definition, 1221
infinite, 198, 1220
looping, 200

Recursive function calls, 289
Red-black trees, 779. See also Associative

containers; map, associative array
Red margin alerts, 3
Reference semantics, 637
References, 1221. See also Aliases

& in declarations, 276–279
to arguments, 277–278
circular. See Circular reference
to last vector element, back(), 737
vs. pointers. See Pointers and references

<regex>, 1134, 1175
regex. See Regular expressions
regex_error exception, 1138
regex_match(), 1177

vs. regex_search(), 883
regex_search(), 1177

vs. regex_match(), 883
regex pattern matching, 866–868

$ end of line, 873, 1178
() grouping, 867, 873, 876
* zero or more occurrences, 868, 873–874
[] character class, 873
\ escape character, 866–867, 873
\ as literal, 877
^ negation, 873
^ start of line, 873
{} count, 867, 873–875
| alternative (or), 867–868, 873, 876
+ one or more occurrences, 873, 874–875
. wildcard, 873
? optional occurrence, 867–868, 873,

874–875
alternation, 876
character classes. See regex character

classes

character sets, 877–878
definition, 870
grouping, 876
matches, 870
pattern matching, 872–873
ranges, 877–878
regex operators, 873, 1177–1179
regex_match(), 1177
regex_search(), 1177
repeating patterns, 874–876
searching with, 869–872, 880
smatch, 870
sub-patterns, 867, 870

regex character classes, 877–878
alnum, 878
alpha, 878
blank, 878
cntrl, 878
d, 878
\d, 873
\D, 873
digit, 878
graph, 878
\l, 873
\L, 874
lower, 878
print, 878
punct, 878
regex_match() vs. regex_search(), 883
s, 878
\s, 873
\S, 874
space, 878
\u, 873
\U, 874
upper, 878
w, 878
\w, 873
\W, 873
xdigit, 878

Regression tests, 993
Regular expressions, 866–868, 872, 1221.

See also regex pattern matching
character classes, 873–874
error handling, 878–880
grouping, 867, 873, 876
uses for, 865
ZIP code example, 880–885

Regularity, 380

Stroustrup_book.indb 1261Stroustrup_book.indb 1261 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1262

reinterpret_cast, 609–610, 1095
casting unrelated types, 609
hardware access, 944

Relational operators, 1088
Reliability, software, 34, 928
Remainder and assign %=, 1090
Remainder % (modulo), 66, 1088

correspondence to * and /, 68
floating-point, 201, 230–231
integer and floating-point, 66

remove(), 1155
remove_copy(), 1155
remove_copy_if(), 1155
rend(), 1148
Repeated words examples, 71–74
Repeating patterns, 194
Repetition, 1178. See also Iteration; regex

replace(), 1155
replace_copy(), 1155
Reporting errors

Date example, 317–318
debugging, 159
error(), 142–143
run-time, 145–146
syntax errors, 137–138

Representation, 305, 671–673
Requirements, 1221. See also Invariants; Post-

conditions; Pre-conditions
for functions, 153

reserve(), 673–674, 691, 747, 1151
Reserved names, 75–76. See also Keywords
resetiosflags() manipulator, 1174
resize(), 674, 1151
Resource, 1221

leaks, 931, 934
limitations, 928
management. See Resource management
testing, 1001–1002
vector example, 697–698

Resource Acquisition Is Initialization (RAII), 1221
exceptions, 700–701, 1125
testing, 1004–1005
for vector, 705–707

Resource management, 697–702. See also vector
example

basic guarantee, 702
error handling, 702
guarantees, 701–702
make_vec(), 702
no-throw guarantee, 702

problems, 698–700
RAII, 700–701, 705–707
resources, examples, 697–698
strong guarantee, 702
testing, 1004–1005

Results, 91. See also Return values
return and move, 704–705
return statement, 272–273
Return types, functions, 47, 272–273
Return values, 113–115

functions, 1103
no return value, void, 212
omitting, 115
returning, 272–273

reverse(), 1155
reverse_copy(), 1155
reverse_iterator, 1147
Revision history, 237–238
Rho, 920
Richards, Martin, 838
right manipulator, 1174
Ritchie, Dennis, 836, 837, 842, 1022–1023, 1032
Robot-assisted surgery, 30
rotate(), 1155
rotate_copy(), 1155
Rounding, 386, 1221. See also Truncation

errors, 891
floating-point values, 386

Rows, matrices, 900–901, 906
Rules, for programming. See Ideals
Rules, grammatical, 194–195
Run-time dispatch, 504–505. See also Virtual

functions
Run-time errors. See Errors, run-time
Run-time polymorphism, 504–505
runtime_error, 142, 151, 153
rvalue reference, 639
Rvalues, 94–95, 1090

S
s, character class, 878, 1179
\S, “not space,” regex, 874
\s, “space,” regex, 873
Safe conversions, 79–80
Safety, type. See Type, safety
Scaffolding, cleaning up, 234–235
scale_and_add() example, 904
scale_and_multiply() example, 912
Scaling data, 542–543

Stroustrup_book.indb 1262Stroustrup_book.indb 1262 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1263

scanf(), 1052, 1190
Scenarios. See Use cases
Scheme language, 825
scientific format, 387
scientific manipulator, 385, 1174
Scope, 266–267, 1082–1083, 1221

class, 267, 1082
enumerators, 320–321
global, 267, 270, 1082
going out of, 268–269
kinds of, 267
local, 267, 1083
namespace, 267, 271, 1082
resolution ::, 295–296, 1086
statement, 267, 1083

Scope and nesting
blocks within functions, 271
classes within classes, 270
classes within functions, 270
functions within classes, 270
functions within functions, 271
indenting nested code, 271
local classes, 270
local functions, 270
member classes, 270
member functions, 270
nested blocks, 271
nested classes, 270
nested functions, 270

Scope and object lifetime, 1085–1086
free-store objects, 1085
local (automatic) objects, 1085
namespace objects, 1085
static class members, 1085
temporary objects, 1085

Scope and storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Screens. See also GUIs (graphical user interfaces)
data graph layout, 541–542
drawing on, 423–424
labeling, 425

search(), 795–796, 1153
Searching. See also Finding; Matching; find_if();

find()

algorithms for, 1157–1159
binary searches, 779, 795–796
in C, 1194–1195
for characters, 740

(key,value) pairs, by key. See Associative
containers

for links, 615–617
map elements. See unordered_map

predicates, 763
with regular expressions, 869–872, 880–885,

1177–1179
search_n(), 1153
Self reference. See this pointer
Self assignment, 676–677
Self-checking, error handling, 934
Separators, nonstandard, 398–405
Sequence containers, 1144
Sequences, 720, 1221

algorithms. See Algorithms, STL
differences between adjacent elements, 770
empty, 729
example, 723–724
half open, 721

Sequencing rules, 195
Server farms, 31–32
set, 776, 787–789

iterators, 1144
vs. map, 788
subscripting, 788

set(), 605–606
<set>, 776, 1134
Set algorithms, 1159–1160
set_difference(), 1160
set_intersection(), 1159
set_symmetric_difference(), 1160
set_union(), 1159
setbase() manipulator, 1174
setfill() manipulator, 1174
setiosflags() manipulator, 1174
setprecision() manipulator, 386–387, 1174
setw() manipulator, 1174
Shallow copies, 636
Shape example, 493–494

abstract classes, 495–496
access control, 496–499
attaching to Window, 545–546
as base class, 445, 495–496
clone(), 504
copying objects, 503–504
draw(), 500–502
draw_lines(), 500–502
fill color, 500
implementation inheritance, 513–514
interface inheritance, 513–514

Stroustrup_book.indb 1263Stroustrup_book.indb 1263 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1264

Shape example, continued

line visibility, 500
move(), 502
mutability, 503–504
number_of_points(), 449
object layout, 506–507
object-oriented programming, 513–514
point(), 449
slicing shapes, 504
virtual function calls, 501, 506–507

Shift operators, 1088
Shipping, computer use, 26–28
short, 955, 1099
Shorthand notation, regular expressions, 1179
showbase, manipulator, 383, 1173
showpoint, manipulator, 1173
showpos, manipulator, 1173
Shuffle algorithm, 1155–1156
Signed and unsigned integers, 961–965
signed type, 1099
Simple_window, 422–424, 443
Simplicity ideal, 92–94
Simula language, 833–835
sin(), sine, 917, 1182
Singly-linked lists, 613, 725
sinh(), hyperbolic sine, 918, 1182
Size

bit strings, 955–956
containers, 1150–1151
getting, sizeof(), 590–591
of numbers, 891–895
vectors, getting, 119–120

size()

container capacity, 1150
number of elements, 120, 851
string length, 851, 1176
vectors, 120, 122–123

sizeof(), 590–591, 1094
object size, 1087
value size, 892

size_type, 730, 1147
skipws, 1174
slice(), 901–902, 905
Slicing

matrices, 901–902, 905
objects, 504

Smallest integer, finding, 917
smatch, 870
Soft real-time, 931

Software, 19, 1222. See also Programming; Programs
affordability, 34
correctness, 34
ideals, 34–37
maintainability, 35
reliability, 34
troubleshooting. See Debugging
useful design, 34
uses for, 19–33

Software layers, GUIs, 557
sort(), 758, 794–796, 1157
sort_heap(), 1160
Sorting

algorithms for, 1157–1159
in C, qsort(), 1194
sort(), 758, 794–796, 1157

Source code
definition, 48, 1222
entering, 1200

Source files, 48, 1222
adding to projects, 1200

space, 878, 1179
Space exploration, computer use, 33
Special characters, 1079–1080

regular expressions, 1178
Specialization, 681, 1123
Specifications

definition, 1221
source of errors, 136

Speed of light, 96
sprintf(), 1187
sqrt(), square root, 917, 1181
Square of abs(), norm, 919
<sstream>, 1134
stable_partition(), 1158
stable_sort(), 1157
<stack>, 1134
stack container adaptor, 1144
Stack of activation records, 287
Stack storage, 591–592
Stacks

container operations, 1149
embedded systems, 935–936, 940, 942–943
growth, 287–290
unwinding, 1126

Stages of programming, 35–36
Standard

conformance, 836, 974, 1075
ISO, 1075, 1222

Stroustrup_book.indb 1264Stroustrup_book.indb 1264 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1265

manipulators. See Manipulators
mathematical functions, 917–918

Standard library. See also C standard library; STL
(Standard Template Library)

algorithms. See Algorithms
complex. See complex

containers. See Containers
C-style I/O. See printf() family
C-style strings. See C-style strings
date and time, 1193–1194
function objects. See Function objects
I/O streams. See Input; Input/output;

Output
iterators. See Iterators
mathematical functions. See Mathematical

functions (standard)
numerical algorithms. See Algorithms,

numerical; Numerics
string. See string

time, 1015–1016, 1193
valarray. See valarray

Standard library header files, 1133–1136
algorithms, 1133–1134
containers, 1133–1134
C standard libraries, 1135–1136
I/O streams, 1134
iterators, 1133–1134
numerics, 1134–1135
string manipulation, 1134
utility and language support, 1135

Standard library I/O streams, 1168–1169. See also
I/O streams

Standard library string manipulation
character classification, 1175–1176
containers. See map, associative array; set;

unordered_map; vector

input/output. See I/O streams
regular expressions. See regex

string manipulation. See string

Stanford University, 826
Starting programs, 1075–1076. See also main()

State, 90–91, 1222
I/O stream, 1171
of objects, 305
source of errors, 136
testing, 1001
validity checking, 313
valid state, 313

Statement scope, 267, 1083

Statements, 47
grammar, 1096–1097
named sequence of. See Function
terminator ; (semicolon), 50, 100

Static storage, 591–592, 1084
class members, lifetime, 1085
embedded systems, 935–936, 944
static, 1084
static const, 326. See also const

static local variables, order of initialization, 294
std namespace, 296–297, 1136
stderr, 1189
<stdexcept>, 1135
stdin, 1050, 1189. See also stdio
stdio, standard C I/O, 1050, 1190–1191

EOF macro, 1053–1054
errno, error indicator, 918–919
fclose(), 1053–1054
FILE, 1053–1054
fopen(), 1053–1054
getchar(), 1052–1053, 1191
gets(), 1052, 1190–1191
input, 1052–1053
output, 1050–1051
printf(), 1050–1051, 1188–1191
scanf(), 1052, 1190
stderr, cerr equivalent, 1189
stdin, cin equivalent, 1050, 1189
stdout, 1050, 1189. See also stdio
stdout, cout equivalent, 1050, 1189

std_lib_facilities.h header file, 1199–1200
stdout, 1050, 1189. See also stdio
Stepanov, Alexander, 720, 722, 841
Stepping through code, 162
Stereotypes of programmers, 21–22
STL (Standard Template Library), 717, 1149–

1168 (large range, not sure this is correct). See

also C standard library; Standard library
algorithms. See STL algorithms
containers. See STL containers
function objects. See STL function objects
history of, 841
ideals, 717–720
iterators. See STL iterators
namespace, std, 1136

STL algorithms, 1152–1162
See Algorithms, STL.
alternatives to, 1195
built-in arrays, 747–749

Stroustrup_book.indb 1265Stroustrup_book.indb 1265 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1266

STL algorithms, continued

computation vs. data, 717–720
heap, 1160
max(), 1161
min(), 1161
modifying sequence, 1154–1156
mutating sequence, 1154–1156
nonmodifying sequence, 1153–1154
permutations, 1160–1161
searching, 1157–1159
set, 1159–1160
shuffle, 1155–1156
sorting, 1157–1159
utility, 1157
value comparisons, 1161–1162

STL containers, 749–751, 1144–1152
almost, 751, 1145
assignments, 1148
associative, 1144, 1151–1152
capacity, 1150–1151
comparing, 1151
constructors, 1148
container adaptors, 1144
copying, 1151
destructors, 1148
element access, 1149
information sources about, 750
iterator categories for, 752, 1143–1145,

1148
list operations, 1150
member types, 1147
operations overview, 1146–1147
queue operations, 1149
sequence, 1144
size, 1150–1151
stack operations, 1149
swapping, 1151

STL function objects, 1163
adaptors, 1164
arithmetic operations, 1164
inserters, 1162–1163
predicates, 767–768, 1163

STL iterators, 1139–1140
basic operations, 721
categories, 1142–1143
definition, 721, 1139
description, 721–722
empty lists, 729
example, 737–741

operations, 1141–1142
vs. pointers, 1140
sequence of elements, 1140–1141

Storage class, 1083–1084
automatic storage, 1083–1084
free store (heap), 1084
static storage, 1084

Storing data. See Containers
str(), string extractor, 395
strcat(), 1047, 1191
strchr(), 1048, 1192
strcmp(), 1047, 1192
strcpy(), 1047, 1049, 1192
Stream

buffers, 1169
iterators, 790–793
modes, 1170
states, 355
types, 1170

streambuf, 406, 1169
<streambuf>, 1134
<string>, 1134, 1172
string, 66, 851, 1222. See also Text

[] subscripting, 851
+ concatenation, 68–69, 851, 1176
+= append, 851
< lexicographical comparison, 851
== equal, 851
= assign, 851
>> input, 851
<< output, 851
almost container, 1145
append(), 851
basic_string, 852
C++ to C-style conversion, 851
c_str(), C++ to C-style conversion, 851
erase(), removing characters, 851
exceptions, 1138
find(), 851
from_string(), 853–854
getline(), 851
input terminator (whitespace), 65
Insert(), adding characters, 851
length(), number of characters, 851
lexical_cast example, 855
literals, debugging, 161
operations, 851, 1176–1177
operators, 66–67, 68
palindromes, example, 659–660

Stroustrup_book.indb 1266Stroustrup_book.indb 1266 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1267

pattern matching. See Regular expressions
properties, 741–742
size, 78
size(), number of characters, 851
standard library, 852
stringstream, 852–854
string to value conversion, 853–854
subscripting [], 851
to_string() example, 852–854
values to string conversion, 852
vs. vector, 745
whitespace, 854

String literal, 62, 1080
stringstream, 395, 852–854, 1170
strlen(), 1046, 1191
strncat(), 1047, 1192
strncmp(), 1047, 1192
strncpy(), 1047, 1192
Strong guarantee, 702
Stroustrup, Bjarne

advisor, 820
Bell Labs colleagues, 836–839, 1023
biography, 13–14
education on invariants, 828
inventor of C++, 839–842
Kristen Nygaard, 834

strpbrk(), 1192
strrchr(), 1192
strstr(), 1192
strtod(), 1192
strtol(), 1192
strtoul(), 1192
struct, 307–308. See also Data
struct tag namespace, 1036–1037
Structure

of data. See Data
of programs, 215–216

Structured files, 367–376
Style, definition, 1222
Sub-patterns, 867, 870
Subclasses, 504. See also Derived classes
Subdividing programs, 177–178
Subscripting, 118

() Fortran style, 899
[] C Style, 694, 899
arrays, 649, 899
at(), checked subscripting, 694, 1149
Matrix example, 899–901, 905
pointers, 1101

string, 851, 1176
vector, 594, 607–608, 646–647

Substrings, 863
Subtraction – (minus)

complex, 919, 1183
definition, 1088
integers, 1101
iterators, 1141–1142
pointers, 1101

Subtype, definition, 1222
Summing values. See accumulate()

Superclasses, 504, 1222. See also Base classes
swap(), 281, 1151, 1157
Swapping

columns, 906
containers, 1151
ranges, 1157
rows, 906, 912

swap_ranges(), 1157
switch-statements

break, case termination, 106–108
case labels, 106–108
most common error, 108
vs. string-based selection, 106

Symbol tables, 247
Symbolic constants. See also Enumerations

cleaning up, 232–234
defining, with static const, 326

Symbolic names, tokens, 233
Symbolic representations, reading, 374–376
Syntax analyzers, 190
Syntax checking, 48–50
Syntax errors

examples, 48–50
overview, 137–138
reporting, 137–138

Syntax macros, 1058
system(), 1194
system_clock, 1016, 1185
System, definition, 1222
System tests, 1009–1011

T
\t tab character, 109, 1079
tan(), tangent, 917, 1182
tanh(), hyperbolic tangent, 917, 1182
TEA (Tiny Encryption Algorithm), 820, 969–974
Technical University of Copenhagen, 828

Stroustrup_book.indb 1267Stroustrup_book.indb 1267 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1268

Telecommunications, 28–29
Temperature data, example, 120–123
template, 1038
Template, 678–679, 1121–1122, 1222

arguments, 1122–1123
class, 681–683. See also Class template
compiling, 684
containers, 686–687
error diagnostics, 683
function, 682–690. See also Function template
generic programming, 682–683
inheritance, 686–687
instantiation, 681, 1123–1124
integer parameters, 687–689
member types, 1124
parameters, 679–681, 687–689
parametric polymorphism, 682–683
specialization, 1123
typename, 1124
type parameters, 679–681
weaknesses, 683

Template-style casts, 1040
Temporary objects, 282, 1085
Terminals, in grammars. See Tokens
Termination

abort() a program, 1194
on exceptions, 142
exit() a program, 1194
input, 61–62, 179
normal program termination, 1075–1076
for string input, 65
zero, for C-style strings, 654–655

Terminator character, specifying, 366
Testing, 992–993, 1222. See also Debugging

algorithms, 1001–1008
for bad input, 103
black box, 992–993
branching, 1006–1008
bug reports, retention period, 993
calculator example, 225
code coverage, 1008
debugging, 1012
dependencies, 1002–1003
designing for, 1011–1012
faulty assumptions, 1009–1011
files, after opening, 352
FLTK, 1206
inputs, 1001
loops, 1005–1006
non-algorithms, 1001–1008

outputs, 1001
performance, 1012–1014
pre- and post-conditions, 1001–1002
proofs, 992
RAII, 1004–1005
regression tests, 993
resource management, 1004–1005
resources, 1001–1002
stage of programming, 36
state, 1001
system tests, 1009–1011
test cases, definition, 166
test harness, 997–999
timing, 1015–1016
white box, 992–993

Testing units
formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Text
character strings. See C-style strings; string

email example, 856–861, 864–865
extracting text from files, 855–861, 864–865
finding patterns, 864–865, 869–872
in graphics. See Text
implementation details, 861–864
input/output, GUIs, 563–564
maps. See map

storage, 591–592
substrings, 863
vector example, 123–125
words frequency example, 777–779

Text example, 431–433, 467–470
Text editor example, 737–741
Theta, 920
this pointer, 618–620, 676–677
Thompson, Ken, 836–838
Three-way comparison, 1046
Throwing exceptions, 147, 1125

I/O stream, 1171
re-throwing, 702
standard library, 1138–1139
throw, 147, 1090, 1125–1126
vector, 697–698

Time
date and time, 1193–1194
measuring, 1015–1016

Timekeeping, computer use, 26

Stroustrup_book.indb 1268Stroustrup_book.indb 1268 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1269

time_point, 1016
time_t, 1193
Tiny Encryption Algorithm (TEA), 820, 969–974
tm, 1193
Token example, 183–184
Token_stream example, 206–214
tolower(), 398, 1176
Top-down approach, 9–10, 811
to_string() example, 852–854
toupper(), 398, 1176
Tracing code execution, 162–163
Trade-off, definition, 1222
transform(), 1154
Transient errors, handling, 934
Translation units, 51, 139–140
Transparency, 451, 463
Tree structure, map container, 779–782
true, 1037, 1038
trunc mode, 389, 1170
Truncation, 82, 1222

C-style I/O, 1189
exceptions, 153
floating-point numbers, 893

try-catch, 146–153, 693–694, 1037
Turbo Pascal language, 831
Two-dimensional matrices, 904–906
Two’s complement, 961
Type, 60, 77, 1222

aliases, 730
built-in. See Built-in types
checking, C++ and C, 1032–1033
generators, 681
graphics classes, 488–490
mismatch errors, 138–139
mixing in expressions, 99
naming. See Namespaces
objects, 77–78
operations, 305
organizing. See Namespaces
parameterized, 682–683. See also Template
as parameters. See Template
pointers. See Pointer
promotion, 99
representation of object, 308–309, 506–507
safety, 78–79, 82
subtype, 1222
supertype, 1222
truncation, 82
user-defined. See UDTs (user-defined types)
uses for, 304

values, 77
variables. See Variables

Type conversion
casting, 609–610
const_cast, casting away const, 609–610
exceptions, 153
explicit, 609
in expressions, 99–100
function arguments, 284–285
implicit, 642–643
int to pointer, 590
operators, 1095
pointers, 590, 609–610
reinterpret_cast, 609
safety, 79–83
static_cast, 609
string to value, 853–854
truncation, 82
value to string, 852

Type conversion, implicit, 642–643
bool, 1092
compiler warnings, 1091
floating-point and integral, 1091–1092
integral promotion, 1091
pointer and reference, 1092
preserving values, 1091
promotions, 1091
user-defined, 1091
usual arithmetic, 1092

Type safety, 78–79
implicit conversions, 80–83
narrowing conversions, 80–83
pointers, 596–598, 656–659
range error, 148–150, 595–596
safe conversions, 79–80
unsafe conversions, 80–83

typedef, 730
typeid, 1037, 1087, 1138
<typeinfo>, 1135
typename, 1037, 1124

U
u/U suffix, 1077
\U, “not uppercase,” regex, 874
\u, “uppercase character,” regex, 873, 1179
UDTs (user-defined types). See Class;

Enumerations
Unary expressions, 1087
“Uncaught exception” error, 153

Stroustrup_book.indb 1269Stroustrup_book.indb 1269 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1270

Unchecked conversions, 943–944
“Undeclared identifier” error, 258
Undefined order of evaluation, 263
unget(), 355–358
ungetc(), 1191
Uninitialized variables, 327–330, 1222
uninitialized_copy(), 1157
uninitialized_fill(), 1157
union, 1121
unique(), 1155
unique_copy(), 758, 789, 792–793, 1155
unique_ptr, 703–704
Unit tests

formal specification, 994–995
random sequences, 999–1001
strategy for, 995–997
systematic testing, 994–995
test harness, 997–999

Universal and uniform initialization, 83
Unnamed objects, 465–467
<unordered_map>, 776, 1134
unordered_map, 776. See also map, associative

array
finding elements, 785–787
hashing, 785
hash tables, 785
hash values, 785
iterators, 1144

unordered_multimap, 776, 1144
unordered_multiset, 776, 1144
<unordered_set>, 776, 1134
unordered_set, 776, 1144
Unsafe conversions, 80–83
unsetf(), 384
Unsigned and signed, 961–965
unsigned type, 1099
Unspecified constructs, 1075
upper, character class, 878, 1179
upper_bound(), 796, 1152, 1158
Uppercase. See Case (of characters)
uppercase, 1174
U.S. Department of Defense, 832
U.S. Navy, 824
Use cases, 179, 1222
User-defined conversions, 1091
User-defined operators, 1091
User-defined types (UDTs), 304. See also Class;

Enumerations
exceptions, 1126
operator overloading, 1107

operators, 1107
standard library types, 304

User interfaces
console input/output, 552
graphical. See GUIs (graphical user interfaces)
web browser, 552–553

using declarations, 296–297
using directives, 296–297, 1127
Usual arithmetic conversions, 1092
Utilities, STL

function objects, 1163–1164
inserters, 1162–1163
make_pair(), 1165–1166
pair, 1165–1166

<utility>, 1134, 1165–1166
Utility algorithms, 1157
Utility and language support, header files,

1135

V
\v vertical tab, character literal, 1079
valarray, 1145, 1183
<valarray>, 1135
Valid pointer, 598
Valid programs, 1075
Valid state, 313
Validity checking, 313

constructors, 313
enumerations, 320
invariants, 313
rules for, 313

Value semantics, 637
value_comp(), 1152
Values, 77–78, 1222

symbolic constants for. See Enumerations
and variables, 62, 73–74, 243

value_type, 1147
Variables, 62–63, 1083

++ increment, 73–74
= assignment, 69–73
changing values, 73–74
composite assignment operators, 73–74
constructing, 291–292
declarations, 260, 262–263
going out of scope, 291
incrementing ++, 73–74
initialization, 69–73
input, 60
naming, 74–77

Stroustrup_book.indb 1270Stroustrup_book.indb 1270 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX 1271

type of, 66–67
uninitialized, class interfaces, 327–330
value of, 73–74

<vector>, 1134
vector example, 584–587, 629–636, 668–679

[] subscripting, 646, 693–697
= assignment, 675–677
. (dot) access, 607–608
allocators, 691
changing size, 668–679
at(), checked subscripting, 694
copying, 631–636
destructor, 601–605
element type as parameter, 679–681
erase() (removing elements), 745–747
exceptions, 693–694, 705–707
explicit constructors, 642–643
inheritance, 686–687
insert() (adding elements), 745–747
overloading on const, 647–648
push_back(), 674–675, 692
representation, 671–673
reserve(), 673, 691, 704–705
resize(), 674, 692
subscripting, 594, 607–608, 646–647

vector, standard library, 1146–1151
[] subscripting, 1149
= assignment, 1148
== equality, 1151
< less than, 1151
assign(), 1148
back(), reference to last element, 1149
begin(), iterator to first element, 1148
capacity(), 1151
at(), checked subscripting, 1149
const_iterator, 1147
constructors, 1148
destructor, 1148
difference_type, 1147
end(), one beyond last element, 1148
erase(), removing elements, 1150
front(), reference to first element, 1149
insert(), adding elements, 1150
iterator, 1147
member functions, lists of, 1147–1151
member types, list of, 1147
push_back(), add element at end, 1149
size(), number of elements, 1151
size_type, 1147
value_type, 1147

vector of references, simulating, 1212–1213
Vector_ref example, 444, 1212–1213
vector_size(), 119
virtual, 1037
Virtual destructors, 604–605. See also Destructors
Virtual functions, 501, 506–507

declaring, 508
definition, 501, 1222
history of, 834
object layout, 506–507
overriding, 508–511
pure, 512–513
Shape example, 501, 506–507
vptr, 506–507
vtbl, 506

Visibility. See also Scope; Transparency
menus, 573–574
of names, 266–272, 294–297
widgets, 562

Visual Studio
FLTK (Fast Light Toolkit), 1205–1206
installing, 1198
running programs, 1199–1200

void, 115
function results, 115, 273, 275
pointer to, 608–610
putback(), 212

void*, 608–610, 1041–1042, 1099
vptr, virtual function pointer, 506–507
vtbl, virtual function table, 506

W
w, writing file mode, 878, 1179, 1186
w+, writing and reading file mode, 1186
\W, “not word character,” regex, 874, 1179
\w, “word character,” regex, 873, 1179
wait(), 559–560, 569–570
Wait loops, 559–560
wait_for_button() example, 559–560
Waiting for user action, 559–560, 569–570
wchar_t, 1038
Web browser, as user interface, 552–553
Wheeler, David, 109, 820, 954, 969
while-statements, 109–111

vs. for, 122
White-box testing, 992–993
Whitespace

formatting, 397, 398–405
identifying, 397

Stroustrup_book.indb 1271Stroustrup_book.indb 1271 4/22/14 9:43 AM4/22/14 9:43 AM

INDEX1272

Whitespace
in input, 64
string, 854

Widget example, 561–563
Button, 422–424, 553–561
control inversion, 569–570
debugging, 576–577
hide(), 562
implementation, 1209–1210
In_box(), 563–564
line drawing example, 565–569
Menu, 564–565, 570–575
move(), 562
Out_box(), 563–564
put_on_top(), 1211
show(), 562
technical example, 1213–12116
text input/output, 563–564
visibility, 562

Wild cards, regular expressions, 1178
Wilkes, Maurice, 820
Window example, 420, 443

canvas, 420
creating, 422–424, 554–556
disappearing, 576
drawing area, 420
implementation, 1210–1212

line drawing example, 565–569
put_on_top(), 1211

Window.h example, 421–422
Wirth, Niklaus, 830–831
Word frequency, example, 777
Words (of memory), 1222
write(), unformatted output, 1173
Writing files, 350. See also File I/O

appending to, 389
binary I/O, 391
example, 352–354
fstream type, 350–352
ofstream type, 351–352
ostream type, 349–354, 391

ws manipulator, 1174

X
xdigit, 878, 1179
\xhhh, hexadecimal character literal, 1080
xor, synonym for ^, 1038
xor_eq, synonym for ^=, 1038

Z
zero-terminated array, 1045. See also C-style strings
ZIP code example, 880–885

Stroustrup_book.indb 1272Stroustrup_book.indb 1272 4/22/14 9:43 AM4/22/14 9:43 AM

1273

Photo Citations and Credits

Page 14. Photo of Bjarne Stroustrup, 2005. Source: Bjarne Stroustrup.
Page 15. Photo of Lawrence “Pete” Petersen, 2006. Source: Dept. of Computer Sci-

ence, Texas A&M University.
Page 26. Photo of digital watch from Casio. Source: www.casio.com.
Page 26. Photo of analog watch from Casio. Source: www.casio.com.
Page 26. MAN marine diesel engine 12K98ME; MAN Burgmeister & Waine. Source:

MAN Diesel A/S, Copenhagen, Denmark.
Page 26. Emma Maersk; the world’s largest container ship; home port Århus, Den-

mark. Source: Getty Images.
Page 28. Digital telephone switchboard. Source: Alamy Images.
Page 28. Sony-Ericsson W-920 cell phone with music system, cell phone, and web

connectivity. Source: www.sonyericsson.com.
Page 29. Trading fl oor of the New York Stock Exchange in Wall Street. Source: Alamy

Images.
Page 29. A representation of parts of the internet backbone by Stephen G. Eick.

Source: S. G. Eick.
Page 30. CAT scanner. Source: Alamy Images.
Page 30. Computer-aided surgery. Source: Da Vinci Surgical Systems, www.intuitive

surgical.com.
Page 31. Ordinary computer setup (the left-hand screen is connected to a Unix desktop

box, the right-hand screen is a Windows laptop). Source: Bjarne Stroustrup.
Page 31. Computer rack from a server farm. Source: Istockphoto.
Page 33. View from a Mars rover. Source: NASA, www.nasa.gov.
Page 820. The EDSAC team 1949. Maurice Wilkes center, David Wheeler without a

tie. Source: The Cambridge University Computer Laboratory.
Page 820. David Wheeler lecturing circa 1974. Source: University of Cambridge Com-

puter Laboratory.

Stroustrup_book.indb 1273Stroustrup_book.indb 1273 4/22/14 9:43 AM4/22/14 9:43 AM

PHOTO CITATIONS AND CREDITS1274

Page 822. John Backus 1996. Copyright: Louis Fabian Bachrach. For a collection of
photographs of computer pioneers, see Christopher Morgan: Wizards and their
wonders: portraits in computing. ACM Press. 1997. ISBN 0-89791-960-2.

Page 824. Grace Murray Hopper. Source: Computer History Museum.
Page 825. Grace Murray Hopper’s bug. Source: Computer History Museum.
Page 826. John C. McCarthy, 1967, at Stanford. Source: Stanford University.
Page 826. John C. McCarthy, 1996. Copyright: Louis Fabian Bachrach.
Page 827. Peter Naur photographed by Brian Randell in Munich in 1968 when they

together edited the report that launched the fi eld of Software Engineering.
Reproduced by permission from Brian Randell.

Page 827. Peter Naur, from oil painting by Duo Duo Zhuang 1995. Reproduced by
permission from Erik Frøkjær.

Page 828. Edsger Dijkstra. Source: Wikimedia Commons.
Page 830. Niklaus Wirth. Source: N. Wirth.
Page 830. Niklaus Wirth. Source: N. Wirth.
Page 832. Jean Ichbiah. Source: Ada Information Clearinghouse.
Page 832. Lady Lovelace, 1838. Vintage print. Source: Ada Information Clearinghouse.
Page 834. Kristen Nygaard and Ole-Johan Dahl, circa 1968. Source: University of Oslo.
Page 835. Kristen Nygaard, circa 1996. Source: University of Oslo.
Page 835. Ole-Johan Dahl, 2002. Source: University of Oslo.
Page 836. Dennis M. Ritchie and Ken Thompson, approx. 1978. Copyright: AT&T Bell

Labs.
Page 836. Dennis M. Ritchie, 1996. Copyright: Louis Fabian Bachrach.
Page 837. Doug McIlroy, circa 1990. Source: Gerard Holzmann.
Page 837. Brian W. Kernighan, circa 2004. Source: Brian Kernighan.
Page 840. Bjarne Stroustrup, 1996. Source: Bjarne Stroustrup.
Page 841. Alex Stepanov, 2003. Source: Bjarne Stroustrup.
Page 927. Photo of diesel engine. Source: Mogens Hansen, MAN B&W, Copenhagen.
Page 1023. AT&T Bell Labs’ Murray Hill Research center, approx. 1990. Copyright:

AT&T Bell Labs.

9780321992789_Stroustrup_BoBad.indd 1 2/11/14 2:51 PMStroustrup_book.indb 1274Stroustrup_book.indb 1274 4/22/14 9:43 AM4/22/14 9:43 AM

Stroustrup_book.indb 1280Stroustrup_book.indb 1280 4/22/14 9:43 AM4/22/14 9:43 AM

More Guides from the
Inventor of C++

For more information and sample content visit
informit.com/stroustrup

ISBN-13: 978-0-321-95831-0

In A Tour of C++, Stroustrup excerpts the
overview chapters from The C++ Programming
Language, Fourth Edition, expanding and
enhancing them to give an experienced
programmer—in just a few hours—a clear
idea of what constitutes modern C++. In this
concise, self-contained guide, Stroustrup
covers most major language features and the
major standard-library components—not, of
course, in great depth, but to a level that gives
programmers a meaningful overview of the
language, some key examples, and practical
help in getting started.

Available in softcover and eBooks formats,
and in Safari Books Online.

The C++ Programming Language,
Fourth Edition, delivers meticulous, richly
explained, and integrated coverage of the
entire language—its facilities, abstraction
mechanisms, standard libraries, and key
design techniques. Throughout, Stroustrup
presents concise, “pure C++11” examples,
which have been carefully crafted to clarify
both usage and program design.

Available in soft cover, hard cover,
and eBook formats, and in Safari Books Online.

ISBN-13: 978-0-321-56384-2

9780321992789_Stroustrup_BoBad.indd 1 2/11/14 2:51 PMStroustrup_book.indb 1275Stroustrup_book.indb 1275 4/22/14 9:43 AM4/22/14 9:43 AM

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefi ts.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefi ts:

• Access to supplemental content,

including bonus chapters,

source code, or project fi les.

• A coupon to be used on your

next purchase.

Registration benefi ts vary by product.

Benefi ts will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7.375x9.125.indd 1 1/26/12 11:14 AM

Informit_7_375x9_125_bw_ad.indd 1 8/18/09 4:48 PMStroustrup_book.indb 1276Stroustrup_book.indb 1276 4/22/14 9:43 AM4/22/14 9:43 AM

aw_regthisprod_7.375x9.125.indd 1 1/26/12 11:14 AM

 InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking

timely and relevant information and tutorials? Looking for expert opinions,

advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Informit_7_375x9_125_bw_ad.indd 1 8/18/09 4:48 PMStroustrup_book.indb 1277Stroustrup_book.indb 1277 4/22/14 9:43 AM4/22/14 9:43 AM

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

SFOE_9780321992789_4C.indd 1 3/21/14 9:42 AMStroustrup_book.indb 1278Stroustrup_book.indb 1278 4/22/14 9:43 AM4/22/14 9:43 AM

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: QCXGNCB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of Programming, Second Edition, includes access to a free online edition for
45 days through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with thousands of
books and videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media,
Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

SFOE_9780321992789_4C.indd 1 3/21/14 9:42 AMStroustrup_book.indb 1279Stroustrup_book.indb 1279 4/22/14 9:43 AM4/22/14 9:43 AM

